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Abstract

The organizer is one of the earliest structures to be established during vertebrate development and is crucial to subsequent
patterning of the embryo. We have previously shown that the SoxB1 transcription factor, Sox3, plays a central role as a
transcriptional repressor of zebrafish organizer gene expression. Recent data suggest that Fgf signaling has a positive
influence on organizer formation, but its role remains to be fully elucidated. In order to better understand how Fgf signaling
fits into the complex regulatory network that determines when and where the organizer forms, the relationship between
the positive effects of Fgf signaling and the repressive effects of the SoxB1 factors must be resolved. This study
demonstrates that both fgf3 and fgf8 are required for expression of the organizer genes, gsc and chd, and that SoxB1 factors
(Sox3, and the zebrafish specific factors, Sox19a and Sox19b) can repress the expression of both fgf3 and fgf8. However, we
also find that these SoxB1 factors inhibit the expression of gsc and chd independently of their repression of fgf expression.
We show that ectopic expression of organizer genes induced solely by the inhibition of SoxB1 function is dependent upon
the activation of fgf expression. These data allow us to describe a comprehensive signaling network in which the SoxB1
factors restrict organizer formation by inhibiting Fgf, Nodal and Wnt signaling, as well as independently repressing the
targets of that signaling. The organizer therefore forms only where Nodal-induced Fgf signaling overlaps with Wnt signaling
and the SoxB1 proteins are absent.
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Introduction

The embryonic organizer, as defined by the experiments of

Spemann and Mangold, is one of the earliest and most critical

patterning structures of vertebrate development [1]. Although

several of the signals and genes involved in organizer formation

have been identified, our understanding of the processes that

control its formation is far from complete.

We have previously shown that the SoxB1 family of transcrip-

tion factors can repress multiple genes associated with organizer

formation. This family comprises sox1, sox2 and sox3 and the

zebrafish specific genes, sox19a and sox19b [2]. Only sox3, sox19a

and sox19b are expressed in zebrafish at the time of organizer

formation. Recent work has implicated Fgf signaling as a key

positive regulator in organizer formation in zebrafish [3]. Given

the strong inducing effects of Fgf signaling and the reciprocal

strong repressive effects of Sox3, elucidating how these opposing

forces interact is crucial to our understanding of organizer

formation.

Fgf signaling has been shown to promote Sox3 expression in

several developmental contexts [4], [5], [6], but this does not

appear to be true at the earliest stages of development when

organizer formation occurs [7]. On the other hand, Sox2 has been

shown to regulate the expression of fgf4 [8], so there is a precedent

to suggest that SoxB1 factors could act upstream of fgf gene

expression.

We have shown previously that the central role played by the

soxB1 factors in restricting organizer formation is achieved both

by inhibiting Nodal signaling and directly repressing the gene

targets of Wnt signaling [9]. Conversely, inhibition of SoxB1

protein function is sufficient to induce expression of Nodal-related

signals and organizer genes in the animal pole of early embryos

with consequent axis duplications.

This study set out to confirm the role of Fgf signaling in

organizer formation and to establish how it fits into the network of

factors in which Sox3 acts as a central repressor. In particular, we

aimed to establish whether the repressive effects of sox3 on

organizer formation could be explained by repression of Fgf

signaling rather than by repression of the targets of Fgf signaling.

We show that fgf3 and fgf8 are necessary for the expression of the

organizer genes, gsc and chd. The SoxB1 factors can repress both

fgf3 and fgf8 expression in addition to directly repressing Fgf target

genes. However, Fgf signaling does not reciprocally repress soxB1

expression in the region of the organizer. Inhibition of SoxB1

function resulted in ectopic expression of the fgfs, and this Fgf

activity was required for the ectopic activation of other organizer

genes. These data reveal a complex network of signaling events

that promote organizer formation, with the expression of every
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component of that network being repressed by Sox3 (and by

Sox19a and Sox19b). We propose a model in which the organizer

forms only where Fgf signaling is sufficiently high and the SoxB1

factors are absent.

Results

1. SoxB1 Factors Repress the Expression of fgf3 and fgf8
in the Organizer

Amongst the Fgf family, fgf3 and fgf8 are expressed specifically

in the organizer in zebrafish [10]. fgf3 and fgf8 transcripts could

first be detected in the dorsal region of the forming organizer at

about 4.5 hpf, about 1 hr after expression of the earliest marker of

the organizer, boz, is first seen (see Furthauer et al. 2001 [10] and

Fig. S1 in the supplementary material).

We first examined whether members of the SoxB1 subfamily

could affect expression of these fgfs during the period of organizer

induction. Injection of sox3, sox19a or sox19b RNA at the 1–2 cell

stage resulted in a complete loss of expression of both fgf3 and fgf8

in the organizer (Fig. 1A–H). We found that RNA encoding a

Sox3HMG-enR fusion protein, but not the constitutive activator

Sox3HMG -VP16, was able to mimic the ability of the SoxB1

factors to repress the expression of both fgf3 and fgf8 (Fig. 1I–L).

Hence, it appears that the SoxB1 factors are likely to repress the fgf

genes directly.

We next investigated whether inhibition of SoxB1 function

would be sufficient to elicit ectopic expression of the fgfs in the

absence of any other additional dorsal or vegetal signals. For this, a

dominant negative approach is preferable to a morpholino (MO)

knockdown approach. Because of redundancy between different

members of the SoxB1 family and maternal expression of at least

one of the family members [11], [9], a phenotype is only seen in

morpholino injected embryos at stages of development after

organizer formation (as reported by Okuda et al. 2010 [11]) and

no effect on the early expression of the fgfs was seen (data not

shown). This suggest that there is sufficient maternal protein for at

least one of the SoxB1 factors to mask any effects of blocking

translation of the other factors. However, we have previously

shown that a dominant negative Sox3 construct, in which the

nuclear localization signals were mutated (hereafter referred to as

dnSox3) interferes with the activity of all the SoxB1 factors (by

inhibiting their nuclear localization), and was able to elicit ectopic

expression of four organizer markers (boz, sqt, gsc and chd), an effect

rescued by co-injection with any of the SoxB1 factors [9]. Here, we

found that injection of the same dnSox3 construct also induced

ectopic expression of both fgf3 and fgf8 at 4.5 hpf in a manner

similar to the induction of other markers of organizer (Fig. 1M,N).

This effect was more striking at 30% epiboly (approximately

5 hpf), a stage when endogenous fgf expression is more robust

(Fig. 1O,P). One concern in using dominant-negative approaches

is that the dnSox3 construct might not only block the function of

the protein of interest, but might also generate unrelated

neomorphic effects. However, in this case, like the effects on

other markers of the organizer, this induction of fgf expression by

dnSox3 was rescued by overexpression of sox3, sox19a or sox19b

with the dnSox3 similarly negating the ability of any of the SoxB1

factors from repressing fgf expression and resulting in reversion to

wild type fgf expression (see Fig. S2 in the supplementary material).

This rescue experiment indicates that the effects of the dnSox3

described are via inhibiting SoxB1 function and are not

neomorphic effects. Together these data indicate that the

endogenous SoxB1 proteins repress the expression of fgf3 and

fgf8 in the organizer and that interfering with this repression using

a dnSoxB1 is sufficient to elicit ectopic expression of these fgf genes

in sites distant from the organizer.

2. Sox3 Binds Directly to an Evolutionarily Conserved
Element in the Promoter Region of fgf3

In order to investigate whether fgfs could be direct targets of the

SoxB1 transcription factors, we analysed binding of Sox3 to the

fgf3 promoter using ChIP-PCR. Comparison of genome organi-

zation between species in the region of fgf3 using the ENSEMBL

database showed that a significant degree of synteny had been

retained across a wide diversity of species from coelacanth to

human, including zebrafish (Fig. 2A). This allowed us to identify

regions around the fgf3 transcription unit suitable for comparison

to find conserved potential regulatory sequences. Previous studies

have found that highly conserved non-coding sequences 59 to a

gene often harbour functional transcription factor binding sites

[12]. We therefore used PipMaker [13] to indentify such regions of

conservation. This identified two regions (regions ‘C’ and ‘D’ in

Fig. 2B) that were highly conserved between fish, birds, lizard,

frogs, platypus and opposum and a third region only conserved

among fish (region ‘B’ in Fig. 2B) within 4 kb of the fgf3

transcription start site (TSS). A fourth region (region ‘A’ in Fig. 2B)

positioned approximately 23 Kb upstream of the TSS, was also

highly conserved including in mouse and human (see Fig. S3 in the

supplementary material). All of these regions contained potential

Sox-binding sites (Fig. 2B and see Fig. S4 in the supplementary

material for full sequence comparisons). We therefore designed

primers to detect all of these regions for use in ChIP-PCR

experiments (as labelled in Fig. 2B).

Since commercially available antibodies were unable to

immunoprecipitate endogenous Sox3, we used ectopic expression

of an HA-tagged version of Sox3. As in our previous study [9], in

order to avoid non-specific Sox3-DNA interactions, we injected an

amount of RNA that produced protein at a level below that of the

endogenous protein at 30% epiboly (analysed by Western blot,

data not shown). HA antibody immunoprecipitation (IP) on

uninjected embryos and IP of an HA-tagged N40I DNA-binding

mutant of Sox3 [9] were included as additional negative controls.

The HA antibody did not precipitate a detectable level of any of

the fgf3 target regions in uninjected embryos (Fig. 2C,D). Similarly,

even in fish injected with HA-tagged Sox3, there was no detectable

precipitation of fgf3 fragments A, B or D or a tubulin control

fragment (tubb5) (Fig. 2C). However, pull down of the HA-tagged

Sox3 did result in robust detection of the proximal region (primer

pair 2) of fgf3 fragment C (Fig. 2C). qPCR verified that the amount

of the proximal end of region C (primer pair 2) precipitated in

Sox3 injected embryos was significantly more than was precipi-

tated following injection of the N40I DNA-binding mutant, or the

amount of the distal end of fragment C (primer pair 3) that was

precipitated (Fig. 2D).

These data demonstrate that, despite the presence of Sox

binding consensus sequences in all four conserved regions

upstream of fgf3, Sox3 only binds to the proximal end of region

C, 2888 bp upstream of the fgf3 TSS.

3. Induction of the Organizer Genes, gsc and chd, by
Inhibition of SoxB1 Function Requires Fgf Signaling

Inhibition of SoxB1 factors can induce the ectopic expression of

gsc and chd, which is normally restricted to the organizer [9], and

fgf3 and fgf8 can now be added to that list of genes repressed by the

SoxB1s. Since Fgfs normally play a central role in the expression of

the other organizer genes, the ectopic expression of organizer

genes when SoxB1 function is repressed might require Fgf

Fgfs, SoxB1 Factors and the Embryonic Organizer
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signaling. Alternatively, in the absence of repression by the SoxB1

factors, Fgf signaling might no longer be necessary for the

expression of gsc and chd.

We first examined the role of Fgf3 and Fgf8 which have

previously been implicated in organizer formation [14], [3].

Published MOs against fgf3 and fgf8 were used to test this.

Alone, inhibition of either fgf3 or fgf8 expression caused

substantial but incomplete repression of the endogenous

expression of gsc or chd (See Fig. S5 in the supplementary

material), while a combination of both MOs resulted in an even

greater repression of chd expression and complete inhibition of

gsc expression Fig. 3A–D).

We next asked whether the ectopic expression of gsc and chd that

was induced when SoxB1 function was inhibited using a dnSox3

construct, also required the activity of these Fgfs (which, as shown

above in Fig. 1O–P, are induced ectopically when SoxB1 function

is inhibited). In the presence of the combined fgf3/8 MOs, the

dnSox3 was still able to elicit robust ectopic expression of these

organizer genes (Fig. 3E–F). However, that fact that treatment

with MOs targeting fgf3 and fgf8 did not affect the response to

dnSox3 could be because MOs generally only cause knock down

rather than complete loss of target proteins. Alternatively, other

Fgfs (such as Fgf24 or Fgf17, which are expressed even earlier than

Fgf3 and Fgf8 in mesoderm and organizer [15], [16]), may also

play a role. Therefore we used the FGFR1 inhibitor, SU5402, as a

more effective and broader inhibitor of Fgf signaling to address

this question. Inhibition of Fgf signaling using SU5402 completely

abolished both the endogenous and the ectopic induction of these

gsc and chd expression by dnSox3 (Fig. 3G–N). In order to confirm

that this effect was due to inhibition of Fgf signaling, we repeated

this experiment using the alternative, intracellular, Fgf signaling

Figure 1. SoxB1 factors acts as transcriptional repressors to inhibit the expression of fgf3 and fgf8. At 4.5 hpf, the expression of fgf3 and
fgf8 is restricted in the dorsal shield region of un-injected embryos (A–B). Injection of sox3, sox19a or sox19b RNA at the 1–2 cell stage caused
complete loss of expression of both fgf3 and fgf8 at 4.5 hpf (C–H). A Sox3HMG-EnR (I,J) but not a Sox3HMG-VP16 (K,L) fusion mimicked the function
of wild-type Sox3 to inhibit fgf3 and fgf8 expression. Ectopic expression of fgf3 and fgf8 was induced by the dnSox3 construct injected at the 1–2 cell
stage and analysed at 4.5 hpf (M,N) or later at 30% epiboly (5.5 hpf) (O,P). All images are lateral views with dorsal to the right (where this can be
determined). The proportion of embryos exhibiting these phenotypes is shown at the bottom right of each panel. Scale bar in panel A represents
approximately 100 mm.
doi:10.1371/journal.pone.0057698.g001

Fgfs, SoxB1 Factors and the Embryonic Organizer
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inhibitor, MKP3 [17]. The result was identical to that seen with

SU5402 (Fig. 3O–R).

Together, these data show for the first time that both Fgf3 and

Fgf8 play a role in the expression of gsc and chd in the organizer,

and that the induction of ectopic fgf expression, when SoxB1

function is inhibited, is necessary for the ectopic induction of gsc

and chd expression (but not for the induction of boz and sqt

expression, data not shown).

Figure 2. Sox3 can directly bind to a region upstream of fgf3. (A) Synteny in the region of the genome flanking the fgf3 gene. Coloured boxes
indicate different genes and direction of transcription. Not to scale. Absence of line indicates incomplete genomic scaffold information. (B) Diagram
showing the upstream region of fgf3. Green bars indicate regions of homology among different species. The position of potential Sox binding sites
(A/T)(A/T)CAA(A/T)G within these homologous regions are shown as black bars and similar potential Sox binding sites lacking the final 39 ‘‘G’’ are
shown as gray bars. The red bars show the PCR products, including the Sox binding sites that would be produced by different primer pairs. (C) 25 pg
sox3-HA and sox3N40I-HA RNA were injected at the 1–2 cell stage embryos and harvested at 4.5 hpf. ChIP analysis using an anti-HA antibody to
precipitate Sox3 and bound DNA. PCR results after ChIP procedure showed that the DNA fragments pulled down by Sox3-HA can be amplified only
by primer pair 2. tubb5 was included as a negative control. (D) Quantitative PCR results of precipitated chromatin using primer pairs 2 and 3 showed
that the target sequence for primer pair 2 was significantly enriched following IP of WT Sox3 whereas the target for primer pair 3 was not. Values
represented as fold change compared to the uninjected value.
doi:10.1371/journal.pone.0057698.g002

Fgfs, SoxB1 Factors and the Embryonic Organizer
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4. SoxB1 Factors also Act Independently of Fgf Signaling
to Repress chd and gsc Expression

Based on the above observations, a network of signals leading to

organizer formation can be proposed as shown in Fig. 4A. We

have shown previously that repression of gsc and chd expression by

SoxB1 factors appears to be independent of the repression of sqt

and boz which are upstream activators of gsc and chd [9]. However,

whether the inhibition of gsc and chd by SoxB1 factors is direct or

entirely due to its inhibition of Fgf signaling required testing. In

order to do this, we combined overexpression of Sox3 and Fgf3

and analysed the effect upon the expression of gsc and chd. Fgf3

overexpression alone caused a dramatic expansion of both gsc and

chd expression throughout the epiblast (Fig. 4Ba,b,e,f,C,D). This is

consistent with the data of Maegawa et al. (2006) who showed that

Fgf3 or Fgf8 could rescue the loss of chd expression in mutant fish

that lacked functional ß-catenin2 [3]. However, when Fgf3 and

Sox3 were overexpressed together, we found that, although Fgf3

still induced gsc and chd expression over broad parts of the embryo,

in the regions where Sox3 was expressed (as indicated by staining

for the overexpressed HA-Sox3 protein, Fig. S6 in the supple-

mentary material), gsc and chd expression was absent

(Fig. 4Bc,d,g,h,C,D). Since the direct effects of Sox3 are cell

autonomous, this is consistent with Sox3 repressing gsc and chd in

the patches where it is expressed, while Fgf3 (which has a broader

effect due to its extracellular diffusion) can only expand expression

in those regions where cells are not over expressing Sox3. It seems,

therefore, that in addition to repressing expression of the fgfs, Sox3

also independently represses the expression of gsc and chd

downstream of Fgf signaling.

Taken together with our previous work [9], these data suggest

that Sox3 represses the transcription of gsc and chd independently

of its effects on boz expression and on Wnt, Nodal and Fgf

signaling. In order to verify this, we tested the ability of Sox3 to

inhibit gsc and chd expression when all of these organizer

promoting factors were overexpressed together. We found that

Fgf signaling caused a broader expansion (presumable because this

is not limited to a cell autonomous effect) than Boz, but injection of

both factors combined increased the level of ectopic chd expression

and addition of Sqt and a constitutively active ß-catenin (S37A)

caused even stronger expression of both chd and gsc throughout the

epiblast (See Figs. S7A and S8A in the supplementary material).

However, irrespective of the combination of organizer-promoting

factors used, Sox3 was able to generate patches of the embryo in

which expression was absent (See Fig. S7B and S8B in the

supplementary material).

5. Sox3 and Fgf Signaling Regulate chd Independently
from their Regulation of gsc

To date, we have analysed gsc and chd as two of the earliest

markers of the organizer. Since gsc encodes a transcription

factor and injected gsc RNA has been shown to induce chd

expression, albeit in a non-cell autonomous manner [18], [19]

we set out to determine if the effects of the Fgfs and the SoxB1

factors on chd are indirectly due to effects on gsc. We first

showed that injection of RNA encoding Gsc dramatically

expanded the domain of chd expression (Fig. 5). In order to

determine if the repression of chd by Sox3 was indirectly

through the repression of gsc expression, we next determined

whether gsc RNA was able to rescue the repression of chd by

Sox3. When gsc and sox3 RNA were injected together, Sox3

appeared to repress chd expression in the patches of cells in

which it was expressed (as shown by staining for the HA-tag it

carried, data not shown) within a broader domain of chd

expression induced (non-cell autonomously) by Gsc (Fig. 5A).

Figure 3. Induction of ectopic chd and gsc expression by dnSox3 requires Fgf signalling. Endogenous expression of chd and gsc (A,B) was
inhibited by injection at 1–2 cell stage of a combination of morpholinos targeting both fgf3 and fgf8 (C,D), but these had little effect upon the ectopic
expression of chd and gsc induced by injection of a dnSox3 construct (E,F). Treatment of embryos with the FGF signalling inhibitors, SU5402 (I,J) or
MKP3 (O,P) (but not an equivalent concentration of the solvent DMSO alone) (G,H), at the 1–2 cell stage totally inhibited both endogenous
expression of chd and gsc and ectopic expression induced by injection of a dnSox3 construct (K–N,Q,R). Lateral view and dorsal is to the right in
upper panels, viewed from animal pole in lower panels. The proportion of embryos exhibiting these phenotypes is shown at the bottom right of each
panel.
doi:10.1371/journal.pone.0057698.g003

Fgfs, SoxB1 Factors and the Embryonic Organizer
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Next, in order to determine if the loss of chd expression seen

when Fgf signaling was inhibited was indirect, due to loss of gsc

expression, we similarly determined whether Gsc could rescue the

loss of chd expression seen in embryos treated with SU5402

(Fig. 5B). As in the previous experiment, we found that Gsc could

not rescue chd expression in the absence of Fgf signaling (Fig. 5B,C)

indicating that Fgf signaling is independently required for both chd

and gsc expression. These experiments show that, despite the fact

that Gsc acts upstream of chd expression, both Fgf signaling and

Sox3 act independently upon both genes.

Maegawa et al. (2006) have shown previously that knock

down of Sqt results in loss of fgf expression [3]. In order to

complete the picture of how Fgf signaling fits into the network

of events upstream of organizer formation, we analysed to what

extent Fgf signaling could compensate for loss of Sqt. We found

that injection of fgf3 RNA was able to rescue expression of both

gsc and chd when Sqt was knocked down (See Fig. S9 in the

supplementary material), implying that the only requirement for

Sqt in regulating these genes is to promote fgf expression, as

depicted in Fig. 4A.

Figure 4. Sox3 represses expression of chd and gsc independently of repressing fgf expression. (A) Model of the signalling network that
controls organizer formation. Sox3 plays a central role in this model to repress Fgf signalling in addition to independently repressing other genes
needed for organizer formation. Injection of fgf3 RNA at the 1–2 cell stage dramatically expanded both chd and gsc expression in the animal
hemisphere (Ba,b,e,f). Injection of wild-type sox3 RNA not only inhibited the endogenous expression of chd and gsc (Bc,g), but was also able to
partially inhibit the expansion of chd and gsc expression that was induced by injection of fgf3 (Bd,h). (C,D) Graphical representation of the numbers
of embryos affected in these experiments. Lateral view and dorsal is to the right in upper panels, viewed from animal pole in lower panels. The
proportion of embryos exhibiting these phenotypes is shown at the bottom right of each panel.
doi:10.1371/journal.pone.0057698.g004

Fgfs, SoxB1 Factors and the Embryonic Organizer
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6. FGF Signaling is Necessary for the Exclusion of SoxB1
Expression from the Mesoderm, but not from the Early
Organizer

For several of the factors that promote organizer formation but

are repressed by Sox3, including Wnt and Nodal signaling, we

have found that the soxB1s are reciprocally repressed by those

factors (see diagram Fig. 4A). Since the regions where soxB1

expression is lost at early stages coincide with the regions where

the fgf genes are expressed, we asked whether a similar mutual

inhibition between the SoxB1s and Fgf signaling might occur.

Expression of sox3 is activated by Fgf signaling in several

contexts, including its expression in the neural ectoderm, which is

almost entirely lost when Fgf signaling is inhibited and is expanded

throughout the ectoderm when Fgf signaling is activated [7], [20].

However, we have shown that Fgf signaling is not necessary for

sox3 expression prior to 50% epiboly in zebrafish [7] and the effect

of altering Fgf signaling upon the exclusion of sox3 expression from

the mesoderm and organizer has not been analysed. We first

analysed in greater detail when the expression of sox3 and the

other soxB1 genes becomes dependent upon Fgf signaling. We

found that Fgf signaling only becomes necessary for sox3

expression at 60–70% epiboly (7–8 hpf) (See Fig. S10 in the

supplementary material) after which time SU5402 caused strong

inhibition of the expression of sox3 (by 8 hpf, 70% epiboly). sox19a

was uninhibited by SU5402 at all stages analysed, despite being

expressed at significant levels at 70% epiboly. Expression of sox19b

was also not inhbited by SU5402, although its expression was very

weak by 70% epiboly, when sox3 expression was first affected (See

Fig. S10 in the supplementary material).

Closer analysis of SU5402-treated embryos at 60% epiboly

revealed that, rather than losing expression, the domain of sox3

and sox19a expression was expanded towards the vegetal margin

(See Fig. S10A,B in the supplementary material; Fig. 6A–H),

which was coincident with loss of expression of the mesoderm

marker, ntl (Fig. 6A–H) (as described previously by Rodaway et al.

(1999) [21] using a dominant-negative FGF). We also noted that

inhibition of Fgf signaling resulted in stronger expression of sox3

and sox19a (but not sox19b) throughout the embryo at 30% epiboly

(Fig. 6A,C, Fig. S10 in the supplementary material). sox19b

expression was already weak by this stage so it was not possible to

be certain if a similar expansion occurred.

Since Fgf signaling appears to be necessary for the exclusion of

sox3 expression from the mesendoderm, we asked whether this was

also true for its exclusion from the organizer. At 4.5 hpf, the stage

when the organizer first appears as a boz-expressing dorsal

domain, SU5402 had no effect upon the exclusion of sox3

expression from this region (Fig. 6M–O). Given that any

expansion of Sox3 would be expected to repress expression of

boz, this result is consistent with the observation that boz expression

is also unaffected by inhibition of Fgf signaling (Fig. 6P,Q).

Since Fgf signaling appeared to be necessary to exclude sox3

expression from the mesendoderm but not the early organizer, we

next asked if Fgf signaling was sufficient to inhibit sox3 expression.

At no stage was injection of RNA encoding Fgf3 sufficient to cause

any detectable inhibition of sox3 expression (See Fig. S11 in the

supplementary material) despite being able to activate ntl

ectopically (data not shown). Fgf signaling is therefore necessary

but not sufficient for inhibition of sox3 expression in the

prospective mesoderm, but does not appear to play a role in the

exclusion of sox3 expression from the early organizer.

Discussion

The Role of Fgf Signaling and the SoxB1 Factors in
Organizer Formation

Fgf signaling is one of the most widely functioning intercellular

signaling pathways in vertebrate development. Its earliest

described function is in the formation of the mesoderm and

organizer. Analysis of the role of Fgf signaling in early zebrafish

development implies that it might be an essential component of the

signals that promote organizer formation [17], [14], [3]. In

contrast, we have shown that Sox3 and other SoxB1 factors that

are expressed throughout the epiblast prior to organizer formation

play an opposing role in which their presence inhibits organizer

formation [9].

In this study, we have shown that Fgf signaling is independently

required for the expression of both gsc and chd and for the

exclusion of SoxB1 expression from the mesoderm but not from the

organizer. The inhibition of fgf3 and fgf8 expression by Sox3

identifies yet more pro-organizer factors that are repressed by

Sox3, reinforcing its role as a master repressor of the signaling that

promotes organizer formation. Rather than inhibiting the

expression of one key factor that is required to trigger organizer

formation in the way that many regulatory networks appear to be

structured, Sox3 is an inhibitor of the signaling pathways and of

the target genes of those pathways. Indeed, it also represses the

expression of several markers of mesoderm development in

zebrafish (data not shown) and in Xenopus [22], [23]. Thus, the

expression of sox3 throughout the prospective ectoderm acts to

protect ectodermal fate, limiting the expansion of the mesoderm

and organizer to their very restricted vegetal domains. Since

simply inhibiting the activity of the SoxB1 factors is sufficient to

induce ectopic expression of all the markers studied, including the

fgfs, it seems that this repression is one of the most important

constraints on where the organizer forms. When the repression is

removed, the entire process is activated where it would not

normally occur.

It is noteworthy that overexpression of Fgfs can induce

widespread expression of both gsc and chd, but does not cause a

decrease in expression of sox3. This reveals that organizer genes

can be expressed where there are significant levels of soxB1 gene

expression. Together, these data support the model shown in

Fig. 4A, in which Fgf signaling is necessary for organizer formation

downstream of Sqt signaling and, along with the other organizer

promoting genes, fgf expression is repressed by Sox3. However,

although Fgf signaling does not reciprocally repress sox3 expres-

sion, it can override repression by the SoxB1 factors when

signaling levels are increased. This implies that the precise domain

of organizer gene expression results from the balance between the

competing activating forces of Fgf signaling and the repressive

actions of the SoxB1 factors. Endogenous Fgf signaling levels are

insufficient to induce organizer gene expression where Sox3 is

expressed, such that it is Sox3 that defines the limit of their

expression. However, even when SoxB1 factor activity is blocked

Figure 5. Effects of FGF and Sox3 upon the expression of chd cannot be rescued by Gsc. Injection of different mixtures of sox3 or gsc RNA
resulted in a range of expression levels of chd from complete repression to dramatic ‘continuous’ expansion as shown in the right of panel A. The
phenotypes seen when combinations of sox3 and gsc were injected, were intermediate between those when sox3 or gsc alone were injected (Shown
in bar chart in panel A). Treatment with SU5402 was able to inhibit chd expression (Ba,b) even when 50 pg (Bc,d) or 100 pg (Be,f) gsc RNA was also
injected. Shown in bar chart in panel C. The proportion of embryos exhibiting these phenotypes is shown at the bottom right of each panel.
doi:10.1371/journal.pone.0057698.g005
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using a dominant negative construct, Fgf signaling is still needed

for the resulting ectopic expression of organizer markers. Hence,

Fgf signaling is also needed independently to promote organizer

gene expression.

It is interesting to note that Fgf signaling can independently

promote strong ectopic expression of gsc and chd but does not cause

full axis duplication ([24] and our own unpublished observations),

implying that it does not generate a true ectopic organizer. Since

Fgf signaling does not induce boz or sqt expression, this supports a

role for Boz and/or Sqt in promoting other aspects of organizer

formation in addition to simply inducing expression of the fgfs

which are necessary to maintain continued organizer develop-

ment.

Overall, our data lead to a model for organizer formation in

which widespread expression of the SoxB1 factors restricts

organizer formation by inhibiting Fgf, Nodal and Wnt signaling,

as well as independently repressing the targets of those signaling

pathways. The organizer therefore forms only where Nodal-

Figure 6. Inhibition of Fgf signaling causes expansion of sox3 and sox19a expression into the vegetal margin. In situ hybridization for
sox3 (A–D), sox19a (E–H) or ntl (I–L). Expression of sox3 and sox19a (dark purple) is seen throughout the entire animal hemisphere at the 30% epiboly
stage, when only a very thin band of ntl expression was seen around the vegental margin (I). Although expression of ntl was completely lost
following treatment with SU5402 (but not in the DMSO control) (I,J), it was not possible to detect any change in expression of sox3 or sox19a
(A,B,E,F). However, treatment with SU5402 also resulted in loss of expression of ntl by the 60% epiboly stage (K,L) (position of vegetal margin
identified with red bars), which was concomitant with expansion of the expression of sox3 and sox19a towards the vegetal margin (D,H) (region of
expansion of expression shown with red brackets in panels C,D,G,H). Close analysis of the dorsal organizer region revealed that, as in untreated
embryos (M), sox3 expression is absent from the region of the organizer. Treatment with SU5402 (or DMSO as a control) did not alter the exclusion of
sox3 expression from this region (N,O). The expression of boz (dark purple) also remained unaltered with a gap in between the domains of sox3 and
boz expression maintained (P,Q; arrow). All treatments were started at 3 hpf (the time that zygotic expression begins). All panels are lateral views,
dorsal to the right except lower panels of M–Q, which are animal pole views. The proportion of embryos exhibiting these phenotypes is shown at the
bottom right of each panel.
doi:10.1371/journal.pone.0057698.g006
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induced Fgf signaling overlaps with Wnt signaling and the SoxB1

proteins are absent. Since SoxB1 factors are initially present

throughout the epiblast, this would preclude organizer formation

at an earlier stage. SoxB1 expression is only lost at about the time

that the organizer marker, boz, is first expressed. Since Boz and

Sox3 exhibit mutual repression, it is not clear whether the

appearance of boz is causative of the loss of sox3 expression, or if

the two events are independent consequences of other upstream

signals. The timing of fgf expression, a little later than these events,

suggests that initiation of fgf expression is dependent on the signals

that promote their expression rather than de-repression due to the

loss of soxB1 expression from the region of the organizer.

A similar role for Fgfs in organizer formation has been suggested

from studies over many years in organisms as diverse as Xenopus,

chick and mouse (reviewed in Bottcher and Niehrs 2005 [25]). In

all three organisms, Fgf signaling is a major component necessary

for mesoderm formation. In addition to this, interfering with Fgf

signaling disrupts dorsoventral patterning and the morphogenetic

movements that occur during gastrulation [25]. However,

evidence in support of a direct role for Fgf signaling in organizer

formation has only recently been reported [3].

Although the role of Sox3 has not been studied with respect to

fgf expression in these other animal models, the expression of sox3

in chick and in Xenopus is consistent with a similar role (such

detailed expression data is not available for mouse). In both

Xenopus and chick embryos, early expression of sox3 is throughout

the epiblast but loss of expression precedes gastrulation in the

region equivalent to the zebrafish organizer [26], [27].

Context Dependent Interaction between the SoxB1
Family and Fgf Signals

Theexpressionof soxB1genes, including sox3,hasbeenshowntobe

dependent upon Fgf signaling in several regions of neural epithelium,

such as in the placodes and later otic neural epithelium [4,6]. Indeed,

it is clear from our studies that expression of sox3 in the neural

ectodermof theCNSbecomesdependentuponFgfsignalingbetween

7 and 8 hpf in zebrafish. However, expression of sox3 at earlier stages

does not require Fgf signaling [7], when Fgfs instead play a role in

repressing soxB1 expression in the mesendoderm. Since over

expression of Fgfs alone is insufficient to expand the inhibition of

sox3 expression beyond the normal domain of the mesendoderm, it

seems that the mechanism for this requires additional factors that are

restricted to the marginal region of the embryo.

It is not yet known why sox3 expression might be dependent upon

Fgf signalingat later stages,but is repressedor insensitive to itatearlier

stages. Our earlier study showed that sox3 expression only became

dependentuponFgfsignalingat thesametimethat itbecamesensitive

to inhibition by Bmp signaling [7]. Fgf is known to directly repress

Bmp signaling by triggering inactivating phosphorylation of Smad

proteins, the intracellular effectors of Bmp signaling. Thus, it seems

that a change in the molecular machinery of Bmp signaling at this

early stage of development fundamentally alters the state of the

embryonic cells. Prior to about 60% epiboly all embryonic cells

express sox3, and this expression is insensitive to Bmp signaling [7].

After this stage, changes downstream of Bmp receptor activation

cause repression of sox3 expression, but Fgf signaling then protects

sox3 from this repression in dorsal and marginal regions (as shown by

the fact that sox3 expression is broadly lost when Fgf signaling is

inhibited) [7].

Context Dependent Actions of Sox3
Although every gene target we have analyzed in the mesoderm

and organizer is repressed by Sox3, this is not true in other

embryonic contexts. Once neural induction occurs, a process in

which Sox3 also plays an active role [28], [29], Sox3 acts largely as

an activator of transcription. In this context it appears to promote

the neural stem cell state and inhibit differentiation primarily

through maintaining the expression of stem cell related genes [30].

However, some data suggest that SoxB1 factors also directly

repress gene expression, even at this stage of development [31],

[32]. This therefore raises the question of how these alternative

modes of action, repressing some gene targets and activating

others, might be achieved. One mechanism by which these actions

could be regulated is by the cell-context availability of cofactors. A

variety of cofactors are known that can alter the activity of

transcription factors between activator and repressor functions.

One class of protein co-repressors is the Groucho family. For

example, interaction between the Sox-like HMG factor, Tcf, and

Grouchos leads it to repress its targets, while binding to ß-catenin

releases Tcf from this interaction such that it activates its target

genes [33], [34], [35]. Sox3 also interacts with members of the

Groucho family (our unpublished data) providing one mechanism

by which its activity may be switched. Whichever cofactor type it

uses, the data we have presented in this study may be in part

explained by a change in the presence of cofactors at different

stages of development or in different regions of the embryo, with

corepressors present during organizer formation, and co-activators

present during neural induction. However, the action of the SoxB1

factors also appears to be controlled by the gene target with which

they associate. This is particularly evident from the effects we see

when overexpressing the HMG-enR or HMG-VP16 constructs.

The HMG-enR construct represses the genes that are repressed by

the WT Sox3, but the HMG-VP16 construct has no effect upon

these genes. Conversely, the HMG-VP16 construct activates the

genes activated by Sox3 at later stages, but the HMG-enR

construct has no effect upon these (our unpublished data). Thus,

whether these constructs are able to activate or repress a gene is

determined, at least in part, by the target gene in question. We do

not, at this stage, know what the mechanism of this effect may be,

but we would suggest that it is mediated via the recruitment of key,

DNA sequence-dependent co-activators or co-repressors or even

at the level of DNA/chromatin structure.

It is noteworthy that, while in many previous studies enR and

VP16 fusion constructs have been able to exert their reciprocal

effects on the same genes, a similar effect to that described here (in

which genes were only affected by either the enR or the VP16

construct) was seen for the transcription factor, FoxD5, in Xenopus

[36]. This implies that the sequence dependence of these opposite

transcriptional activities may be a more general phenomenon, not

restricted to the SoxB1 proteins.

Overall, this study adds new depth to our understanding of the

complex interaction of signals and transcription factors that ensure

that one of the earliest and most fundamental patterning events of

vertebrate development occurs at the correct time and in the

correct place.

Materials and Methods

RNA Injection
Embryos obtained from natural crosses were maintained at

28.5uC and staged according to hours postfertilization (hpf) and

morphological criteria [37]. All capped sense mRNAs for

microinjection were synthesized from linearized cDNA template

and purified using the mMessage-Machine Kit (Ambion, Life

technologies, Paisley, UK). Embryos were injected with 50–200 pg

of RNA at the 1–2 cell stage. The dominant negative form of

FGFR-1, XFD, and D50 as a negative control were a kind gift
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from Professor Enrique Amaya; mkp3 was a kind gift from Dr. Igor

B. Dawid.

Morpholino Injection
Antisense morpholino oligonucleotides (MOs) were designed to

target the 59 region of sqt [3], fgf3 [38] and fgf8 [39] from Gene

Tools (Philomath, OR, USA). Embryos were injected with 5–

10 ng MO in 0.5 nl water at the 1–2 cell stage.

SU5402 Treatment
3-[(3-(2-carboxvethyl)-4-methylpyrrol-2-yl) methylene]-2-indoli-

none (SU5402) (Calbiochem, Nottingham, UK) was used at a final

concentration of 84 mM in fish water containing methyl blue.

Embryos were treated with SU5402 from 2.5 hpf before (zygotic

gene expression was initiated) until the required stage of collection.

As a negative control, embryos were treated with an equivalent

concentration of DMSO.

Whole-mount in situ Hybridisation
Whole-mount in situ hybridisation was carried out as previously

described [40] using labelled riboprobes. Labelled riboprobes were

transcribed from linearised templates using T3, T7 or SP6 RNA

polymerase (Promega, Madison WI, USA) in the presence of DIG-

labelled or fluorescein-labelled nucleotides (Roche, Basel, Swit-

zerland). Antibodies were detected using BM purple, BCIP

(Roche, Basel, Switzerland) or Fast-Red (Sigma, St-Louis,

Missouri, USA). For double in situ hybridisation, following

hybridisation with a combination of two riboprobes labelled with

DIG and fluorescein, sequential detection was carried out with

AP-conjugated antibodies. The enzymic activity was blocked

between detection of the DIG and the fluorescein 0.1 M glycine-

hydrochloride, pH 2.2, 0.1% Tween 20. The two rounds of

antibody/colour detection used combinations of BM purple with

either or BCIP alone (Roche, Basel, Switzerland) or Fast-Red

(Sigma, St-Louis, Missouri, USA).

ChIP-PCR
Embryos at the 1–2 cell stage were injected with RNA and

collected at 4.5 hpf. Dechorionated embryos were fixed in 1.85%

formaldehyde. After quenching with 2.5 M glycine, embryos were

washed and then lysed in 10 mM Tris-HCl pH 7.4, 10 mM NaCl,

0.5% NP40. Nuclei were pelleted in a microcentrifuge at 1000 g

for 5 minutes and resuspended in 50 mM Tris-HCl pH 7.4,

10 mM EDTA, 1% SDS. Two volumes of IP dilution buffer

(16.7 mM Tris-HCl pH 7.4, 167 mM NaCl, 1.2 mM EDTA,

1.1% Triton X-100, 0.01% SDS) were added and samples

sonicated and then centrifuged at 14,000 g for 10 minutes.

Supernatant was incubated with HA beads (HA agarose, A-2095,

Sigma) at 4uC overnight. Beads were washed eight times with wash

buffer (50 mM Hepes pH 7.6, 1 mM EDTA, 0.7% sodium

deoxycholate, 1% NP40, 0.5 M LiCl) and once with 1xTBS

[50 mM Tris-HCl (pH 7.4), 150 mM NaCl] and the DNA-protein

complex was eluted in 50 mM Tris-HCl pH 8, 10 mM EDTA,

1% SDS at 65uC overnight. After treatment with proteinase K at

55uC for 2 hours, DNA was precipitated in ethanol. Real-time

PCR was carried out using MX3005P MX-PRO (Stratagene,

cedar creek, Texas, USA) and Brilliant SYBR Green Master Mix

Kit (Stratagene, cedar creek, Texas, USA) with the following

primers (59 to 39): tubb5-F CCCAATTTTAAAACACGCCTA,

tubb5-R CGGATGAGG ACGATTTAACC, fgf3-1F CCGA-

CATGCATCTTCTCTCA, fgf3-1R CCCACGAGGTTTTCAA-

TAGC, fgf3-2F CCGAAGAGATTTTGGTGCTT, fgf3-2R

CAGGCCCTCAGATCACTAGC, fgf3-3F TTTGCGCTAGT-

GATCTGAGG, fgf3-3R TCAAACCAACCTGAGGTAATGA,

fgf3-4F TTGGGAGGACAGTGGATTTC, fgf3-4R AATCG-

CAAGATTCGGACAAT, fgf3-5F GGA-

TAGGGCTTTCCTTTTGG, fgf3-5R CCTGCATG-

GAGCTGTGTAAA.

Bioinformatic Analyses
Vertebrate FGF3 orthologues were identified using the EN-

SEMBL database (www.ensembl.org). Nucleotide sequences

containing the coding and 59 regions for each gene were

downloaded and conserved regions identified using PipMaker

[13]. Highly conserved regions upstream of the FGF3 coding

region were then aligned using ClustalW2 (www.ebi.ac.uk).

Supporting Information

Figure S1 Endogenous expression of (A) fgf3 and (B) fgf8
first could first be detected in the organizer region at
4.5 hpf during early zebrafish development. Lateral view

and dorsal is to the right in upper panels, viewed from animal pole

in lower panels.

(TIF)

Figure S2 dnSox3 and wild-type Sox3 counteract each-
other’s effects on fgf8 expression. Injection of RNA

encoding wild-type Sox3, Sox19a or Sox19b at the 1–2 cell stage

caused disruption of endogenous fgf8 expression (gaps in

expression, arrow heads in upper panels, brackets in lower panels)

(Aa–d). Injected of dnSox3 RNA at the 1–2 cell stage caused

ectopic expression (arrow) and expansion of the endogenous

domain of fgf8 expression (Ae), but this was rescued by co-injecting

RNA encoding wild-type Sox3, Sox19a or Sox19b with the

majority of embryos reverting to fgf8 expression equivalent to that

seen in uninjected embryos (Af–h). (B) Graphical representation of

the numbers of embryos affected in these experiments. Lateral

view and dorsal is to the right in upper panels, viewed from animal

pole in lower panels. The proportion of embryos exhibiting these

phenotypes is shown at the bottom right of each panel.

(TIF)

Figure S3 Aligment of genomic regions upstream of fgf3
across diverse species. Left panel shows PIP plot of the region

upstream of fgf3, distances marked as kb (k). fgf3 gene shown as

‘underlay’ in yellow with coding regions in blue, UTRs in orange

and introns in yellow. Green bars show regions with .50%

identity to the zebrafish sequence, red bars indicate regions with

.75% identity to the zebrafish sequence. Right panel is a detailed

PIP plot showing fgf3 gene in yellow with exons in blue. Top line

shows repeat elements as arrow heads and open boxes, exons are

numbered boxes and the orientation of the gene by an arrow. Dots

represent regions showing similarity to zebrafish, the height of the

dots within each bar indicate the % nucleotide identity.

Numbering relates to the zebrafish genome relative to the fgf3

transcription start site at position 28694.

(JPG)

Figure S4 Clustal alignments of genomic regions up-
stream of fgf3 across diverse species. (A–D as described in

Fig. 2). Sox binding consensus sequences in gray boxes. Stars show

bases entirely conserved in species shown. Numbering relates to

the zebrafish genome relative to the fgf3 transcription start site at

position 28694.

(DOCX)

Figure S5 Single morpholinos targeting fgf3 or fgf8 have
limited inhibitory effects on the expression of chd and
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gsc. Injection of an fgf3MO (5 ng) at the 1–2 cell stage caused a

substantial, but incomplete, reduction in the domain of expression

of chd and gsc at 4.5 hpf (A–D). Injection of an fgf8MO (5 ng) at the

1–2 cell stage caused a significant, but lesser, inhibition of chd and

gsc expression (E,F). Lateral view and dorsal is to the right in upper

panels, viewed from animal pole in lower panels. The proportion

of embryos exhibiting these phenotypes is shown at the bottom

right of each panel.

(TIF)

Figure S6 When Sox3 is coinjected with FGF3 or Gsc,
gaps in ectopically-induced Chd expression coincide
with the region of highest sox3 expression. Embryos were

injected with 50 pg of sox3 plus 50 pg of either fgf3 RNA (A,B) or

gsc RNA (C,D) and analysed for chd expression (blue/purple) at

4.5 hpf. Sox3 and gsc protein was detected by virtue of the HA

tags they carried, using a brown peroxidase substrate. In each case

the predominant region of sox3 overexpression corresponded with

a gap in the region of ectopically-induced chd expression although

there was often some overlap where deeper chd-expressing cells

appeared to be overlaid by weaker sox3 overexpressing cells nearer

the surface. Viewed from animal pole.

(TIF)

Figure S7 Sox3 overexpression is able to inhibit the
ectopic expression of chd induced by a range and
combination of upstream factors. Embryos were injected

with 50 pg of various RNAs (indicated above each panel) alone or

combination and analysed for chd expression at 4.5 hpf (A).

Injection of boz, fgf3, or boz combined with fgf3, caused expansion

of chd expression into the animal hemisphere of embryos (Ab–d).

Injection of the additional up-stream factors, S37A (constitutive

active ß-catenin) and sqt strongly induced expansion of chd

throughout the entire animal hemisphere (Ae). However, co-

injected with sox3 (B) led to reduced expansion or negative patches

in the expansion of chd expression no matter which other factors

were injected. Although the combination of all factors still gave

strongest extopic expression, co-injection of sox3 was still able to

generate chd negative patches (Be). Lateral view and dorsal is to

the right in upper panels, viewed from animal pole in lower panels.

The proportion of embryos exhibiting these phenotypes is shown

at the bottom right of each panel.

(TIF)

Figure S8 Sox3 overexpression is able to inhibit the
ectopic expression of gsc induced by a range and
combination of upstream factors. Embryos were injected

with 50 pg of various RNAs (indicated above each panel) alone or

combination and analysed for gsc (A) expression at 4.5 hpf.

Injection of boz, fgf3, or boz combined with fgf3, caused expansion

of gsc expression into the animal hemisphere of embryos (Ab–d).

Injection of the additional up-stream factors, S37A (constitutive

active b-catenin) and sqt strongly induced expansion of gsc

throughout the entire animal hemisphere (Ae). However, co-

injection with sox3 (B) reduced the expansion of expression of gsc

expression or generated negative patches in the expansion of gsc

expression no matter which other factors were injected. Although

the combination of all factors still gave strongest ectopic

expression, co-injection of sox3 was still able to generate gsc

negative patches (Be). Lateral view and dorsal is to the right in

upper panels, viewed from animal pole in lower panels. The

proportion of embryos exhibiting these phenotypes is shown at the

bottom right of each panel.

(TIF)

Figure S9 Overexpression of Fgf3 can rescue the loss of
gsc and chd expression following knockdown of Sqt.
Embryos were injected with fgf3 RNA (50 pg) or sqtMO (10 ng) or

a combination of both and analysed for chd and gsc expression at

4.5 hpf. Endogenous expression of chd and gsc (A,E) was expanded

into the animal hemisphere of embryos by injection of fgf3 at 1–2

cell stage (B,F). Injection of sqtMO at the 1–2 cell stage caused

partial repression of chd expression (C) and complete loss of gsc

expression (G). These inhibitory effects of the sqtMO could be

rescued by co-injection of fgf3 RNA (D,H). Lateral view and dorsal

is to the right in upper panels, viewed from animal pole in lower

panels. The proportion of embryos exhibiting these phenotypes is

shown at the bottom right of each panel.

(TIF)

Figure S10 Expression of sox3, but not sox19a or
sox19b, becomes Fgf-dependent between 60 and 70%
epiboly. Embryos were treated with 84 mM SU5402 or DMSO

alone from 3 hpf (the time that zygotic expression begins) and the

expression of sox3 (A) sox19a (B) or sox19b (C) genes was analyzed

at 30%, 60% and 70% epiboly. The expression patterns of sox3/

19a/19b in embryos treated with SU5402 were the same as

DMSO treated embryos at both 30% and 60% epiboly stage. At

70% epiboly, only sox3 expression was affected by SU5402, when

it was strongly inhibited in embryos treated with SU5402. Lateral

view and dorsal is to the right in upper panels, viewed from animal

pole in lower panels. The proportion of embryos exhibiting these

phenotypes is shown at the bottom right of each panel.

(TIF)

Figure S11 Over-expression of Fgf3 does not affect
sox3/19a/19b expression. Embryos injected with 50 pg fgf3

mRNA at the 1–2 cell stage and the expression of sox3 (A) sox19a

(B) or sox19b (C) was analysed at 30%, 60% and 70% epiboly. At

no stage did injection of fgf3 RNA have any effect upon soxB1 gene

expression. Lateral view and dorsal is to the right in upper panels,

viewed from animal pole in lower panels. The proportion of

embryos exhibiting these phenotypes is shown at the bottom right

of each panel.

(TIF)
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