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The SRC family kinase (SFK) HCK is transcriptionally upregulated and activated by

mutated MYD88 (MYD88Mut), a key adaptor for Toll-receptor signaling. HCK activates

BTK, AKT, and ERK in MYD88Mut lymphomas. SYK, a B-cell receptor (BCR) component, is

activated in MYD88Mut lymphoma cells. Although the SFK LYN serves as a trigger for

SYK activation in MYD88Mut ABC DLBCL cells, LYN activity is muted in MYD88Mut

Waldenstrom macroglobulinemia (WM) cells. We therefore investigated a role for HCK

in mediating SYK activation. Overexpression of wild-type (WT) (HCKWT) or gatekeeper

mutated (HCKThr333Met) HCK in MYD88Mut lymphoma cells triggered SYK activation.

Conversely, HCK knockdown reduced p-SYK in MYD88Mut lymphoma cells.

Coimmunoprecipitation experiments showed that HCK was complexed with p-SYK in

MYD88Mut BCWM.1 and TMD8 cells, but not in MYD88 WT Ramos cells. Rescue

experiments in MYD88Mut lymphoma cells expressing HCKThr333Met led to persistent HCK

and SYK activation and resistance to the HCK inhibitor A419259. Treatment of primary

MYD88Mut WM cells with A419259 reduced p-HCK and p-SYK expression. Taken together,

our findings show that SYK is activated by HCK in MYD88Mut B-cell lymphomas cells,

broaden the prosurvival signaling generated by aberrant HCK expression in response to

MYD88Mut, and help define HCK as an important therapeutic target in MYD88Mut B-cell

lymphomas.

Introduction

Activating MYD88 mutations are common in B-cell malignancies, including Waldenstrom macroglobuline-
mia (WM) and activated B-cell diffuse large B-cell lymphoma (ABC DLBCL). MYD88 is a component of
the Toll-like receptor (TLR) pathway. Mutated MYD88 (MYD88Mut) triggers assembly of a “Myddosome”
complex leading to downstream prosurvival signaling that includes IRAK4/IRAK1-triggered NF-kB and
HCK-mediated BTK/NF-kB, PI3K/AKT, and MAPK/ERK signaling.1-5 HCK is upregulated in response to
mutated MYD88 signaling that includes STAT3, NF-kB, and the AP-1 complex component JunB in the
presence of PAX5.6
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Key Points

� HCK facilitates TLR/
BCR crosstalk
through activation of
SYK in response to
mutated MYD88.

� The HCK inhibitor
A419259 selectively
blocks SYK activation
in MYD88 mutated
cell lines and primary
WM lymphoplasma-
cytic cells.
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The activation of the B-cell receptor (BCR) signaling component
SYK has also been observed in MYD88Mut WM.7 Knockdown of
MYD88 or a MYD88 signaling inhibitor abrogated SYK activation,
whereas overexpression of mutated but not wild-type (WT) MYD88
amplified SYK activation in MYD88Mut and MYD88WT lymphoma
cells.8 Importantly, knockdown of SYK or SYK inhibitors blocked
p-STAT3 and p-AKT signaling and decreased viability of MYD88Mut

lymphoma cells.8 In ABC DLBCL, chronic active BCR signaling
underlies SYK activation, and knockdown of SYK decreases cell via-
bility, including those harboring MYD88 and CD79 mutations.9

Although a role for the SRC family kinase (SFK) LYN has been pro-
posed to trigger BCR/SYK activation in ABC DLBCL, other findings
suggest an inhibitory role through BCR downmodulation.9-11 Herein,
we investigated if HCK, an SFK that is normally downregulated in
late-stage B-cell ontogeny, and transcriptionally upregulated and
activated by MYD88Mut could trigger SYK activation, and thereby
facilitate TLR/BCR crosstalk.4,11,12

Methods

Cell lines and drug treatment

MYD88Mut (MYD88Leu265Pro) WM (BCWM.1 and MWCL-1)
and ABC DLBCL (TMD-8, HBL1, OCI-Ly3) cells; MYD88Mut

(MYD88Ser222Arg) ABC DLBCL (SU-DHL-2) cells; and MYD88 WT
(MYD88WT) GCB DLBCL (OCI-Ly7, OCI-Ly19), Burkitt lymphoma
(Ramos) and myeloma (RPMI-8226) cells were used. Cell line iden-
tities were confirmed by GenePrint (Promega, WI). Ibrutinib and
A419259 were obtained from MedChem Express (Monmouth Junc-
tion, NJ).

Patient samples and drug treatment

Bone marrow mononuclear cells were isolated as before, and 23 106

bone marrow mononuclear cells were treated for 1 to 2 hours
with ibrutinib or A419259.4 PhosFlow analyses were performed
on CD201 lymphoplasmacytic lymphoma cells (LPCs), and
western blotting was performed on CD191 LPCs as before.3,4

MYD88 genotyping was performed by allele-specific polymerase
chain reaction.13 CXCR4 mutation status was determined by
allele-specific polymerase chain reaction and Sanger sequenc-
ing.14 Healthy donor CD191 B cells from peripheral blood mono-
nuclear cells were used as controls for LYN and p-LYN
assessments. Sample use was approved by Dana-Farber/
Harvard Cancer Center institutional review board following
written consent.

Transcriptome and copy number analysis for

LYN expression

Gene expression for LYN was determined in 57 patients with WM
by validated next-generation RNA sequencing as previously
reported.15 MYD88 and CXCR4 mutation status for these patients
was determined as described above.13,14 Findings were compared
with LYN expression in healthy donor peripheral blood B cells,
memory B cells, and plasma cells. Copy number analysis for LYN
was performed as before.16

HCK knockdown and overexpression studies

HCK knockdown or overexpression of WT (HCKWT) or gatekeeper
mutant of HCK (HCKThr333Met) was performed using lentiviral
expression vectors as previously described.4

Signaling studies

Cells were treated for 1 to 2 hours prior to PhosFlow and western
blot analysis. Alexa Fluor 647-conjugated p-SYK(Tyr525/Tyr526), APC-
Cy7-conjugated CD20 (BD Biosciences, San Jose, CA), and
p-HCK(Tyr410) combined with DyLight 650-conjugated goat F(ab')2
anti-rabbit immunoglobulin G (IgG) antibody (Abcam, Cambridge,
MA) were used for PhosFlow analysis. Western blotting was
performed using antibodies to p-SYK(Tyr525/Tyr526) (R&D Systems),
p-LYN(Tyr396) (GeneTex Inc), SYK, LYN, p-AKT(Ser473), AKT,
p-ERK1/2(Thr202/Tyr204), ERK1/2, and HCK (Cell Signaling Technolo-
gies, MA).

Co-IP studies

Coimmunoprecipitation (co-IP) studies were performed as previously
described using an HCK antibody (Cell Signaling Technologies).4

Statistical analysis

Pairwise comparisons using Wilcoxon rank sum exact test were per-
formed for gene expression from transcriptome analysis.

Results and discussion

p-LYN expression is downregulated in MYD88

WM cells

In previous studies, the SFK LYN was shown to be a trigger for
SYK activation, and in response to chronic BCR activation in ABC
DLBCL.9,10 By next-generation sequencing, LYN shows variable
expression in patients with WM and was significantly lower in LPCs
from MYD88Mut patients who are CXCR4WT when compared with
expression levels in healthy donor peripheral and memory B cells
(supplemental Figure 1A). Conversely, no difference in LYN expres-
sion was observed between LPCs from MYD88Mut and CXCR4Mut

patients and healthy donor peripheral and memory B cells.

To clarify the activation state of LYN in MYD88 mutated lymphoma
cells, we examined p-LYN expression. MYD88Leu265Pro mutated
TMD8, HBL-1, and OCI-Ly3 ABC DLBCL cells showed strong
expression of p-LYN, a finding previously attributed to chronic BCR
signaling.9 Conversely, p-LYN expression was low in MYD88Leu265Pro

mutated BCWM.1 and MWCL-1 WM cells, and SU-DHL-2 ABC
DLBCL cells that carry an MYD88Ser222Arg mutation (Figure 1A).
Moreover, p-LYN expression was absent or low in CD19-selected
bone marrow primary LPCs from 6 MYD88Leu265Pro patients with
WM, including 3 of whom amply expressed LYN protein. Copy num-
ber analysis showed no remarkable alterations in LYN expression
(supplemental Figure 1B). By comparison, LYN was uniformly
expressed in CD19-selected peripheral blood B cells from 6 healthy
donors and showed robust expression of p-LYN (Figure 1B). Taken
together, the above findings show variable expression for LYN in
patients with MYD88 mutated WM, although CXCR4 mutation status
impacted LYN expression levels. Although copy number loss of LYN is
common in WM, such loss is typically subclonal and not impacted by
CXCR4 mutation status.16 Our copy number findings for LYN are con-
sistent with these prior observations. Expression differences in LYN
may therefore be related to epigenomic (methylation) changes that
accompany CXCR4 mutation status and tumor differentiation.17,18

Indeed, lower expression levels of LYN were observed in healthy
donor plasma cells (supplemental Figure 1A) consistent with the
known downregulation of BCR pathway that accompanies B cell to
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plasma cell differentiation. As MYD88MUTCXCR4WT vs MYD88MUT

CXCR4MUT WM cells show more advanced plasmacytic differentia-
tion, the finding of lower LYN expression in this subgroup is not sur-
prising.15,18 Importantly, the lack of SFK LYN activity observed in
primary MYD88MUT WM samples (including one that was
CXCR4MUT) suggests that LYN is unlikely to mediate SYK activation
in MYD88Leu265Pro WM but may be its driver in MYD88Leu265Pro

DLBCL cells owing to chronic active BCR signaling.9

HCK modulates SYK phosphorylation in MYD88

mutated WM cells

We next investigated a direct role for the SFK HCK in mediating
SYK activation. We overexpressed HCK in MYD88Leu265Pro

BCWM.1 and MWCL-1 WM cell lines, and TMD8 ABC DLBCL
cells. In all 3 cell lines, overexpression of HCK triggered a robust
increase in phosphorylation of SYKTyr525/Tyr526 vs vector-only trans-
duced cells (Figure 1C). Moreover, using an inducible vector sys-
tem, HCK knockdown markedly reduced SYKTyr525/Tyr526

phosphorylation in BCWM.1 WM and TMD8 ABC DLBCL cells
(Figure 1D). In both experiments, total SYK levels remained
unchanged (Figure 1C-D).

Activated SYK is complexed with HCK in MYD88

mutated B-cell lymphoma cells

To clarify if HCK and activated SYK were present in the same sig-
naling complex, we performed co-IP experiments using an HCK anti-
body in MYD88Mut BCWM.1, TMD8, and MYD88WT Ramos cells.
The HCK antibody effectively pulled down p-SYK in MYD88Mut

BCWM.1 and TMD8 cells, but not in MYD88WT Ramos cells
(Figure 1E).

HCK kinase activity is responsible for SYK

activation in MYD88 B-cell lymphoma cells

In previous studies, we showed that A419259, a potent toolbox
inhibitor of HCK, shows selective killing of MYD88 mutated lym-
phoma cells.4 To confirm whether HCK kinase activity triggered
SYK activation, we performed rescue experiments with A419259 in
MYD88 mutated BCWM.1 and MWCL-1 WM and TMD8 ABC
DLBCL cells expressing either HCKWT or HCK gatekeeper mutated
HCKThr333Met that abrogates A419259 binding.4 BCWM.1 and
MWCL-1 cells transduced to express HCKThr333Met protein showed
a .2 log-fold increase in resistance to A419259 vs those

transduced with either vector alone or HCKWT protein. By PhosFlow
analysis, expression of HCKThr333Met but not HCKWT led to persis-
tent activation of HCK and SYK in the presence of A419259 in
BCWM.1 (Figure 2A-B) and MWCL-1 (Figure 2C-D) WM cells,
and TMD8 (Figure 2E-F) ABC DLBCL cells. Consistent with these
observations, treatment of primary MYD88Mut WM LPCs cells
with A419259 also abrogated both HCK and SYK phosphorylation
(Figure 2G).

Taken together, the above studies support the activation of SYK by
the SFK HCK in MYD88Mut B-cell lymphomas cells. The paucity of
LYN activation in MYD88Leu2655Pro WM cells may suggest that in
WM, the primary functional trigger for SYK activation, may involve
the SFK HCK, whereas in MYD88Leu265Pro DLBCL both SFKs
(LYN and HCK) may contribute to SYK activation. Our findings are
consistent with those of Phelan et al,19 who identified a MYD88-
TLR9-BCR supercomplex as a driver of BCR signaling in ABC
DLBCL, and potentially extend those observations by identifying
mutated MYD88 directed HCK as an enabler of SYK activation. In
deference to ABC DLBCL wherein chronic active BCR signaling is
known to trigger SYK through activation of LYN, we did not find evi-
dence for LYN activation in MYD88Mut WM cells.9,10 This previously
unrecognized finding may also argue against chronic active BCR
signaling in WM, although further studies are needed to clarify this
point. Our findings further broaden the role played by aberrant HCK
expression in promoting MYD88Mut prosurvival signaling, that previ-
ously included BTK, ERK, and AKT (supplemental Figure 2). The
downstream consequences of HCK may also be relevant in non-
MYD88Mut driven diseases, such as mantle cell lymphoma, wherein
HCK is activated.20

The recognition that HCK underlies SYK activation in MYD88Mut

B-cell lymphomas may also be therapeutically relevant. A novel HCK
inhibitor KIN-8194 with greater kinome selectivity and better toler-
ance over A419259 was more active vs ibrutinib in MYD88Mut lym-
phoma xenograft models.21 KIN-8194 also blocked SYK,
suggesting that a broader shutdown of MYD88 prosurvival signaling
may be achieved with HCK inhibitors (supplemental Figure 2). In
summary, our findings show that SYK can be activated by HCK;
broaden the prosurvival signaling generated by aberrant HCK
expression in response to MYD88Mut; and help further establish the
SFK HCK as a relevant therapeutic target in MYD88Mut B-cell
lymphomas.

Figure 1 (continued) The SFK HCK activates SYK in MYD88 mutated lymphomas cells. (A) Expression of p-LYNTyr396 levels by western blot analysis in MYD88L265P

BCWM.1, MWCL-1 WM cells, TMD8, HBL-1, OCI-Ly3; MYD88Ser222Arg SU-DHL-2 ABC DLBCL cells; and MYD88WT OCI-Ly7, OCI-Ly19 GCB DLBCL cells, Ramos Burkitt

lymphoma cells, RPMI-8226, and MM.1S multiple myeloma cells. The expression levels of total LYN in these cells as well as protein loading control glyceraldehyde-3-phosphate

dehydrogenase (GAPDH) are also shown. (B) p-LYNTyr396 levels by western blot analysis in CD19-selected bone marrow LPC from 6 MYD88Leu265Pro patients withWM of whom

WM1was also CXCR4Mut andWM2-6 was CXCR4WT, and CD19-selected peripheral blood (PB) B cells from 6 healthy donors; lysates from OCI-Ly7 GCB DLBCL cells were used

for p-LYN and protein loading control. The expression of total LYN is also shown. (C) Expression of p-SYKTyr525/Tyr526 levels by western blot analysis in vector-only, HCKWT or

HCKThr333Met transduced BCWM.1, MWCL-1WM cells, and TMD8 ABC DLBCL cells. Expression levels of total HCK, SYK in these cells as well as GAPDH for protein loading

control are shown. (D) Changes in p-SYKY525/526 and p-ERK1/2Thr202/Tyr204 levels following HCK knockdown with doxycycline inducible shRNA1 and shRNA2 or scrambled control

vector in BCWM.1WM and TMD8 ABC DLBCL cells. p-SYKTyr525/Tyr526 and p-ERK1/2Thr202/Tyr204 levels were detected at day 9 following 1.0 mg/mL doxycycline induction.

p-ERK1/2Thr202/Tyr204, a known downstream signaling component of HCK, served as a positive control for these experiments.4 Expression levels of total HCK, SYK, and ERK1/2 as well

as GAPDH for protein loading control are also shown. (E) p-SYKY525/526 protein levels by western blot analysis following a co-IP with HCK protein in MYD88Mut BCWM.1 and TMD8

cells, and MYD88WT Ramos cell lysates. Magnetic beads only and rabbit IgG were used as co-IP experimental controls. HCK total protein was also shown as an indication of the co-IP

efficiency in these cells. IgG heavy chain was shown as an indication of the quantity of antibodies used in the co-IP experiments. Above experiments were performed at least twice with

representative results shown. BM, bone marrow.
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Figure 2. SYK activation is driven by the SFK HCK in MYD88 mutated lymphoma cells. (A) Relative p-HCKTyr410 levels by PhosFlow analysis following the treatment with

dimethyl sulfoxide (DMSO) or the HCK inhibitor A419259 at the indicated concentrations for 1.0 hour in vector-only, HCKWT, or HCKThr333Met transduced BCWM.1 cells.

(B) Relative p-SYKY525/526 levels by PhosFlow analysis following treatment with DMSO or A419259 at indicated concentrations for 1.0 hour in vector-only, HCKWT, or HCKThr333Met

transduced BCWM.1 cells. (C) Relative p-HCKTyr410 levels by PhosFlow analysis following the treatment with DMSO or A419259 at indicated concentrations for 1.0 hour in

vector-only, HCKWT, or HCKThr333Met transduced MWCL-1 cells. (D) Changes in p-SYKTyr525/Tyr526 levels following the treatment with DMSO or A419259 at indicated concentrations

for 1.0 hour in vector only, HCKWT, or HCKThr333Met transduced MWCL-1 cells. The expression levels of total SYK in these cells as well as protein loading control GAPDH are also

shown. (E) Relative p-HCKTyr410 levels by PhosFlow analysis following the treatment with DMSO or A419259 at indicated concentrations for 1.0 hour in vector only, HCKWT, or

HCKThr333Met transduced TMD8 cells. (F) Changes in p-SYKTyr525/Tyr526 levels following the treatment with DMSO or A419259 at indicated concentrations for 1.0 hour in vector-only,

HCKWT, or HCKThr333Met transduced TMD8 cells. The expression levels of total SYK in these cells as well as protein loading control GAPDH are also shown. (G) p-HCKTyr410 levels

and p-SYKTyr525/Tyr526 levels by PhosFlow analysis following the treatment with DMSO or A419259 at the indicated concentrations for 1.0 hour in CD201 gated patient with WM

bone marrow lymphoplasmacytic cells. Above experiments were performed at least twice with representative results shown. Ab, antibody.
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