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Background. Bordetella pertussis is among the leading causes of vaccine-preventable deaths and morbidity globally. Human 
asymptomatic carriage as a reservoir for community transmission of infections might be a target of future vaccine strategies, but has 
not been demonstrated. Our objective was to demonstrate that asymptomatic nasopharyngeal carriage of Bordetella pertussis is in-
ducible in humans and to define the microbiological and immunological features of presymptomatic infection.

Methods. Healthy subjects aged 18–45 years with an antipertussis toxin immunoglobin G (IgG) concentration of <20 interna-
tional units/ml were inoculated intranasally with nonattenuated, wild-type Bordetella pertussis strain B1917. Safety, colonization, 
and shedding were monitored over 17 days in an inpatient facility. Colonization was assessed by culture and quantitative polymerase 
chain reaction. Azithromycin was administered from Day 14. The inoculum dose was escalated, aiming to colonize at least 70% of 
participants. Immunological responses were measured.

Results. There were 34 participants challenged, in groups of 4 or 5. The dose was gradually escalated from 103 colony-forming units 
(0% colonized) to 105 colony-forming units (80% colonized). Minor symptoms were reported in a minority of participants. Azithromycin 
eradicated colonization in 48 hours in 88% of colonized individuals. Antipertussis toxin IgG seroconversion occurred in 9 out of 19 colon-
ized participants and in none of the participants who were not colonized. Nasal wash was a more sensitive method to detect colonization 
than pernasal swabs. No shedding of Bordetella pertussis was detected in systematically collected environmental samples.

Conclusions. Bordetella pertussis colonization can be deliberately induced and leads to a systemic immune response without 
causing pertussis symptoms.

clinical Trials Registration. NCT03751514.
Keywords. Bordetella pertussis; human challenge; carriage; immune response.

Pertussis is the leading cause of vaccine-preventable death, 
resulting in approximately 24.1 million pertussis cases and 
160  700 deaths from pertussis worldwide in 2014 in chil-
dren younger than 5 years [1]. Pertussis vaccines have been 
included in national immunization programs since the 
1940s and 1950s, and many countries have switched from 
the original whole-cell pertussis (wP) vaccine to acellular 

pertussis (aP) vaccines, because aP vaccines have favorable 
reactogenicity profiles [2].

Despite high immunization coverage, some developed coun-
tries have seen increases in the incidences of pertussis over the 
past 20 years [3]. The transmission of Bordetella pertussis (Bp), 
the cause of pertussis, occurs by aerosolized respiratory drop-
lets [4]. Studies using a baboon model of pertussis have shown 
that both aP and wP protect against severe disease, but not in-
fection of the respiratory tract. More rapid clearance was in-
duced in wP-vaccinated animals, compared with naive and 
aP-vaccinated animals. By comparison, previously infected ani-
mals were not colonized upon secondary infection. This may be 
related to a failure of aP to induce the Th1 and Th17 memory 
responses required for sterilizing mucosal immunity [5].

Whether Bp can exist in a human carrier state is an impor-
tant question. Negligible carriage rates in epidemiological studies 
[6, 7] have not supported a carrier state of Bp. However, sero-
epidemiological studies have revealed evidence for seroconversion 
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in the absence of clinical disease [8], suggesting that asympto-
matic colonization and transmission does occur sub-clinically in 
populations. This is important, as future vaccine strategies will 
need to efficiently reduce transmission between asymptomatic 
carriers. This has been demonstrated for medically important 
nasopharyngeal pathobionts, such as Streptococcus pneumoniae, 
Neisseria meningitidis, and Haemophilus influenzae; in each case, 
the herd protection conferred by potent glycoconjugate vaccines 
results from an interruption of transmission by vaccine-induced 
protection against the carrier state [9, 10]. However, individuals 
harmlessly colonized benefit from immunity conferred by the 
carrier state, which is a mechanism of natural protection against 
diseases such as pneumococcal or meningococcal disease [11].

As part of a European collaborative effort to accelerate per-
tussis vaccine development [12], we conducted controlled human 
infections with Bp to demonstrate that asymptomatic coloniza-
tion can occur, provide a safe human colonization model for the 
development of bioassays and testing of improved pertussis vac-
cines, and investigate the pathobiology of Bp infection.

METHODS

This was a first-in-human study conducted in accordance 
with the provisions of the Declaration of Helsinki (1996) and 
the International Conference on Harmonization Guidelines 
for Good Clinical Practice. This study is registered with 
ClinicalTrials.gov (NCT03751514; ethical committee reference 
17/SC/0006). The protocol was published ahead of this report 
[13] and can be found on www.periscope-project.eu.

Study Population

Eligible participants were healthy males and females aged 
18–45 years, who were available for the admission period and 
all scheduled visits, had a history of being vaccinated against Bp 
no less than 5 years before enrollment, were nonsmokers, had 
no use of antibiotics within 4 weeks of enrollment, and had not 
had contact with people vulnerable to Bp disease. Participants 
with a serum antipertussis toxin immunoglobulin G (IgG) 

level >20 international units/liter or a positive Bp culture from 
a pernasal swab, pregnant women, nursing mothers, females 
of childbearing age who did not use acceptable birth control, 
people with impairments/alterations of the immune system (in-
cluding immunosuppressive therapy), and people with a con-
traindication to azithromycin were excluded.

Interventions

Participants received a nasal inoculum of 1 ml containing Bp 
strain B1917, which is a fully genotyped representative of cur-
rent European isolates [14]. The strain, isolated from a Dutch 
patient with Bp disease, is characterized as ptxP3-ptxA1-prn2-
fim3-2, fim2-1 MLVA27, PFGE BpSR11 and expresses pertactin 
(PRN), pertussis toxin (PT), fimbriae 3 (FIM 3), and filamen-
tous hemagglutinin (FHA). The dose of the inoculum, starting 
at 1000 colony-forming units (cfu), was adjusted after each 
fifth subject to achieve colonization of 70% of the subjects. 
Colonization was defined as any positive Bp culture from nasal 
or oral samples at any time point between Day 3 and Day 14.

Participants were admitted to the research facility for 17 days 
and monitored for any signs of early Bp disease, including 
cough, sore throat, nasal congestion, rhinorrhoea, sneezing, 
and feeling generally unwell. Vital signs and adverse events 
were recorded every 4 hours during admission and at each 
follow-up visit. Following discharge, subjects had 4 follow-up 
visits over 12 months. If early Bp disease was suspected on the 
basis of solicited adverse events, then additional bloods and a 
throat swab for viral polymerase chain reaction (PCR; influenza 
A, influenza B, parainfluenza [types 1, 2 and  3], rhinovirus, 
RSV, adenovirus, and metapneumovirus) were taken to exclude 
an alternative etiology for these symptoms.

All participants had pernasal swabs, nasal washes, throat 
swabs, and nasosorption fluid samples taken at predetermined 
intervals (Table 1). Pernasal swabs and throat swabs were taken 
as per clinical protocol. Nasal wash samples were obtained by 
gently pushing 10 mL of normal saline in each nostril of the vol-
unteer, who was lying in the supine position. After 1 minute, the 

Table 1. Overview of Visits, Admissions, and Procedures During the Study

Day Week

 −30 −7 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 4 8 26 52

Visit x x … … … … … … … … … … … … … … … … … x x x x

Admission … … x x x x x x x x x x x x x x x x x … … … …

Challenge … … x … … … … … … … … … … … … … … … … … … … …

Blood sample x … x x x x x … x x … x … x … … x … … x x x x

Nasal wash sample … x … … … … x … … x … x … x … … x x x x x x x

Nasal fluid sample … x … … … x x x … x … x … x … … x x x x x x x

Pernasal swab x x … … … x … x … x … x … x … … x x x x … … …

Throat swab … x … … … x … x … x … x … x … … x x x x … … …

Azithromycin … … … … … … … … … … … … … … … … x x x … … … …

Shedding samples … … … x x x x x x x x x x x x x x x x … … … …

http://www.periscope-project.eu


Controlled human B. pertussis infection • cid 2020:71 (15 July) • 405

volunteer was asked to sit up and bend forward to allow the in-
stilled fluid to be extruded from the nose by gravity into a petri 
dish. Nasosorption fluid samples were taken by placing a strip of 
a hydrophilicpolyester absorptive matrix (Mucosal Diagnostics, 
Hunt Developments Ltd.) into the nostril for 2 minutes.

Bordetella pertussis colonization was identified by culture 
of these samples and identification was confirmed by matrix-
assisted laser desorption/ionisation time of flight mass spec-
trometry (MALDI-TOF). The minimum detection rate of the 
culture was 6 cfu. Quantitative PCR (qPCR) was performed 
on pernasal swabs, nasal washes, and throat swabs of the 15 
volunteers who received the standard inoculum (see below). 
Details of the microbiological methods used are provided in the 
Supplementary Material. Blood samples were taken at intervals 
and analyzed for seroconversion against PT, pertactin, FHA, 
and FIM 2/3 on Days 0 and 28 and analyzed for B-cell responses 
using enzyme-linked immune absorbent spot (ELISPOT) on 
Days 0, 7, and 14. The IgG antibody concentrations were quan-
tified using the fluorescent bead–based multiplex immunoassay, 
as described by van Gageldonk et al [15]. The ELISPOT method-
ology is provided in the Supplementary Material. Environmental 
samples were tested by culture and PCR to assess shedding from 
the volunteers. These included mask samples, fingertip samples, 
multiple surface samples, bedroom air samples, and air samples 
taken during standardized aerosol, provoking procedures such 
as talking and coughing using the Coriolis air sampler (Bertin 
Technologies SAS, Montigny-le-Bretonneux, France).

Objectives

The primary objective was to determine the standard inoculum 
dose, defined as the inoculum dose that resulted in Bp carriage in 
at least 70% of the exposed subjects without causing Bp disease.

Predefined secondary objectives included the character-
ization of the microbiological dynamics after a challenge, the 
effectiveness of azithromycin eradication therapy, pre- and 
post-challenge Bp-specific immunities in healthy subjects, and 
the environmental shedding of Bp following nasal inoculation.

In this dose escalation study, safety and colonization param-
eters were reviewed by an external committee after each fifth 
subject and the inoculum dose for the following 5 subjects was 
agreed. Enrollment ceased when at least 10 subjects had been 
colonized with the standard inoculum.

Statistical Methods

The percentage of participants successfully colonized (coloni-
zation fraction) with Bp at each dose and associated 95% con-
fidence intervals (CI) were calculated using the modified Wald 
method. Conventional culture and qPCR data are presented as 
medians, interquartile ranges, minimums, and maximums. To 
compare conventional culture with qPCR, data were analyzed 
using McNemar’s test and sensitivity was calculated. These data 
are presented in contingency tables. Serological data comparing 

colonized and uncolonized participants were analyzed using 
the Wilcoxon test. Differences in ELISPOT assay readouts were 
compared using the Kruskal-Wallis test with Dunn’s correction.

RESULTS

A total of 54 subjects were screened between June 2017 and July 
2018. No Bp was detected in any pernasal swab at screening 
and all participants had received wP vaccinations in child-
hood. There were 34 healthy subjects enrolled and inoculated 
intranasally with Bp in a dose-escalation study design (Figure 1).  
The demographic variables and baseline IgG concentration against 
common Bp antigens, PT, PRN, FHA, and FIM 2/3 are shown in 
Table 2. All subjects were followed up for at least 3 months.

Bordetella pertussis Colonization

The dose of intranasal inoculum was gradually increased fol-
lowing an algorithm, starting at a dose of 1000 cfu, which did 
not result in colonization. As the inoculum dose increased, so 
did the colonization fraction, for 55% (95% CI 27–82%) at a 
dose of 10 000 cfu, 40% (95% CI 12–77%) at a dose of 50 000 
cfu, and 80% (95% CI 54–94%) at a dose of 100 000 cfu. On 
completion of the protocol, 19 participants had become colon-
ized. There was no significant difference between the baseline 
demographic characteristics and pertussis antibody levels of the 
colonized and uncolonized group (Table 2). Bordetella pertussis 
was cultivable from nasal wash samples by Day 4 in most col-
onized subjects; the quantitative count then rose gradually and 
peaked on Day 11 (Figure 2A), with a substantial decrease on 
Days 15 and 16 following the commencement of azithromycin 
eradication therapy (see Supplementary Figure S3 for coloniza-
tion densities, plotted individually). This was mirrored in the 
qPCR data (Figure 2B); Bp DNA was still detectable on Days 15 
and 16 in culture-negative samples, as would be expected.

Comparison of Microbiological Sampling Method
Nasal wash was the most sensitive technique for microbio-
logical detection of Bp colonization; conventional culture was 
equally sensitive at detecting Bp colonization as qPCR of nasal 
wash samples (40 out of 48 samples, 83%; Table 3). Regarding 
pernasal swabbing, which is the conventional sampling proce-
dure for a laboratory diagnosis of Bp infection, qPCR was more 
sensitive at detecting Bp colonization than conventional cul-
ture (77% versus 36%, respectively). However, PCR of pernasal 
swabs was not as sensitive as PCR of nasal washes (52% versus 
87%, respectively). Comparing cultures of nasal wash samples 
and pernasal swabs taken at the same sampling times, Bp was 
significantly more frequently detected in nasal wash samples 
(P < .01, with McNemar’s test; Table 4). PCRs of throat swabs 
detected 36% of all PCR-positive samples taken at the same 
sampling times (n = 70): for pernasal swabs this was 54% and 
for nasal washes 94% (Table 5). Only 1 throat swab was culture 
positive, and nasosorption fluid culture was never positive.

http://academic.oup.com/cid/article-lookup/doi/10.1093/cid/ciz840#supplementary-data
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Clearance and Eradication of Bordetella pertussis Colonization
Of the 19 participants who were successfully colonized with 
Bp, 3 cleared colonization prior to receiving azithromycin. 
Eradication therapy rendered all samples culture negative by 48 
hours in 14 out of 16 subjects (88%). The remaining 2 volun-
teers who were still colonized at Day 16 were brought back for 
an additional follow-up visit at Day 21, by which time neither 
was carrying any detectable Bp.

Experimental Infection With Bordetella pertussis is Safe

There were no serious adverse events during the course of the 
study, no participants received rescue-eradication therapy, 
and no subjects withdrew due to study-related adverse events. 
Solicited adverse events occurred equally frequently in the 

colonized group and the uncolonized group. Mild symptoms 
of cough, rhinorrhea, and nasal congestion were reported 
more frequently in the groups receiving higher inoculum 
doses (Supplementary Figures S1 and S2). Viral PCR was neg-
ative in all tested subjects. Overall, controlled human pertussis 
infection was safe, with no significant safety concerns in any 
subject.

Immune Response to Colonization
Serological Response Assessed by Multiplex Immune Assay
Serum antibody concentrations were measured against the fol-
lowing Bp antigens: PT, PRN, FHA, and FIM 2/3 on Day 0 and 
Day 28. Significant rises in serum IgG concentrations were found 
against PT, PRN, and FHA at the highest inoculum dose (Figure 3).  

Table 2. Demographic Characteristics and Baseline Serum Immunoglobin G Concentrations Against Bordetella pertussis Antigens

Excluded Enrolled Colonized Uncolonized

 n = 20 n = 34 n = 19 n  = 15

Age, median years (IQR) 24(20–35) 26 (21–35) 26 (21–37) 26 (22–34)

Males, n (%) 16 (80) 20 (59) 11 (58) 6 (40)

Weight, kg, median (IQR) 81 (73–95) 74 (65–83) 73.7 (65–83) 74.2 (65–83)

Height, cm, median (IQR) 177 (171–180) 176 (170–183) 175 (163–181) 177 (172–186)

Anti-PT IgG, IU/ml, median (IQR) 29.2 (9.7–46.5) 4.6 (2.1–9.3) 6.8 (1.1–9.5) 5.5 (2.2–8.6)

Anti-PRN IgG, IU/ml, median (IQR) NA 13.2 (3.3–21.2) 9.8 (3.3–14.6) 14.7 (3.5–60.1)

Anti–FIM 2/3 IgG, AU/ml, median (IQR) NA 5.2 (2.2–21.4) 2.7 (0.9–5.7) 12.3 (6.5–31)

Anti-FHA IgG, IU/ml, median (IQR) NA 16.6 (8.4–32) 15.7 (6.1–26) 26.0 (8.4–50.8)

Abbreviations: AU, arbitrary units; FHA, filamentous hemaglutinin; FIM 2/3, fimbriae 2/3; IgG, immunoglobin G; IQR, interquartile range; IU, international units; NA, not available; PRN, 
pertactin; PT, pertussis toxin. 
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Figure 1. Subject flowchart. Abbreviations: B. pertussis, Bordetella pertussis; cfu, colony-forming units; IgG, immunoglobin G; IU, international units; PT, pertussis toxin.
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Comparing colonized with uncolonized participants, 5 out of 
12 of those colonized after inoculation with 105 cfu (n  =  15) 
exhibited a 4-fold or more increase in the serum anti-PT IgG 
concentration. Conversely, none of the uncolonized subjects ex-
hibited a rise in a serum anti-PT IgG concentration (Figure 4). 
All participants with a rise in an anti-PT concentration also had 
a rise in an anti-IgG concentration against other antigens (Table 
6; Supplementary Table S4).

Detection of Antibody-secreting Plasma Cells Specific to Bordetella 
pertussis Antigens by ELISPOT

No antigen-specific IgG- or IgA-secreting cells were detected 
by ELISPOT in any of the subjects at Days 0 or 7, above back-
ground concentrations detected in the phosphate buffered 
saline blank control or the tetanus toxin negative control an-
tigen (Figure 5). At Day 14, there was a trend for increased 
numbers of antigen-specific IgG- and IgA-secreting cells in 
colonized participants, compared to Day 0 and Day 7, and 
compared to uncolonized participants. This increase was 

significant (≤0.05) for FHA-specific Ig-secreting cells (Figure 
5C and D).

Environmental Sampling

In a controlled aerosolization experiment, a median of 17% (in-
terquartile range 1–40%) of the Bp that had been aerosolized 
into an environmental chamber at various concentrations was 
recovered using the air sampler, with a limit of detection of 15 
cfu/ml (Supplementary Table S5). Following extensive sampling 
and cultures, no environmental shedding of Bp from colonized 
participants was detected. Mask sample cultures (n = 442), air 
samples taken during aerosol-provoking procedures (n = 1088), 
bedroom air samples (n = 272), contact cultures (n = 1904), and 
fingertip cultures (n = 442) all tested negative for Bp.

DISCUSSION

This first-in-human study has demonstrated that asymptomatic 
colonization can be induced safely by intranasal inoculation with 
wild-type Bp, and is associated with seroconversion, suggesting 
a true biological colonization of the host. The dose needed to in-
duce colonization of approximately 80% of the exposed subjects 
is 105 cfu. Nasal washing was the most sensitive technique to 

BA

Figure 2. Colonization density in nasal wash samples of colonized subjects (n = 19) over time. A, Culture results in total cfu, measured by dilutional plating. B, Quantative 
polymerase chain reaction results, expressed as Ct value. Day 0 was the day of inoculation. Results are presented as box plots with medians and 25% and 75% interquartiles, 
and the whiskers represent the minimum and maximum values. Abbreviations: cfu, colony-forming units; Ct, cycle threshold.

Table 3. Nasal Wash and Pernasal Swabs 

Nasal Wash Culture

Positive Negative Total

qPCR pernasal swab Positive 22 5 27

Negative 19 14 33

Total 41 19 60

qPCR nasal wash Positive 40 8 48

Negative 8 19 27

Total 48 27 75

Data to compare detection of Bordetella pertussis by qPCR and culture at Days 0–14. These 
data are derived from the 15 participants who were inoculated with 105 colony forming 
units of Bordetella pertussis. Pernasal swabs were taken on Days 3, 5, 7, 9, 11, and 14. 
Nasal wash samples were taken on Days 4, 7, 9, 11, and 14.
Abbreviation: qPCR, quantitative polymerase chain reaction.

Table 4. Culture Results of Bordetella pertussis in Nasal Wash and 
Pernasal Swab Samples 

Pernasal swab

Positive Negative Total

Nasal wash Positive 24 46 70

Negative 0 134 134

Total 24 180 204

Data are from Day −7 to Day 16. These data are derived from the 34 participants who were 
inoculated with any dose of B. pertussis. Pernasal swabs and nasal washes were both 
taken on Days 7, 9, 11, 14, 15, and 16.

http://academic.oup.com/cid/article-lookup/doi/10.1093/cid/ciz840#supplementary-data
http://academic.oup.com/cid/article-lookup/doi/10.1093/cid/ciz840#supplementary-data
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detect colonization; pernasal swabbing, the conventional diag-
nostic technique, was even negative in 1 individual who serocon-
verted. Induced colonization causes a systemic immune response 
in the form of a rise in the antigen-specific serum IgG concentra-
tion and detectable, specific B cells in some, but not all, colonized 

individuals. Azithromycin clears carriage in most people by 
48 hours.

This study adds prima facie evidence to support epidemiolog-
ical and serological observations that suggest that asymptomatic 
Bp colonization is part of the natural life cycle of the organism. 

Table 5. Bordetella pertussis Polymerase Chain Reaction Results 

Pernasal swab Throat swab

Positive Negative Total Positive Negative Total

Nasal wash Positive 34 32 66 23 43 66

Negative 5 41 46 2 37 39

Total 39 73 112 25 80 105

Throat swab Positive 23 3 26 … … …

Negative 16 93 109 … … …

Total 39 96 135 … … …

Data are of nasal wash, pernasal swab, and throat swab samples taken from Day −7 to Day 16. These data are derived from the 15 participants who were inoculated with 105 colony forming 
units of Bordetella pertussis.

103cfu 104cfu 5x104cfu 105cfu 103cfu 104cfu 5x104cfu 105cfu

103cfu 104cfu 5x104cfu 105cfu 103cfu 104cfu 5x104cfu 105cfu

A B

C D

Figure 3. Antigen-specific serum IgG concentration after Bp exposure, comparing dose groups. A, Anti-PT. B, Anti-PRN. C, Anti-FHA. D, Anti-FIM 2/3. Infected with:  in-
oculum dose 103 cfu (n = 5),  inoculum dose 104 cfu (n = 9),  inoculum dose 5x104 cfu (n = 5),  inoculum dose 105 cfu (n = 15). Day 0 was the day of inoculation. Results 
are presented as scatter plots with median values. *Significance between time points (P < .05), using the Wilcoxon test. Abbreviations: AU, arbitrary units; Bp, Bordetella 
pertussis; cfu, colony-forming units; FHA, filamentous hemaglutinin; FIM 2/3, fimbriae 2/3; IgG, immunoglobin G; IU, international units; PRN, pertactin; PT, pertussis toxin. 
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The significance of this is that transmission from this reservoir 
to susceptible people is probably responsible for sporadic per-
tussis cases and outbreaks [16], and will need to be targeted in 
future successful vaccination strategies to achieve herd protec-
tion. Screening studies have failed to detect asymptomatic colo-
nization [6, 7], which has been demonstrated in only a few cases 
during contact studies [17, 18], but this study shows that the 
microbiological sampling technique used is likely to be critical.

This is not the first time that human subjects have been in-
fected deliberately with wild-type Bp. In a very small pediatric 
study carried out in 1933, Bp disease was induced by exposing 
2 presumably immunologically naive children to 140 cfu of Bp 

bacteria. No asymptomatic colonization was detected, as the 
participants developed symptoms at the same time as positive 
cultures were obtained from cough samples 1 week after ex-
posure [19]. A Phase I  trial of a live, genetically attenuated Bp 
intranasal vaccine has been reported. Asymptomatic coloniza-
tion was demonstrated after inoculation with BPZE1, a Bp strain 
in which dermonecrotic toxin and tracheal cytotoxin are genet-
ically deleted, and PT is genetically detoxified by 2 independent 
mutations, removing the toxic activity of PT without affecting its 
immunogenic properties [20]. In the BPZE1 study, colonization 
was detected in 1 out of 12 (8%) subjects inoculated with 103 cfu, 
1 out of 12 (8%) inoculated with 105 cfu, and 5 out of 12 (42%) 

A B C D

Figure 4. Serum IgG concentration against Bp-specific antigens after a challenge with 105 cfu of Bp. IgG concentration of n = 15 subjects exposed to 105 cfu Bp. A, Anti-PT. 
B, Anti –PRN. C, Anti-FHA. D, Anti-FIM 2/3. The black lines indicate colonized cases and the dashed lines indicate noncolonized cases. Day 0 was the day of inoculation. 
Abbreviations: AU, arbitrary units; Bp, Bordetella pertussis; cfu, colony-forming units; FHA, filamentous hemaglutinin; FIM 2/3, fimbriae 2/3; IgG, immunoglobin G; IU, inter-
national units; PRN, pertactin; PT, pertussis toxin.

Table 6. Baseline and Fold Changes in Serum Immunoglobin G Concentrations Against Bordetella pertussis Antigens, Comparing Day 0 and Day 28

Subject  
number

Inoculum  
dose, cfu

PT FHA PRN FIM2/3

Baseline IU/ml Fold change Baseline IU/ml Fold change Baseline IU/ml Fold change Baseline AU/ml Fold change 

1 103 8.8 4.7 30.9 1.0 9.8 1.0 1.5 4.1

2 104 2.1 22.5 9.7 9.1 4.3 9.9 4.1 9.4

3 104 0.2 55.3 5.1 4.2 1.3 9.1 1.0 5.8

4 5x 104 7.6 5.1 21.1 4.4 18.1 1.3 2.9 1.2

5 5x 104 10.5 2.6 44.4 1.4 13.8 2.3 0.5 5.6

6 105 7.5 55.6 10.4 6.7 1.3 2.8 5.7 8.2

7 105 1.9 21.8 5.2 16.1 5.9 16.9 1.5 5.1

8 105 22.4 4.0 15.9 3.9 2.0 1.9 0.6 2.6

9 105 0.7 45.1 26.0 3.9 2.6 1.9 2.7 13.7

10 105 1.1 6.6 24.1 2.0 15.1 1.4 0.1 55.4

Subjects presented showed at least a 4-fold immunoglobin G concentration change against at least 1 antigen.
Abbreviations: AU, arbitrary units; cfu, colony-forming units; FHA, filamentous hemaglutinin; FIM 2/3, fimbriae 2/3; IU, international units; PRN, pertactin; PT, pertussis toxin. 



410 • cid 2020:71 (15 July) • de Graaf et al

inoculated with 107 cfu. These colonization fractions are signifi-
cantly lower than those at the equivalent and lower doses of Bp 
in our study using a wild-type strain, suggesting that the toxins 

removed from Bp are important for colonization. In addition, 
our study demonstrates that asymptomatic colonization can still 
occur in the presence of these potent toxins. Other nasal challenge 
studies, such as the Streptococcus pneumoniae challenge studies 
[21] and the Neisseria lactamica studies [22, 23], have shown sim-
ilar increases in colonization fractions with increasing doses.

In the current study, subjects who were inoculated but not 
colonized exhibited no rise in anti-Bp antigen-specific IgG con-
centrations. A specific antibody was not produced in some col-
onized participants, unlike in other nasal challenge studies, in 
which all colonized volunteers exhibited seroconversion [21, 
22]. This may reflect our protocol requirement to terminate col-
onization using azithromycin at 14 days, in order to avoid pro-
gression to a lengthy syndrome of cough [24]. All participants 
received a whole-cell pertussis vaccine in infancy, as the acel-
lular pertussis vaccine was introduced into the United Kingdom 
in 2005. The increase in anti-Bp serum IgG concentrations seen 
in colonized subjects in our study is modest, compared to those 
observed after Bp disease [25] or Bp vaccination [26].

The gold standard for diagnosis of pertussis is qPCR or cul-
ture of pernasal swabs [27]. Epidemiological studies looking 
for asymptomatic colonization have also used PCR of pernasal 
swabs [6, 7]. Our study has revealed that culture or PCR of nasal 
wash samples is much more sensitive than PCR of pernasal 
swab samples, likely due to the surface area sampled, which may 
explain negative findings in previous epidemiological studies.

In patients being treated for whooping cough, azithromycin 
eradicates Bp from the nasopharynx in 97% of individuals with 
disease within 3  days [28]. In this study, azithromycin eradi-
cated colonization in 88% of colonized subjects within 2 days, 
supporting current public health outbreak guidelines [27]. 
Although the sample used in our study was small, there was a 
trend suggesting that adults with higher anti-PRN and anti–
FIM 2/3 antibody concentrations are protected against coloni-
zation, consistent with epidemiological studies [20, 29, 30].

The absence of environmental shedding in these asymptomatic 
participants is striking. Our participants received wP in infancy. It 
is possible that this impacts on the likelihood of shedding during 
asymptomatic colonization, and might be different amongst indi-
viduals who receive aP. Alternatively, it is possible that the methods 
used are not sensitive enough to detect subtle degrees of shedding. 

In summary, asymptomatic colonization of the human upper 
respiratory tract by Bp can be induced by experimental inocula-
tion and is associated with a modest serological response in the 
majority of colonized volunteers. This has important implications 
for future vaccine strategies, and may explain the high seroprev-
alence of anti-PT IgG in populations and the epidemiological 
peaks that have been observed in Bp disease, which suggest con-
tinued circulation of Bp in populations vaccinated with wP or aP.

Supplementary Data
Supplementary materials are available at Clinical Infectious Diseases online. 
Consisting of data provided by the authors to benefit the reader, the posted 
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Figure 5. IgG- and IgA-secreting plasma B-cell responses to Bp challenge. 
Numbers of plasma B cells secreting IgG and IgA are specific for (A–B) PT, (C–D) 
FHA, (E–F) PRN, and (G–H) FIM 2/3 by ELISPOT. PBS (I–J) and TT (K–L) were used 
as a background control and negative control antigen, respectively. Results for vo-
lunteers who were uncolonized (○; n = 9) and colonized (∎; n = 16) are shown as 
box plots representing the median, with 25% and 75% interquartile ranges, and 
whiskers representing minimum and maximum values. *Significance between time 
points (P <  .05), using a Kruskel-Wallis test with Dunn’s correction. #Significance 
between noncolonized and colonized responses (P  <  .05), using a Kruskel-Wallis 
test with Dunn’s correction. Abbreviations: Bp, Bordetella pertussis; FHA, filamen-
tous hemaglutinin; FIM 2/3, fimbriae 2/3; Ig, immunoglobin; PBMC, peripheral blood 
mononuclear cells; PBS, phosphate buffered saline; PRN, pertactin; PT, pertussis 
toxin; TT, tetanus toxoid.
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materials are not copyedited and are the sole responsibility of the authors, 
so questions or comments should be addressed to the corresponding author.
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