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Abstract

Multiple synergistic factors affect the development and composition of mammalian gut microbiota, but effects of host
genetics remain unclear. To illuminate the role of host genetics on gut microbiota, we employed animals with a graduated
spectrum of genetic variation with minimal environmental influences. We bred 228 calves with linearly varying breed
composition from 100% Angus (Bos taurus) to 100% Brahman (Bos indicus), as a proxy for genetic variation, and then
raised the offspring in the same environment with identical diets. We hypothesized each breed would harbor distinct gut
microbiota due to genetic influence. We found that the gut microbiota of preweaning calves at 3 months old is significantly
affected by host genetics, profoundly by paternal genome. We also demonstrate that single nucleotide polymorphisms in host
mucin-encoding genes, critical for gut mucosal health, are significantly correlated with both breed composition and mucin-
degrading gut bacteria. We further demonstrate host genetics indirectly changes gut microbiota composition via
microbe—microbe interactions. These findings indicate a strong contribution by host genetics in shaping the gut microbiota
during early life stages, shedding light on impact of animal breeding on gut microbiota, which is associated with animal

growth and health.

Introduction

The diverse commensal bacterial communities in the
gastrointestinal (GI) tract of humans and animals provide
fundamental functions including regulating immune sys-
tem development, increasing the host’s digestion cap-
abilities, and preventing pathogen colonization [1-3].
Animal gut microbial communities are acquired and
shaped dynamically after birth, and sometimes even
before birth; they are complex systems that provide
health-relevant functions [4-6]. Genetic coevolution
between hosts and gut microbes has resulted in specific
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nutritional symbiosis such as short-chain fatty acid pro-
duction and vitamin synthesis [7, 8], which indicates the
existence of heritable microbiota. In other words, the
nutritional benefits to hosts of some gut bacteria are so
strong that some microbe taxa appear to be preferentially
selected, either through direct contact or via genetic
influence mediated by the parental genome. Due to the
indispensable roles of heritable bacterial taxa, key mod-
ulators such as host genetics may determine host—microbe
specificity to maintain microbial communities in the GI
tract; bacterial colonization and filtering occur in response
to continuous ecological interactions. Exploring how host
genotypes modulate gut bacteria composition will deepen
our understanding for establishing new targets to lower
intestinal disorders and metabolic syndromes by main-
taining homeostasis in the GI tract.

Although the degree to which host genetics shape the gut
microbiota remains unclear, a growing number of studies
across animal species (e.g., human, mouse, chicken, cattle,
and swine) have demonstrated the role of host genetics in
the gut microbiota composition [9—-13]. With recent
advanced technology, specifically genome-wide association
study (GWAS), multiple associations have been identified
between single nucleotide polymorphisms (SNPs)
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genotypes, primarily located in genes associated with host
metabolic syndrome and immune disease, and abundance of
commensal bacteria [14—16]. However, recently the statis-
tical significance of associations between host SNPs and
individual bacterial taxa has been challenged [17], and
additional studies report that environmental factors dom-
inate host genetics in shaping the gut microbiota [18, 19].
The discrepancies in interpreting the role of host genetics
and environmental factors might be due to population var-
iation, genetic distance, age, and environmental conditions.
The interaction itself between environmental factors and
host genetics could also mask host genetic effects in shap-
ing the gut microbiota.

The GI tract is the largest digestive and immune organ.
SNPs in the host genes that are associated with metabolic
and immune functions are more frequently associated with
the prevalence of commensal bacteria in the GI tract [20].
Hence, we hypothesized that animal populations with
significantly different genetic backgrounds in metabolism
and immune function would harbor readily apparent host
genetic effects on gut microbiota compositions. For
instance, Angus cattle (Bos taurus), the most common
beef breed in the US, have a faster growth rate and better
meat quality compared with the Brahman cattle breed
(Bos indicus). Brahman cattle are more common in tro-
pical regions due to their immunity traits of being able to

resist pathogenic parasites and pathogenic bacterial
colonization in their GI tract [21, 22]. They are also
known for their superior heat tolerance and ability to
utilize low-quality forage [23, 24]. Beef cattle breeding
and genetic selection have been conducted using two
breeds to generate livestock with desirable phenotypes
such as high growth performance and low incidence of
disease outbreaks [25-27].

To understand whether host genetics shapes the early gut
microbiota and its effects on host phenotypes, we bred our
study animals using a unique multibreed Angus—Brahman
(MAB) herd; varying from 100% of one breed, through a
gradual, mixed breed composition, to 100% of another
breed. We selected 228 calves from the newborn herd.
Selected calves were representative of the gradual change in
genetic background, and had an even distribution of age and
gender. We raised them in the same environmental condi-
tions and fed them the same diets to minimize nongenetic
influences. We then analyzed the calves’ gut microbiota
composition when they were 3 months old because an
animals’ early stage of life is critical due to the high inci-
dence of disease outbreaks and rapid growth rate; the sig-
nificance of the initial gut microbiota in early life stages has
also been emphasized due to its role in the education of host
immune systems and prolonged effects on the later stages of
animal development [4, 28-30].
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Fig. 1 Animal breeding to generate calves with varying breed com-
position. a The unique multibreed Angus—Brahman (MAB) herd
initiated in 1989 was maintained on the pasture in Florida. Cattle were
divided into six breed groups (BGs) based on their breed composition.
The breed composition of BG1 to BG6 ranged from 100% Angus to
100% Brahman. b Diallel design of mating in the MAB herd where
sires from six BGs were mated to dams from six BGs. ¢ Brahman
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Materials and methods
Ethics statement

All operations to animals in this study followed the standard
practices of animal care and use. The practices related to the
animals in this study were approved by the University of
Florida Institutional Animal Care and Use Committee
(IACUC number 201408629 and 201803744).

Animal genetic background and management

Preweaning calves in this study were bred from the MAB
herd of the University of Florida. The herd was established
in 1989 to conduct long-term genetic studies in beef cattle
[31]. Calves were assigned to six breed groups (BGs)
according to the following breed composition ranges esti-
mated from documented pedigree: BG1 = 100-80% Angus
and 0-20% Brahman; BG2 = 79-60% Angus and 21-40%
Brahman; BG3 =62.5% Angus and 37.5% Brahman,
BG4 =59-40% Angus and 41-60% Brahman, BGS =
39-20% Angus and 61-80% Brahman, and BG6 = 19-0%
Angus, and 81-100% Brahman (Fig. la). Mating in the
MAB herd followed a diallel design where sires from each
of the six BGs were mated to dams from all six BGs [31].
The calves were naturally delivered on the pasture.

The preweaning calves were kept at the Beef Research
Unit in Waldo, FL. and were raised with their dams on the
same bahiagrass (Paspalum notatum) pastures. Animals in
the herd received a complete mineral supplement (UF
University Special Hi-Cu Mineral, University of Florida,
Gainesville, Florida), and were provided with bermudagrass
(Cynodon dactylon) hay and cotton-seed (Gossypium spp.)
meal. Calf weights were taken immediately after birth and
when fecal samples were collected.

Sample collection and processing

Fecal and blood samples were collected from 228 pre-
weaning calves (npy = 126, npeifier = 102) ranging in age
from 60 to 120 days in March and April 2016. Fecal sam-
ples were collected as previously described with minor
modifications [32]. Briefly, fecal samples were collected
from the rectal-anal junction using sterile cotton swabs.
Swabs with fecal samples were placed in a 15 mL conical
tube on ice and were transported on the same day to the
laboratory for further processing. Each swab sample was
resuspended in 2 mL of Luria-Bertani broth and 2 mL of
30% glycerol, split into four 2 mL tubes and frozen in an
ultra-low freezer at —80 °C. Blood samples (10 mL per calf)
were collected through the jugular by venipuncture.
A portion (2mL) of whole blood samples were stored at
—20 °C for genotyping analysis. Plasma was separated from
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the remaining blood sample by centrifugation at 1000 x g
for 20 min at 4 °C, and the supernatant was collected and
stored at —20 °C for biochemical analysis.

16S rRNA gene sequencing

Genomic DNA was extracted from 500 uL of each fecal
sample using the QIAamp PowerFecal DNA kit according to
the manufacturer’s instructions (Qiagen, USA). The con-
centration and purity of the DNA were measured using a
Nanodrop instrument (Spectrophotometer ND-1000, Thermo
Fisher Scientific, USA). The DNA library was prepared and
sequenced as described in the previous study [33]. Briefly, the
V4 region of the 16S rRNA gene was amplified by poly-
merase chain reaction (PCR) with dual-index primers and Pfx
AccuPrime master mix (Invitrogen, USA) [33]. The ampli-
cons were purified and normalized in equimolar amounts
using the SequalPrep plate normalization kit (Invitrogen,
USA). The same amount of barcoded V4 amplicons from
each sample were pooled to construct the DNA library. The
fragment size and concentration of the DNA library were
determined by tape station and Kapa quantitative PCR
(PCR) (Kapa Biosystems, USA). The final DNA library
(600 uL 6 pmol/L library) was loaded into MiSeq v2, 2 x 250
cycle cartridge (Illumina, USA), and was sequenced using the
[lumina MiSeq platform.

Microbial community analysis

Raw sequencing reads were obtained from the Illumina
BaseSpace website and analyzed with the Quantitative
Insights into Microbial Ecology (QIIME) pipeline (version
1.9.0). Full details on 16S rRNA gene sequencing data
analysis are available in Supplementary Information.

Co-occurrence network analysis

To predict bacteria—bacteria interactions in the gut microbial
community, co-occurrence patterns of core bacterial famil-
ies, and genera that are present in at least 50% of samples
were evaluated in the network interface using pairwise
Spearman’s rank correlations (r;) based on the relative
bacterial abundance according to the previous study [34].
The Spearman rank correlation was analyzed using Hmisc
within RStudio (version 1.1456). A significant rank corre-
lation between two taxa (s> 0.2 or ry< —0.2, FDR-adjusted
P-value < 0.05) was considered as a co-occurrence event.
The network was visualized using the Force Atlas algorithm
in the interactive platform Gephi (http://gephi.org). In the
network, nodes represented different taxa, and edges indi-
cated correlations among nodes. The size of the nodes
represented the degree of connection, and the thickness of
edges indicated the strength of the correlation.
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Functional prediction of gut microbiome

Functional capacity of the gut microbial community was
predicted using PICRUSt (phylogenetic investigation of
communities by reconstruction of unobserved states) online
Galaxy version (http://galaxy.morganlangille.com/). The
closed reference OTU table was generated by picking OTU
against the 13 August 2013 Greengenes database using
QIIME (version 1.9.0). Normalization of copy numbers,
metagenome prediction, and function categorization based
on Kyoto Encyclopedia of Genes and Genomes pathways
were conducted using the online Galaxy version on Hut-
tenhower Lab (v1.0.0) servers according to a standard
analysis process [35].

Quantitative real-time PCR analysis

The qPCR was conducted to confirm the differences in the
relative abundance of Faecalibacterium prausnitzii and
Clostridium perfringens between BG1 and BG6. Full
details on the qPCR analysis are available in Supplementary
Information.

Animal genotyping

Animal genotyping was conducted as previously [36]. Briefly,
DNA was extracted from calf blood samples using the
QIAamp DNA mini kit according to the manufacturer’s
instructions (Qiagen, USA). DNA samples were genotyped
with GeneSeek Genomic Profiler F-250 at Neogen Corpora-
tion (GGP F-250, Neogen Genomics, USA). Quality control
(QC) was conducted using the software PLINK1.9. QC filters
included genotype completion rate (<90%), minor allele fre-
quency (<1%), genotype «call rate (<90%), and
Hardy—Weinberg equilibrium deviation (chi-square P-value <
10~%). After removing samples with low genotype completion
rate (<90%), 220 out of 225 samples were available for
subsequent analysis. From an initial set of 221,049 SNPs,
77,948 autosomal SNPs passed QC filters and were used for
principal component analysis (PCA). The PCA was con-
ducted with the input of SNP genotyping matrix (0: reference
homozygous, 1: heterozygous variant, 2: homozygous var-
iant, 5: missing) using the prcomp function of RStudio (ver-
sion 1.1456). The correlation between the Brahman
proportion estimated by pedigree and top PC (PC1) was
evaluated by Pearson’s correlation coefficient.

Detection of blood parameters

The plasma glucose and nonesterified fatty acids (NEFA)
concentrations were determined using glucose kit and
NEFA kit (Randox Laboratories Ltd, UK), respectively. An
automated RX series Clinical Chemistry Analysers

(Randox Laboratories Ltd, UK) was used for all measure-
ments. The plasma IgGl concentrations were detected
using a bovine IgGl ELISA Quantitation set (Bethyl
Laboratories, USA) according to the manufacturer’s pro-
tocol. Plasma was diluted in Tris-buffered saline (TBS)-
Tween to a final dilution factor of 4 x 10*. All dilutions
were duplicated. Absorbance was read using a BioTek
Synergy plate reader (BioTek Instruments, Inc., USA) at a
wavelength of 450 nm.

Statistical analysis

All statistical analyses were conducted using RStudio
(version 1.1456). The normal distribution of variables was
assessed using the Shapiro—Wilk’s test with the shapiro.test
function. The nonnormal values were log-transformed
before downstream analysis. For the relative abundance of
specific bacterial taxa that were not present in all the sam-
ples, a small numeric constant (half of the detection limit:
0.00003663) was added to all values before logarithm
transformation.

Fold differences in the copy number of F. prausnitzii and
C. perfringens between BG1 and BG6 were analyzed by
Student #-tests by using the t.test function. Differences in
age, breed composition, gender among BGs, as well as
differences in the relative abundance of mucin-degrading
bacteria among calves with different SNP genotypes were
analyzed by using the one-way analysis of variance
(ANOVA) test followed by Tukey’s honestly significant
difference (HSD) test for pairwise comparison of multiple
means. The aov and TukeyHSD functions were used,
respectively. A P-value <0.05 was considered to be statis-
tically significant, and 0.05 < P-value <0.1 was considered
as tendency towards significance.

A multiple linear regression model was applied to ana-
lyze the fixed effects of breed composition, age, and sex on
response variable including Chao 1, Shannon index, the
relative abundance of core bacteria, microbial function,
weight gain, and blood parameters. Associations between
SNP genotypes and the relative abundance of bacteria were
accessed using a multiple linear regression model with
the fixed effects of Brahman proportion, SNP genotype, age
and sex, and the dependent variable of relative abundance
of mucin-degrading bacteria. The potential contribution of
bacteria on animal phenotypes was assessed using a mul-
tiple linear regression model with the fixed effects of the
relative abundance of bacteria, Brahman proportion, age
and sex, and the dependent variable of weight gain and
blood parameters. The glm function was used to fit the
generalized linear models. The Akaike information criterion
was used to choose the best model.

Correlations between average of Brahman proportion
in each BG and prevalence of OTU in each BG were
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Fig. 2 Genotype and phenotype of the generated calves. a The PCA
plot based on SNP genotyping data shows the genetic distance of the
calves across six BGs. The color of the dots represents the BG of
calves estimated by pedigree. b Weight gain of the preweaning calves
was negatively correlated with calves’ Brahman proportion. ¢ Plasma

assessed by Pearson correlation coefficients. Correlations
between Brahman proportion and genotype of SNPs in or
near mucin-encoding genes were assessed by Spearman
rank correlation coefficients. The correlations were ana-
lyzed by using the cor.test function. The P-values were
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glucose level tended to be positively correlated with calves’” Brahman
proportion. d Plasma nonesterified fatty acid (NEFA) level was posi-
tively correlated with calves’ Brahman proportion. e Plasma
IgGl1 level was negative correlated with calves’ Brahman proportion.
b—e The Brahman proportion was estimated by pedigree

adjusted using the false discovery rate (FDR) method for
multiple comparison with the p.adjust function. For
Pearson correlation, an FDR-adjusted P-value <0.05 was
considered statistically significant. For the Spearman rank
correlation, the significant correlation was considered
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with coefficient>0.2 or< —0.2, as well as an FDR-
adjusted P-value <0.05.

Results

Animal breeding for generation of a herd with
varying breed composition

To understand the influence of host genetics on early
development of gut microbiota composition, we bred calves
with different breed composition using a unique MAB herd
(Fig. 1a). We selected 228 preweaning calves from a total of
278 newborn calves, based on breed composition, age, and
gender. Twenty-four sires from six BGs were mated to 228
dams from the same six BGs, resulting in 228 calves that
were naturally delivered (Fig. 1b). All calves were raised in
the same environmental conditions on pasture with their
dams. The calves were also assigned into six BG based on
their breed composition, ranging from 100% Angus to
100% Brahman (Fig. 1c). The information of preweaning
calves including age, sex, and breed composition, as well as
breed composition of their sires and dams is presented in
Supplementary Table S1. The Brahman proportion of calves
(Fig. Ic), as well as that of their sires and dams (Fig. 1d)
gradually increased from BG1 to BG6, with a similar dis-
tribution of age ranges (Fig. le) and gender (Fig. 1f) across
the six BGs.

The gradual change of genetic composition of the study
herd was evaluated by measuring genetic distance and
physiological parameters (Fig. 2). In the PCA plot, the first
and second PCs (PC1 and PC2) explained 11.86% and
2.45% of the variation in the entire genetic data, respec-
tively (Fig. 2a). The PC1 had a very strong correlation (R =
0.97, P=2.2x10"'% with the Brahman proportion esti-
mated by pedigree (Supplementary Fig. 1), indicating the
strong agreement on population structure between estima-
tion from pedigree and evaluation by SNP genotyping.

For physiological analysis, a multiple linear regression
model was applied including Brahman proportion, age in
days, and gender as three independent variables, and phe-
notypes including weight gain, glucose, NEFA, and IgG1
concentrations as dependent variables. All the phenotypes
considered in this study were significantly associated with
breed composition, or tended to be (Fig. 2b—e). Calves with
higher Brahman proportion gained less weight (Fig. 2b,
P =0.0027), and had higher plasma glucose (Fig. 2¢c, P =
0.050) and NEFA levels (Fig. 2d, P =0.022). These data
are consistent with previous studies which show slower
growth rate and higher energy expenditure of Brahman
calves compared with Angus calves [37, 38]. In addition,
we observed less plasma IgG1 (Fig. 2e, P = 0.0002) level in
calves with higher Brahman proportion, indicating variation

in systemic immune function among the calves with dif-
ferent breed composition. This may support the previous
observation that the Bos indicus breed is more resistant to
parasites compared with the Bos taurus breed partly due to
the distinct immune signature in the skin [39]. Taken
together, these data indicate that we generated calves
belonging to six BGs with varied breed composition that
was consistent with the measured phenotypes.

The gut microbiota composition differs with breed
composition of calves

To characterize the early gut microbiota of MAB calves, the
16S rRNA gene sequencing was conducted. An average of
114,771 £2917 (mean + SEM) raw paired-end raw reads
were generated per fecal sample, clustering into 40850 +
756 (mean + SEM) OTUs, ranged from 13,656 to 81,888
(Supplementary Table S2). The sequencing depth was
normalized to 13,650 per sample for downstream analysis.

Although the alpha diversity measured by Shannon index
was similar among six BGs (Fig. 3a, P>0.05), the beta
diversity measured by weighted UniFrac distances accounting
for dissimilarity in both presence and abundance of bacteria in
the GI tract was significantly different among the six BGs
(Fig. 3b, P =0.047). As shown in the PCoA plot, PC1 and
PC2 explained a 40% variation in the gut microbiota com-
position among 228 calves (Fig. 3b). BG6 that has the farthest
genetic distance showed clear separation with BG1 in the
PCoA plot (Supplementary Fig. 2E). However, closer genetic
BGs, BG2, BG3, BG4, and BG5, showed less separation with
BG1 compared with BG6 (Supplementary Fig. 2A-D), sug-
gesting different gut microbiota structure affected by a gra-
dual change in breed composition.

To identify specific bacteria affected by breed composition,
correlations between breed composition and the prevalence as
well as the relative abundance of bacteria were analyzed.
Among the 734 OTUs that were present in more than 50% of
samples in at least one BG, prevalence of 20.8% (153 OTUs)
showed significant correlation with breed composition after
correction of multiple comparison (Supplementary Table S3,
Pogjust < 0.05). There were 78 OTUs classified at least at the
family level having higher prevalence in calves with more
Angus breed proportion (Fig. 4a), and the other 56 having
higher prevalence in calves with more Brahman breed pro-
portion (Fig. 4b). These breed-associated OTUs primarily
were belonging to Ruminococcaceae and Bacteroidaceae. To
explore the influence of breed composition on the bacterial
abundance in the GI tract, a multiple linear regression model
was applied with three independent variables: Brahman pro-
portion, age of calf in days, and gender; and one dependent
variable was applied with the relative abundance of core
bacteria present in at least 80% of fecal samples. As a result,
the relative abundance of classified core bacterial family or
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Fig. 3 Alpha and beta diversity of gut microbiota of preweaning calves
across six BGs. a Shannon index among six BGs. The difference in
Shannon index across six BGs was analyzed using one-way ANOVA
followed by Tukey’s HSD test for pairwise comparison of multiple
means. The bars represent mean+SEM. b PCoA plot of weighted
UniFrac community distance comparing gut microbiota structure
among six BGs. The difference in weighted UniFrac distance among
BGs was analyzed by analysis of similarities (ANOSIM)

genus that constituted about 30% of the microbial community
was identified to be significantly linearly associated with
breed composition (Fig. 4c and Supplementary Table S4).
Interestingly, bacteria that were enriched in preweaning
calves with more Brahman breed proportion included
Coprococcus, Faecalibacterium, Blautia, and Butyrivibrio
that are fiber-digesting and beneficial butyrate-producing
bacteria [40—43]. Consistently, microbial genes involved in
carbohydrate metabolism were enriched in preweaning
calves with higher Brahman proportion (P =0.0012) pre-
dicted by PICRUSt, especially for genes participating in the
metabolism of fructose, mannose, galactose, starch, and
sucrose (Supplementary Fig. 3). In contrast, bacteria
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enriched in calves with higher Angus proportion were
predicted to have a stronger ability to metabolize lipids and
amino acids (Supplementary Fig. 3). Campylobacter and
Enterobacteriaceae, which contain species of pathogenic
bacteria that commonly trigger calf diarrhea [44, 45], and
mucin-degrading bacteria such as Akkermansia, Rikenella-
ceae, and Clostridium were more abundant in BGs with a
higher proportion of Angus breed. Mucin is a crucial
component of the gut mucosal barrier [46]. Elevation of
mucin-degrading bacteria that use mucin as a source of both
carbon and nitrogen has been reported to result in an
increased susceptibility to GI pathogens due to a reduction
in the intestinal barrier [47].

To validate the differences in the bacterial abundance
measured by the 16S rRNA gene sequencing, two bacterial
species, F. prausnitzii and C. perfringens were selected for
gPCR confirmation in BG1 and BG6. These two bacteria are
representative of butyrate-producing bacteria and opportu-
nistic pathogenic bacteria, respectively. Consistent with the
16S rRNA gene sequencing data, the copy number of F.
prausnitzii in BG6 was eight times higher than BG1 (Fig. 4d,
P =0.006); whereas, the pathogenic bacteria C. perfringens
in BG6 was about 40% of BG1 (Fig. 4e, P =0.011).

Sire breed composition primarily explains the
differences in gut microbiota structure among
breed groups of preweaning calves

The calf herd was maintained on the same pasture throughout
the length of this study. Although preweaning calves had
access to an identical diet, including supplementary feed, the
nutrients in milk provided by dams may have differed due to
variations in dam breed composition. Therefore, to explore the
effects of sire breed composition, which reflect genetic impact
only, we regrouped calves based on their sire breed composi-
tion to remove any possible effects of milk nutrient variation
caused by dam breed composition. Calves were reassigned into
four sire breed groups (S-BGs) based on their sire breed
composition (Fig. 5a): S-BG1 (calves bred by sires belonging
to BG1), S-BG2&3 (calves bred by sires belonging to BG2 and
BG3), S-BG4&5 (calves bred by sires belonging to BG4 and
BGS), and S-BG6 (calves bred by sires belonging to BG6). To
minimize genetic variation caused by dams, calves bred from
dams belonging to BG1l or BG6 were excluded from the
analysis that resulted in balanced dam breed composition
among sire progeny. Therefore, the variation in breed com-
position among preweaning calves from S-BGs would be pri-
marily due to the differences in sire breed composition
(Supplementary Fig. 4A-B), while breed composition of dams
among S-BGs were similar (Supplementary Fig. 4C). The
alpha diversity showed no significant difference among four
S-BGs (Fig. 5b), with similar age range (Supplementary
Fig. 4D) and gender (Supplementary Fig. 4E). However, the
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Fig. 4 Gut microbiota composition of preweaning calves across six
BGs. a, b Heatmaps represent the prevalence of OTUs across six BGs.
Only OTUs that were at least classified at the family level and with
their prevalence showing significant positive or negative correlations
with Brahman proportion were included in the heatmaps (Pygjus <
0.05). ¢ The relative abundances of core bacteria (identified in at least
80% of the 228 calves) across six BGs. Only bacteria that were linearly

PCoA plot (Fig. 5c) showed that the gut microbiota structure
was significantly different among four S-BGs (P =0.039). A
multiple linear regression model including the independent
variables of calf age, gender, proportion of Brahman sire, and
proportion of Brahman dam, and the dependent variable of
relative abundances of core bacteria, indicated that ~30-45% of
classified core bacteria were linearly associated with the
Brahman proportion of the sire (Fig. 5d, Supplementary Table
S5). In addition, the relative abundance of most bacteria that
were linearly associated with the Brahman proportion in six
calf BGs were also associated with the Brahman proportion in
calves of four S-BGs. These bacteria include fiber-digesting
bacteria (Coprococcus, Blautia, Faecalibacterium, and Butyr-
ivibrio), and pathogenic bacteria (Clostridium, Campylobacter,
and Enterobacteriaceae), as well as mucin-degrading Verruco-
microbia and Rikenellaceae. We also evaluated the effects of
sire breed composition on animal phenotypes including weight
gain and glucose, NFEA, and IgG1 levels, in four S-BGs but
only IgG1 level was tended to show negative association with
sire Brahman proportion (Supplementary Table S5, Supple-
mentary Fig. SA-D).
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influenced by breed composition, analyzed by a multiple linear
regression model, were included in the bar graph. d Fold difference in
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BG6. e Fold difference in the copy number of Clostridium perfringens
between BG1 and BG6. d, e Data are presented as mean = SEM, with
statistical differences. *P < 0.05; **P <0.01

We then explored the effects of dam breed composition on
the gut microbiota of the early stage of calves by regrouping
calves based on the breed composition of dams (Fig. Se). To
balance sire breed composition of dam progeny, calves bred
from sires belonging to BG1 and BG6 were removed, and
calves belonging to BG5 and BG6 were combined into one
group. Therefore, the variation in breed composition of pre-
weaning calves among five dam breed groups (D-BGs) would
be primarily due to the differences in dam breed composition
(Supplementary Fig. 6A—C). Surprisingly, unlike dramatic
variation in gut microbiota among four S-BGs, the bacterial
diversity (Fig. 5f) and microbiota structure (Fig. 5g) among
five D-BGs were not significantly different. Only five bac-
terial families/genera were identified to be significantly line-
arly associated with dam breed composition based on a
multiple linear regression model (Fig. Sh, Supplementary
Table S6). However, dam breed composition was sig-
nificantly associated with animal growth (Supplementary
Table S6, P =0.0002), with calves bred from dams in BG1
having greater weight gain compared with those bred from
dams in BG6 (Supplementary Fig. 5E). But no significant
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Fig. 5 Sire breed composition mainly explains the linear change of the
gut microbiota of preweaning calves among six BGs. a Preweaning
calves were regrouped into four sire-BGs based on their sire breed
composition. b Shannon index among four sire-BGs. ¢ PCoA plot of
weighted UniFrac community distance comparing gut microbiota
composition among four sire-BGs (S-BGs). d The relative abundances
of core bacteria that are linearly associated with sire breed

association was observed between dams’ breed composition
with plasma glucose, NEFA, and IgG1 concentrations (Sup-
plementary Table S6, Supplementary Fig. SF-H, P>0.10).
Taken together, the breed composition of sires profoundly
affected the structure of the early gut microbiota in their
progeny, whereas dams’ breed composition did not sig-
nificantly affect the gut microbiota.

SNP genotypes in mucin-encoding genes are
associated with breed composition and mucin-
degrading bacteria

As several mucin-degrading bacteria were linearly associated
with breed composition, we hypothesized that variations in
the genotype of mucin-encoding genes among the calves
might contribute to the differences in the relative abundance
of mucin-degrading bacteria. Among the 327 SNP markers
located in or near mucin-encoding genes identified by geno-
typing, 173 had known rs ID, call rate higher than 90% and
minor allele frequency higher than 1%, and were used for
downstream analysis. Spearman rank correlation coefficients
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composition. e Preweaning calves were regrouped into five dam-BGs
(D-BGs) based on their dam breed composition. f Shannon index
among five D-BGs. g PCoA plot of weighted UniFrac community
distance comparing gut microbiota composition among five D-BGs.
h The relative abundances of core bacteria that are linearly associated
with dam breed composition. b, f The bars represent mean + SEM

indicated that genotypes of 108 SNP markers located in or
near the mucin-encoding genes were significantly correlated
with breed composition (Supplementary Table S7, Fig. 6a, r;
>0.20 or ;< —0.20, Pygjus <0.005).

To further explore the connection between SNP genotypes
in or near mucin-encoding genes and mucin-degrading bac-
teria, we used a multiple linear regression model including the
genotype of 152 breed-associated SNPs, Brahman proportion,
age in days and gender as four independent variables, and the
relative abundance of three mucin-degrading bacteria that are
enriched in calves with more Angus proportion (Clostridium,
Rikenellaceae, and Akkermansia) as a dependent variable. We
identified 34 significant linear associations between SNP
genotype in mucin-encoding genes and the relative abundance
of mucin-degrading bacteria (Supplementary Table S8). In
Fig. 6b—e, we show difference in relative abundance of
mucin-degrading bacteria among the genotypes of four SNPs
that had strongest association with bacteria. The SNPs were
located in MUCI12 (rs43764633), MUC13 (rs134555951),
MUC20 (rs208323556), and MUC4 (1s208812969) that are
expressed in the bovine GI tract [48].
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Fig. 6 Genotypes of SNP
located in or near mucin-
encoding genes are associated
with breed composition and
abundance of mucin-degrading
bacteria. a The heatmap
represents the linear change of
SNP genotypes located the in
mucin-coding genes with breed
composition. b The log;q
transformed relative abundance
of Clostridium in preweaning
calves who have different
genotypes at rs43764633
(MUC12). c—e The logyg
transformed relative abundance
of Rikenellaceae in preweaning
calves who have different
genotypes at 15134555951
(MUC13), 15208323556
(MUC20), and rs208812969
(MUC4). In each dotplot, values
that do not have a common
superscript are significantly
different (P <0.05) based on
one-way ANOVA followed by
Tukey’s HSD test for pairwise
comparison of multiple means
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Influence of host genetics on microbe-microbe
interactions

To expand our analysis beyond the selected host-microbe
interaction, we analyzed bacteria—bacteria interactions using
a co-occurrence network analysis. This analysis was con-
ducted on 57 classified core bacterial families or genera that
were present in over 50% of the fecal samples. A total of
550 connections had significant Spearman rank correlations
(Padjust<0.05, r;>02 or ry<—0.2) among microbes

(Fig. 7). The strongest positive correlation was detected
between Bacillus and Lysinibacillus (r = 0.8043), while the
strongest negative correlation was between 5-7N15 and
Bacteroides (r; = —0.802). Especially, 21, 31, and 32 cor-
relations were detected between mucin-degrading bacteria
Clostridium, Akkermansia, and Rikenellaceae with other
bacteria, respectively, including negative correlations with
butyrate-producing bacteria Blautia, Faecalibacterium, and
Coprococcus, as well as positive correlations with oppor-
tunistic pathogen Campylobacter.

SPRINGER NATURE
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Fig. 7 Co-occurrence bacterial network shows 550 significant con-
nections  (Pygjus <0.05, r;>0.2, or ry<—0.2) among 57 bacteria
families or genera (identified in at least 50% of 228 calves) in pre-
weaning calves. Connections were detected based on Spearman’s rank

Potential contributions of gut microbiota on calves

To further explore the potential impact of gut microbiota on
the MAB herd, we analyzed the associations between the
relative abundance of core bacteria and animal growth,
metabolic parameters, or immune parameters using the
multiple linear regression model. The relative abundance of
bacteria served as an explanatory variable along with age,
Brahman proportion, and gender. Numerous bacteria,
including butyrate-producing bacteria Faecalibacterium,
Oscillospira, Blautia that were more abundant in calves
with more Brahman proportion were positively associated
with weight gain (Fig. 8). Negative associations were
detected between weight gain and the relative abundance of
Bacteroidaceae, Peptostreptococcaceae, Clostridiaceae,
Bacillus, and Streptococcus, likely containing opportunistic
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correlation coefficient. Dot size represents the number of connections
with other taxa. Thickness of lines represent the strength of the
relatedness. Genera associated with breed composition are presented in
green box

pathogenic bacteria (Fig. 8). In addition, we identified
several positive associations between Firmicutes bacteria
and plasma glucose level, and negative associations
between Bacteroidetes bacteria and plasma NEFA level.
However, fewer and weaker associations were detected
between the relative abundance of bacteria and plasma IgG1
level (Fig. 8).

Discussion

To understand the impact of host genetics on the gut micro-
biota structure, we bred a very unique animal model with a
linear change of breed composition and raised them in the
same environmental conditions with the same diets to mini-
mize nongenetic influences. By using this animal model, we
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Fig. 8 A heatmap shows association between the relative abundance of
core bacteria and weight gain, plasma glucose, NEFA, and IgGl
concentrations analyzed by a multiple linear regression model

observed effects of host genetics on shaping the gut micro-
biota structure.

The influence of host genetics on gut microbiota was
proposed in the early 1980s by observing more similar fecal
microbiota shared between five pairs of monozygotic twins
than between dizygotic twins using a culture method [49].
Later, with the development of next-generation sequencing
and larger sample sizes of twin studies, the role of host
genetics in the gut microbiota structure was confirmed,
followed by detection of associations between host SNPs
and bacterial abundance [9, 14, 16]. However, the level of

strength of host genetic impact on the gut microbiota has
not reached consensus yet, primarily due to the different
populations used in the studies, with variations in genetic
distance, as well as other factors such as age, diet, and living
style [17, 18, 50-52]. These factors might have masked the
significance of the host genetic role in the gut microbiota in
previous studies, leading to a failure in the identification of
repeatable associations between host SNPs and bacterial
abundance.

In this study, we found core microbial genera among
MAB calves that were linearly influenced by breed com-
position and consistent with measured phenotypes. Calves
with more Brahman proportion harbored less mucin-
degrading bacteria and opportunistic pathogenic bacteria,
but more butyrate-producing bacteria, which are commonly
considered as beneficial commensal bacteria primarily due
to their antiinflammatory property. Surprisingly, when we
regrouped calves based on sires’ breed composition to
minimize the maternal effects (e.g., milk composition,
companionship), we found that sire genetics had significant
impacts in the early gut microbiota structure. However, this
same effect was not observed when the calves were
regrouped based on their D-BGs. Therefore, consistent
associations between the relative abundances of many
bacteria in calf BGs and S-BGs indicate that host genetics,
influenced heavily by their sires, affect the formation of
early gut microbiota structure at the age of 3 months. Pre-
vious studies have revealed the effect of sire breed on the
rumen microbial populations of beef cattle in feedlot, which
is associated with rumen fermentation and methane emis-
sions [12, 53]. This study reports the strong sire breed effect
on hindgut microbiota and growth performance of beef
cattle during early stage of life. Further research is needed to
determine how long this strong effect continues into later
developmental stages, as well as how low abundant bac-
terial taxa, neglected in this study but could be biologically
important, may be influenced by host genetics.

The lesser effect of the dam breed composition on the
calves’ GI tract microbiota development was quite surpris-
ing. Although the relative abundance of several bacteria
showed a linear association with dam breed composition,
the number was significantly lower compared with that
affected by sire breed composition. However, it is note-
worthy that dam breed effects may be much more complex.
Although we regrouped calves to minimize the maternal
effects driven by host genetics, other maternal effects such
as milk composition and companionship might have
masked potentially undetected genetic effects. Furthermore,
genetic relationships among calves in D-BGs could be more
complicated compared with that of calves in S-BGs because
more dams were used for the mating that might have
resulted in higher genetic variability among calves within
D-BGs.
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One of the primary functions of the gut microbiota is
protecting the gut lining from pathogen colonization.
Interestingly, among the bacteria that were linearly asso-
ciated with breed composition, pathogenic bacteria C. per-
fringens and Campylobacter were less abundant in calves
with more Brahman proportion. C. perfringens and Cam-
pylobacter are both identified as causes of enteric diseases
in young calves due to toxin production [54-56]. Moreover,
we also observed that the relative abundance of several
mucin-degrading bacteria reduced as Brahman proportion
decreased. An increase in mucin-degrading bacteria was
reported to be positively associated with pathogen coloni-
zation due to the consumption of mucin, which is a crucial
component of the intestinal epithelial barrier [47, 57-59].
As expected, positive associations between mucin-
degrading bacteria and pathogenic bacteria were detected
in our study. We further observed a linear association
between SNP genotypes located in or near mucin-encoding
genes and breed composition, as well as strong correlations
between mucin-degrading bacteria (Clostridium, Rike-
nellaceae, and Akkermansia) and SNPs markers located in
mucin-coding genes (MUC4, MUCI12, MUCI13, and
MUC20), which shed light on variation of mucin-degrading
bacteria in the MAB herd. Transcription of the four mucin
genes has been detected in the GI tract of cattle, including
the large intestine [48]. In human studies, membrane-bound
MUC4 protects colonic epithelium [60]. MUCI12 and
MUC20 are involved in the epithelial cell protection [61],
and the significant downregulation of MUC12 and MUC20
in the colon and ileum has been detected in patients with
Crohn’s disease [62]. MUCI13 has been reported to be
highly expressed on the human intestinal mucosal surface,
and polymorphism in MUCI3 is related to inflammatory
bowel disease [63]. Therefore, the polymorphisms in cattle
mucin genes probably contribute to variation in host
defense systems among the calves with different breed
compositions and result in the distinction of the gut
microbiota according to their genetic background.

In this study, we primarily focused on understanding the
impact of the gut microbiota in the early preweaning stage
in which the rumen is not fully developed yet [64], and
consequently, the hindgut is critically vital for energy har-
vest [65]. In addition, at this stage, animals grow faster and
immunity starts to develop, and the GI tract microbiota is
more diverse than late growth stage [66]. Based on this
evidence, we hypothesized that host genetics probably exert
a stronger impact on early gut microbiota that further con-
tributes to animal development. Compared with Angus
cattle, Brahman cattle have a greater ability to utilize low-
quality feeds that contain low concentrations of protein and
soluble carbohydrates [23]. Conversely, Angus cattle grow
more quickly, and their meat contains more marbling than
Brahman [67]. We found that fiber-digesting bacteria
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F. prausnitzii, Blautia producta, Oscillospira, and Copro-
coccus, considered as beneficial commensal gut bacteria
in calf and humans due to their production of butyrate
[68-71], increased linearly as Brahman proportion
increased. Notably, butyrate-producing bacteria more
abundant in calves with more Brahman proportion showed
positive associations with weight gain, indicating their
contribution on energy harvest during the early stage of
calves. Our results also revealed variations in metabolic
status among MAB calves reflected in weight gain, plasma
glucose, and NEFA concentrations. As predicted by
PICRUSt, which has high agreement with metagenomic
sequencing data [35], the relative abundances of microbial
genes involved in carbohydrate metabolic pathways linearly
increased as Brahman proportion increased, while those
participating in amino acid and lipid metabolic pathways
increased as Angus proportion increased, suggesting that
breed composition influenced nutrient environment pro-
vided to the gut commensal bacteria.

We also found that the level of plasma IgG1, which is the
primary antibody in the circulation system, decreased linearly
as calves’ and sires’ Brahman proportion increased, indicating
a linked effect of host genetics on systemic immunity. IgG1 is
induced when the infectious disease is manifest to protect the
host by binding itself to pathogens [72]. Therefore, calves
with greater Brahman proportion potentially had lower IgG1
because they harbored less pathogenic bacteria in the GI tract.
Although Bos indicus is known as a disease resistant breed
and widely used in animal breeding in the tropical area, most
studies focus on parasite resistance due to their thick skin with
few explorations in the distinction of their immune function
and its relationship with other infectious diseases [22, 72, 73].
The discovery of variation in genotype of the mucin genes,
expression of plasma IgGl, as well as the abundance of
pathogenic bacteria in calf BGs suggests that the Bos indicus
breed may have different innate and adaptive immunity
compared with the Bos taurus breed that enables them to
better resist infectious diseases.

Besides breed composition, we also assessed the effect of
age and gender on gut microbiota structure of preweaning
calves by using a multiple linear regression model. Consistent
with the previous findings that Brahman cattle reach puberty
later than Angus cattle [38, 74], we observed that most bac-
teria that exhibited linear correlations with Brahman propor-
tion had opposite correlations with calf age (Supplementary
Table S4), indicating that the gut microbiota of calves with
higher Brahman proportion also develops more slowly than
that of calves with higher Angus proportion. Sex of the calf
did not significantly influence the gut microbiota structure in
this study (Supplementary Fig. 7, P =0.830), but was asso-
ciated with the relative abundance of several bacteria (Sup-
plementary Table S4). The relative abundance of
Bacteroidetes and [Paraprevotellaceae], which was associated
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with plasma glucose level, was higher in heifers, suggesting
that gender could partly affect calf growth and metabolic
status through changes in microbiota. This is consistent with
the previous findings that bacteria associated with sex were
involved in numerous carbohydrate and lipid metabolic
pathways [75, 76].

Furthermore, we found that breed-associated bacteria,
such as Anaeroplasma, Paludibacter, Bacteroides, 5-7N15,
Pirellulaceae, interacted with many other bacteria, sug-
gesting that the relative abundance of these bacteria were
highly dependent on other bacteria in the GI tract. Besides,
various negative connections were detected among Angus-
associated bacteria and Brahman-associated bacteria, espe-
cially among butyrate-producing bacteria (Faecalibacter-
ium, Blautia, Oscillospira) and mucin-degrading bacteria
(Clostridium, Rikenellaceae, and Akkermansia). These data
are consistent with the previous study reporting the com-
petition between fiber-digesting bacteria and mucin-
degrading bacteria [47]. Therefore, the host genotype may
directly affect on colonization of certain bacteria and
indirectly shape the gut microbiota structure through the
bacteria—bacteria interactions.

In summary, we found that host genetics, especially from
the sire, significantly contribute to the structure of a calf’s
gut microbiota at age 3 months old. Furthermore, we
identified host SNPs that were associated with specific
bacterial genera involved in the gut health and nutritional
acquisition. Further studies to understand additional factors
beyond host genetics, age, and gender are needed to dis-
tinguish the factors that affect development of the bovine
microbiota structure. Ultimately, understanding mechan-
isms to develop and maintain the gut microbiota home-
ostasis will be necessary for a sustainable agricultural
production system. These results also have implications for
studying the complex suite of factors that lead to human
metabolic syndromes and intestinal disorders.

Data availability
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erated and analyzed during the current study are available in
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