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Identifying the phenotypes and interactions of various cells is the primary objective in
cellular heterogeneity dissection. A key step of this methodology is to perform
unsupervised clustering, which, however, often suffers challenges of the high level of
noise, as well as redundant information. To overcome the limitations, we proposed self-
diffusion on local scaling affinity (LSSD) to enhance cell similarities’ metric learning for
dissecting cellular heterogeneity. Local scaling infers the self-tuning of cell-to-cell distances
that are used to construct cell affinity. Our approach implements the self-diffusion process
by propagating the affinity matrices to further improve the cell similarities for the
downstream clustering analysis. To demonstrate the effectiveness and usefulness, we
applied LSSD on two simulated and four real scRNA-seq datasets. Comparing with other
single-cell clustering methods, our approach demonstrates much better clustering
performance, and cell types identified on colorectal tumors reveal strongly biological
interpretability.
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INTRODUCTION

The cells are the fundamental structural unit in biological systems. For centuries, biologists have
discovered that multicellular biological tissues are characterized by different cell types and can be
distinguished according to their size and shape. Many studies have confirmed that genome-wide
mRNA expression obtained from cell populations exhibits potential value in biological analysis
(Bacher and Kendziorski, 2016; Guo et al., 2018). Traditional microarrays, whole-genome RNA-seq
sequencing, obtain the average value of tens of thousands of gene expressions from bulk-tissue
samples. Although this sequencing technology is applied in many areas (Xu et al., 2019; Chen et al.,
2020), it cannot measure the gene expression value in a single cell. In recent years, single-cell RNA
sequencing (scRNA-seq) technologies have been developed as an attractive tool to reveal cell
functional diversity and heterogeneity, bringing new insights into the biological systems (Pelkmans,
2012; Kaur et al., 2019). The rapid development of the scRNA-seq technique has enabled the
dramatic increase of single-cell transcriptome data, which bring opportunities and challenges to the
computational biology approaches (Pelkmans, 2012; Buettner et al., 2015; Kaur et al., 2019). In a
single-cell heterogeneity study, unsupervised clustering of transcriptomes profiled by scRNA-seq is
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an essential intermediate step to identify cell types, followed by
analyzing cell biological mechanisms (Luecken and Theis, 2019).
Single-cell clustering analysis has the purpose to explain cellular
heterogeneity based on the categorization of cells into groups,
which exhibit similar gene expression levels. However, scRNA-
seq data are so sparse with high dimensionality, plentiful zero
count observations, as well as transcript amplification noise. In
addition, scRNA-seq displays a high variability in gene expression
levels, which further complicates the clustering issue. The widely
used clustering algorithms for bulk RNA-seq, such as K-means
(Aggarwal and Reddy, 2018), hierarchical clustering (Herrero
et al., 2001), non-negative matrix factorization (NMF) (Wang
et al., 2021), are not effective enough to address the underlying
computational and statistical challenges for scRNA-seq. Several
single-cell clustering approaches have been developed recently,
for instance, SIMLR (Wang et al., 2017) learns a robust cell
similarity metric that best fits the data structure via combining
multiple kernels. SIMLR is scalable and can largely increase
clustering performance, but is very time-consuming and
requires many memories. Park et al.(Park and Zhao, 2018)
proposed a sparse structure by L1 penalty to deal with the
sparsity of scRNA-seq. Tian et al.(Tian et al., 2019) proposed
scDeepCluster, a deep learning–based method which learns
feature representation and clustering by explicit modeling. SC3
(Kiselev et al., 2017) combines multiple clustering solutions
through a consensus approach to achieve high accuracy and
robustness. CIDR (Lin et al., 2017) approach alleviates the
impact of dropouts in scRNA-seq data by incorporating a
simple implicit imputation method. Stuart et al. (Stuart et al.,
2019) (Hao et al., 2021) developed an R package “Seurat” for
analysis and exploration of single-cell RNA-seq data. The
“Seurat” package can not only identify and interpret cellular
heterogeneity but also allow integrating diverse types of single-
cell measurements across different modalities. Zou et al. (2021)
presented a fast hierarchical graph-based clustering (HGC)
method to construct dendrograms of cells with linear time
complexity. Zhu et al. (2019) proposed semisoft clustering
with pure cells (SOUP) to classify pure and transitional cells
from their profiles. SAME clustering is a mixture model–based
approach which aggregates various clustering methods via the
mixture model ensemble to produce an improved ensemble
solution (Huh et al., 2020). The effectiveness of those single-
cell clustering methods may decrease due to the low single-cell
quality, biological differences, and the measurement dropouts.
The reason is that partitioning the cells into different groups
usually relies on distance measurement of their gene expression
profiles. The popular similarity measurement such as Cosine and
Euclidean cannot generalize well across the biological differences
and sample noises. In addition, scRNA-seq data in high-
dimensional space tend to be sparse, and the efficiency of
common distance measurement methods will be greatly
reduced. Therefore, the instability of measurement distance
brings great challenges to unsupervised clustering algorithms.
To overcome the limitation and attempt to obtain an appealing
cell affinity, we propose self-diffusion on local scaling affinity
(LSSD) to facilitate the similarity metric learning of single-cell
RNA-seq for dissecting cell heterogeneity. Our approach belongs

to manifold learning which focuses on discovering the underlying
embedding representation with an enhanced distance notion
(Roweis and Saul, 2000). The local scaling affinity constructs
similarity in the space of cells rather than gene measurements
with a distance notion. The self-diffusion process allows the
derived distances to follow the intrinsic data manifolds.

Our LSSDmethod applies a stochastic diffusion process on the
local scaling affinity, enabling the local similarities to be
propagated along the data manifold. Diffusion-based
approaches define an average operator by assembling and
accumulating all the paths between samples. Among the
diffusion-based metric learning, diffusion maps (Haghverdi
et al., 2015) first construct sample-to-sample similarity
distances and then implement a diffusion process to improve
the similarity of input data. The diffusion map takes the
advantages of obtaining a global similarity metric notion and
implementing multi-scale data analysis from a more natural way
by iteratively updating the diffusion steps. Jiang et al. (Jiang et al.,
2011) introduced a self-smoothing operator (SSO) which is a
diffusion-based approach to improve input similarity metrics and
is distinct in that it directly improves the similarity metric using a
self-induced smoothing kernel. Self-diffusion was initially
proposed by Wang et al. (Jiang et al., 2011; Wang and Tu,
2012) with application for image segmentation and clustering.
They then applied a diffusion process to improve the similarity
measurement derived from multi-kernel learning for single-cell
RNA-seq visualization and analysis (Wang et al., 2017). Self-
diffusion belongs to diffusion-based approaches and relies on the
assumption that long-range similarities can be calculated by the
accumulation of local similarities. Instead of using the Gaussian
kernel which suffers from high sensitivity to the hyper-
parameters, we implement self-diffusion on local scaling
affinity with a new way of performing the diffusion process
for dissecting cellular heterogeneity. Local scaling infers the
self-tuning of cell-to-cell distances and can eliminate the scale
differences, resulting in higher affinities within clusters. The
diffusion process can enhance weak measurements of cell-to-
cell distance, therefore further facilitating the intercluster cells’
similarity learning and addressing the challenge of noise in
scRNA-seq data for the downstream cell identification. LSSD
performs similarity learning in the space of cells rather than gene
measurements without constructing new embedding spaces.
LSSD’s simplicity and efficiency make it an appealing
approach for unsupervised clustering analysis of scRNA-seq
data. Our approach includes three main phases: (1)
constructing local scaling affinity to measure cell similarities
on scRNA-seq data, (2) performing self-diffusion process to
enhance the cell-to-cell similarities learning, and (3)
identifying cell types by clustering on the diffusion map and
annotating clusters with known gene markers (Figure 1).

MATERIALS AND METHODS

Data Collection
In this study, we applied LSSD to two simulated datasets and four
real scRNA-seq datasets to evaluate its performance. The
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simulated scRNA-seq data contain 10000 cells, 10000 features
with 10 cell groups. The Pollen dataset (Pollen et al., 2014) and
Deng dataset (Deng et al., 2014) include 301, 268 cells with 23730,
22431 features, and form 11, 6 cell populations, respectively. The
10X PBMC dataset contains 4271 cells, 16449 features with eight
groups (Zheng et al., 2017). The colorectal tumor dataset has 375
tumor cells with 55186 features (Li et al., 2017).

Self-Diffusion on Local Scaling Affinity
Given a graph G � (V, E) where vertices V � {x1, x2/xn}
represent n cells, edges E are measured by n × n distance
matrix W. Here, W is constructed by using the local scaling
method (Zelnik-manor and Perona, 2005), which can alleviate the
sensitivity to the hyper-parameters and data scale differences. The
affinity distance is defined as follows:

W(i, j) � exp
⎧⎨
⎩
−d2(xi, xj)

σ iσj

⎫⎬
⎭, (1)

where σ i includes local scaling parameters for each cell xi and
d(xi, xj) is the cell-to-cell Euclidean distance. The distance
between xi and xj as “seen” by xi is d(xi, xj)/σ i, while the
converse is d(xj, xx)/σj. This assumption allows the self-
tuning of cell-to-cell similarity surrounding cell i and j. The

local scale σ i can be defined as d(xi, xk); here, xk is the K′ th
neighbor around cell xi. The local scaling distance automatically
calculates the scale in samples, addressing the challenge of scaling
difference which is problematic for other distance methods. The
selection of K is independent of the scale. In our analysis, we set
K � 5, which gives good results.

We then employed a diffusion process with initial condition
S0 � W, and iteratively updated S by the following diffusion
process:

St+1 � τSt × P + (1 − τ)IN, (2)

where P is a localized transition matrix of W and τ is a
regularization parameter. Here, K nearest neighbor (KNN) is
used to measure the local affinities. The localized row-normalized
P is defined as

P(i, j) � W(i, j)
∑

k∈knn(i)
W(i, K) δ{j ∈ knn(i)}. (3)

This local similarity measurement is based on the metric
learning (Wang et al., 2012). In single-cell clustering, this
definition makes similarities between non-neighboring cells to
zero and encodes the similarity to theKmost similar cells for each
cell with the assumption that local neighbors are more reliable

FIGURE 1 | Schematic of our approach, LSSD workflow. LSSD performs self-diffusion on the local scaling affinity constructed by scRNA-seq data. The diffused
graph enables effective clustering with C separable cell populations, followed by cell type annotation and visualization.
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than remote ones. For the following clustering analysis, we used
spectral clustering (Park and Zhao, 2018) to assign labels to cells
on the diffusion graph since it has the advantage of capturing the
global structure of the graph.

Estimating the Optimal Clustering Number
Clustering algorithms always suffer the limitation of selecting an
optimal number of clusters. Here, we applied a separation cost
method to estimate the optimal number of clusters based on the
diffused graph (Zelnik-manor and Perona, 2005). The separation
cost analyzes the eigenvectors of the affinity matrix and aims to
find the optimal cluster number by minimizing the cost function.
Given several communities C, the method aims at finding an
indicator matrix Z(R) � XR, Z ∈ R, n×C where X is the matrix of
top eigenvectors of the affinity Laplacian, and R is a rotation
matrix. Let

[M(R)i] � max[Z(R)]i,j. (4)

Defining the following cost function to be minimized:

J(R) � ∑
n

i�1
∑
C

j�1

[Z(R)]2i,j
[M(R)]2i

. (5)

The optimal number of clusters is the one of communities that
result in the largest drop in the value of J(R).

RESULTS

Simulation Evaluation of LSSD
In the self-diffusion iteration process, the steps t need to be set
properly. Too much diffusion may result in over-smoothed
information for a given graph. Here, we conducted a simulation

experiment to investigate the selection of iteration steps, meanwhile
evaluating the clustering performance of LSSD in scRNA-seq
clustering. We applied R package “Splatter” (Zappia et al., 2017)
to simulate scRNA-seq read count data with 2,000 cells, 10,000
genes, and 10 groups. Normalized mutual information (NMI)
(Zhang, 2015) and adjusted Rand index (Hoffman et al., 2015)
were used as a measurement of consistency between the obtained
partitions and the ground truth. NMI and ARI range between 0 and
1, where a higher value indicates higher concordance. We first
computed the local scaling affinity on the simulation scRNA-seq.
The self-diffusion process was then iteratively performed on the
affinity matrix with the diffusion iteration steps varying t from 2 to
15. We applied spectral clustering which is a graph-based clustering
method to obtain cell labels.

The result indicates that the NMI and ARI achieve the highest
value when the iteration step t � 4(NMI � 0.99, ARI � 0.99)
(Figure 2). Therefore, we selected iteration t � 4 for the
downstream analysis.

Single-cell clustering methods are always confronted with the
increasing number of scRNA-seq cells. To evaluate the scalability
of LSSD, we performed scRNA-seq clustering on various sample
sizes varying from 1,000 to 10,000 cells with 10,000 genes and 10
groups. We find that NMI and ARI values are tending toward
stability (NMI, ARI close to 1), and the running times of LSSD
scale linearly with the increasing number of cells. These results
demonstrate that our LSSD approach is very robust to cell size
variation. The running time increases with the growth of the cell
sample size, indicating that LSSD can be an effective modeling for
the analysis of large datasets (Figure 3).

Case Study on Real scRNA-Seq Data
To further evaluate the performance of our LSSD approach, we
applied it on three real scRNA-seq datasets. The Pollen dataset

FIGURE 2 | Simulation study for selecting the best iteration step. NMI and ARI values for varying iteration steps from 2 to 15 determine the optimal iteration step t
� 4.
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has 301 cells and 23,730 features, including 11 cell populations
from neural cells and blood cells. The Deng dataset has 268 cells
and 22,431 features with six cell populations. The 10X PBMC
dataset contains 4271 cells and 16,449 features with eight groups
from the peripheral blood mononuclear cells. To better show the

effectiveness of the LSSD approach for cell-to-cell similarities’
denoising, we did not carry out gene filtering on the datasets. The
local scaling affinity was first constructed using the scRNA-seq
gene expression matrix. We then implemented self-diffusion on
the affinity with iterations � 4. To investigate the ability of the

FIGURE 3 | Applying LSSD on various sample sizes of simulated cells. LSSD applied on different sample sizes indicates the high stability of clustering performance
measured by NMI, ARI, and running time.

FIGURE 4 | Cell similarities’ comparison of before and after self-diffusion on Pollen, Deng, and PBMC datasets. Visual inspection of the cell’s similarities after self-
diffusion using LSSD reveals an enhancement of intercluster connection.

Frontiers in Genetics | www.frontiersin.org January 2022 | Volume 12 | Article 8110435

Duan et al. Single-Cell Clustering Analysis

https://www.frontiersin.org/journals/genetics
www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


self-diffusion process in network denoising, we compared the
cells’ similarities before and after the diffusion process. Visual
inspection of cell similarities after self-diffusion reveals a clear
enhancement of edges within each cluster (Figure 4). The
similarity improvement is particularly obvious for the Pollen
dataset. The reason is that the self-diffusion process enables weak
similarities connected by low-weight edges to disappear,
contributing to reducing the noise and facilitating the strong
similarities connected by high-weight edges. Since the cell-to-cell
similarities are largely enhanced, the diffused graph becomes an
appealing input for accurate detection of clusters.

To extensively demonstrate the clustering effectiveness of LSSD
on the three real datasets, we performed comparison of LSSD with
seven other scRNA-seq clustering methods, including SIMLR
(Wang et al., 2017), SC3 (Kiselev et al., 2017), CIDR (Lin et al.,
2017), Seurat (Hao et al., 2021), HGC (Zou et al., 2021), SOUP (Zhu
et al., 2019), and SAME clustering (Huh et al., 2020) (Figure 5). We
used the NMI and ARI values to measure the consistency between
obtained clustering labels and the ground truth. Running time was
applied to compare the computational efficiency. On the Pollen
dataset, the NMI and ARI of LSSD are 0.95 and 0.96, respectively.
Although NMI and ARI values derived from SC3 and LSSD are the
same, the running time of LSSD is much less than that of SC3. On
theDeng dataset, theNMI andARI of the LSSDmethod are 0.86 and
0.86, respectively, showing much better consistency than the other
seven methods. The running time of LSSD on Pollen and Deng
datasets is also far more efficient than that of other methods. These
results indicate that our LSSD consistently outperforms the other
seven methods on the Pollen and Deng datasets, especially on the
Deng dataset where the cell-similarity pattern is difficult to discern.

On the larger PBMC dataset, our approach also achieves appealing
performance except for the Seurat method.

To evaluate the visualization effectiveness, we used the
diffused graph incorporating UMAP (Armstrong et al., 2021)
to visualize the cell populations of the three real datasets. Each cell
population was colored with true labels. Benchmarking against
three other dimensionality reduction methods, cell samples after
using the LSSD approach are muchmore tightly distributed in the
two-dimensional space (Figure 6).

Intratumor heterogeneity exists among tumor cells. Currently,
the single-cell sequencing technology has been applied widely in
various fields, but the most common application is in tumor
research (Patel et al., 2014) (Giustacchini et al., 2017). The study
of tumor cells using the single-cell technique has greatly
promoted the understanding of intratumor heterogeneity and
the development of antitumor therapeutic strategies. To explore
the ability of LSSD in dissecting tumor cellular heterogeneity, we
applied LSSD to 375 colorectal tumor cells assembled by Li et al.
(2017). Since many genes are not informative, we first filtered out
invariable genes and chose highly variable genes by the variance-
to-mean ratio (Stuart et al., 2019). After preprocessing, 200 genes
were kept for downstream analysis. We then constructed the local
scaling affinity to measure the cell similarities on the preprocessed
samples. Self-diffusion was performed on the local scaling affinity
to further enhance the cell similarities with iteration step t � 4.
The diffused graph enables effective clustering with six clusters
estimated by separation cost methods (Supplementary Figure
S1). Visual inspection illustrates that the diffused graph presents
six clear cluster patterns corresponding to different cell groups
(Figure 7A). The network visualization also indicates strong

FIGURE 5 | Comparison of clustering performance using LSSD, SIMLR, SC3, CIDR, Seurat, SAME, SOUP, and HGC. The benchmark results on the three real
scRNA-seq datasets are evaluated by NMI and ARI, where the larger values indicate more concordance between the clustering labels and the true labels. Less running
time means higher computational efficiency. Our LSSD approach shows appealing clustering performance compared with the other seven methods.
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intercluster similarity, shown by the tightness of connectivity
within the same subgraph and relatively few connections in
between (Figure 7B). To annotate the cell clusters with
meaningful biological types, we applied known gene markers
to define cell types. These gene makers include TRBC2, SELE,
CD38, VIL1, ITGAX, and SPARC.We compared their expression
probability distribution in each cluster by a violin plot. The gene
makers TRBC2, SELE, CD38, VIL1, ITGAX, and SPARC present

a higher expression level in C1, C2, C3, C4, C5, and C6,
respectively (Supplementary Figure S2). Therefore, the six
clusters (C1–C6) of the colorectal tumor cells were annotated
as T cells, endothelial cells, B cells, epithelial cells, myeloid cells,
and fibroblasts cells with significantly differential gene marker
expression (Figure 8A). The annotated cell-identity clusters were
then visualized using a LSSD + UMAP representation in two-
dimensional space (Figure 8B). Finally, we performed gene set

FIGURE 6 | Comparison of 2D visualization using different dimension reduction methods on Pollen, Deng, and PBMC datasets. The diffused graph incorporating
the UMAP method reveals more cohesion cluster representation. Each color represents a cell population with true labels.

FIGURE 7 | Similarities of the six colorectal tumor cell clusters. Similarity matrix (A) and cell network (B) for 375 colorectal tumor cells illustrating the tightness of
connectivity within clusters.
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enrichment analysis based on differentially expressed genes
derived from each cell cluster (Supplementary Table S1). C1
(T cells), C3 (B cells), and C5 (bonemarrow cells) are significantly
correlated with immune pathways. Cancer-associated fibroblasts
(CAFs) are one of the major cytokines which are responsible for
the structure-related changes of extracellular matrix during
tumorigenesis (Malik et al., 2015). C6 (fibroblast cells) is
associated with the extracellular matrix pathway.

LSSD Can Improve the Performance of
Network Fusion
To comprehensively prove the network enhancement of our
LSSD, we applied it on network fusion for cancer subtyping.
Three data types including mRNA expression, DNAmethylation,
and miRNA for 105 breast cancer patients were used. We
replaced the network construction in similarity network fusion
(SNF) (Wang et al., 2014) with an LSSD map in every data type
and then performed the network fusion process. We compared
their performance using survival analyses with the log-rank test
using the “survival” package. Overall survival (OS) was employed
to explore the association with identified subtypes. The subtypes
identified using network fusion with our LSSD map showed a
much more significant association with OS (Supplementary
Figure S3A, p � 3.75E-12, log-rank test) than the counterpart
based on the original SNF method (Supplementary Figure S3B,
p � 4.1E-5, log-rank test). The reason is that the local scaling
affinity can make balance in the data scale difference, and self-
diffusion process further enhances the network learning, while
parameter setting in SNF is ambiguous and sensitive to data scale.

DISCUSSION

Single-cell RNA sequencing has enabled gene transcriptomic
profiling to be studied at the individual cell level, advancing our
understanding of the cellular heterogeneity and underlying
mechanisms (Buettner et al., 2015; Kaur et al., 2019). Clustering

scRNA-seq data into different cell types has the potential to
characterize multicellular organisms and reveal unknown
heterogeneity. This methodology explores cellular heterogeneity at
an unprecedented resolution which differs from traditional bulk
RNA-seq and microarray data, where gene expression
measurements are averaged over thousands of cells from a
sample. However, scRNA-seq data always contain numerous
zero-value observations and redundant information. In this
article, we propose local scaling self-diffusion (LSSD) modeling to
enhance the cell similarity learning for unsupervised clustering
analysis of scRNA-seq data. This similarity measurement can
greatly improve the effectiveness of downstream clustering tasks,
leading to accurate cell type identification. In the LSSD approach,
local scaling affinity infers the self-turning of cell–cell distance,
followed by the iterative self-diffusion process to denoise the
network. LSSD has the advantage of eliminating weak similarity,
reducing feature redundancy, and enhancing strong similarity along
the diffusion of the network. In cell type identification, LSSD
incorporating spectral clustering can overcome the limitation of
high levels of cell noise and dropout events. The simulation study
illustrated LSSD has strong robustness to the cell sample sizes,
making it a scalable analytical framework for single-cell
clustering. In addition, benchmarking against seven other single-
cell clustering methods on three real datasets, LSSD showed higher
NMI andARI values, while requiring less computational complexity.
Finally, to further evaluate the performance of LSSD, we carried out
cell type identification on scRNA-seq of 375 colorectal tumor cells.
Using known gene markers, we identified six cell types and analyzed
the biological pathways associated with each cell type. Additionally,
combining with the network fusion step, we found our local scaling
self-diffusion map can largely improve the performance of the
original SNF method in subtype identification.

CONCLUSION

Due to the complexity in scRNA-seq data, there are still many
computational challenges for analysis of these data. LSSD’s

FIGURE 8 |Cell cluster annotation using known genemarkers. (A)Heatmap of several genemarkers in the six cell identities. (B) 2D visualization of the identified cell
types using UMAP.
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simplicity and efficiency make it an appealing unsupervised
clustering approach for these challenges. As abundant scRNA-
seq data become easier to obtain, we expect our LSSD model
combining these data can give a more comprehensive view of
disease and biological processes.
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