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SUMMARY
A major hurdle for in vitro culturing of primary endothelial cells (ECs) is that they readily dedifferentiate, hampering their use for ther-

apeutic applications. Human embryonic stem cells (hESCs) may provide an unlimited cell source; however, most current protocols

deriving endothelial progenitor cells (EPCs) from hESCs use direct differentiation approaches albeit on undefined matrices, yet final

yields are insufficient. We developed a method to culture monolayer hESCs on stem cell niche laminin (LN) LN511 or LN521 matrix.

Here, we report a chemically defined, xeno-free protocol for differentiation of hESCs to EPCs using LN521 as the main culture substrate.

We were able to generate �95% functional EPCs defined as VEGFR2+CD34+CD31+VE-Cadherin+. RNA-sequencing analyses of hESCs,

EPCs, and primary human umbilical vein endothelial cells showed differentiation-related EC expression signatures, regarding basement

membrane composition, cell-matrix interactions, and changes in endothelial lineage markers. Our results may facilitate production of

stable ECs for the treatment of vascular diseases and in vitro cell modeling.
INTRODUCTION

Human pluripotent stem cells (hPSCs) have the ability

to proliferate indefinitely and the potential to differen-

tiate into any somatic cell type in the human body

(Takahashi et al., 2007; Thomson et al., 1998). They can

be a great resource for the development of cell

transfer-based therapy of diseases and injuries, such as

myocardial infarction and heart failure (reviewed in San-

ganalmath and Bolli, 2013), Parkinson’s disease (Kriks

et al., 2011), and hepatic injury (Woo et al., 2012). In

addition, many in vitro models mimicking human sys-

tems, such as the blood-brain barrier or glomerular filtra-

tion barrier, would require a large quantity of cells with

stable phenotypes for testing novel drugs and to under-

stand their mechanisms of action (Kinney et al., 2014).

In this regard, hPSC-derived cells are a preferable source

for cell therapies compared with primary cells isolated

directly from human tissues, as they readily dedifferen-

tiate and senesce in vitro. It is, therefore, of utmost impor-

tance to develop chemically defined, xeno-free, and

reproducible strategies for directing differentiation of

hPSCs to various somatic cell lineages with a high yield

of pure populations.

As methods for derivation and expansion of hPSCs have

largely become established, there has been a growing inter-

est in the development of differentiation protocols to

generate endothelial cell lineages that could beused for clin-

ical applications, such as engineered blood vessels (Wang

et al., 2007), vascular graft coatings (Campagnolo et al.,
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2015), or co-implantation with cardiomyocytes to treat

myocardial infarction (Sahara et al., 2014). As far as human

cell therapy applications are concerned, it is important to

generate such cells in defined and xeno-free conditions.

The three most common methods used to differentiate

hPSCs into endothelial lineage involve the formation of

embryoid bodies (Adams et al., 2013; Goldman et al.,

2009), irradiated mouse embryonic fibroblasts (MEFs) or

human foreskin fibroblast feeder cells (Sahara et al., 2014;

Wang et al., 2007), and mouse tumor-derived Matrigel as

a supporting matrix for maintenance and differentiation

(Lian et al., 2014; Patsch et al., 2015). Embryoid bodies

exhibit heterogeneous patterns of differentiated cell line-

ages and their viability is influenced by size, resulting in a

slow and inconsistent differentiation process (Van Winkle

et al., 2012). Importantly,maintenanceofhPSCsdissociated

from embryoid bodies often requires Rho-associated kinase

(ROCK) inhibitor to minimize apoptosis (Watanabe et al.,

2007). This may potentially enrich for tumorigenic cells

and, thus, limit their applications in human therapies. In

contrast, the maintenance and differentiation of hPSCs

in homogeneous monolayer cultures can overcome draw-

backs of the embryoid body system. Nevertheless, culturing

hPSCs on the Matrigel matrix, MEFs, or human feeder cells

introduces xeno-products and undefined substances. In

addition, such systems are prone to batch-to-batch differ-

ences and lack of consistency among differentiation

protocols.

Our laboratory, together with others, has developed

methods that are void of animal components and
uthors.
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completely chemically defined for human embryonic stem

cell (hESC) derivation, expansion, and maintenance of

their self-renewal capacity (Melkoumian et al., 2010; Rodin

et al., 2010, 2014a). We have demonstrated that stem cell

niche-specific human laminin (LN) LN511 or LN521 sub-

stratum can support pluripotency of hESCs in the absence

of ROCK inhibitor (Rodin et al., 2010). Importantly, a com-

bination matrix of LN521 and E-Cadherin fully supports

clonal derivation and clonal survival of hESCs (Rodin

et al., 2014b). Here, we have explored whether such a sys-

tem could be applied to the generation of endothelial cell

lineage from hESCs.

Immediately beneath all endothelia is a specialized base-

ment membrane (BM) matrix that contains highly tissue-

and cell-type-specific trimeric isoforms of laminins that

significantly influence cell behaviors, such as cell adhesion,

differentiation, and phenotype stability. Each laminin

molecule comprises three chains, a, b, and g, that exist in

five, four, and three genetically distinct forms, respectively

(Domogatskaya et al., 2012). The laminin isoforms are

named after the chain composition (e.g., LN521 consists

of a5, b2, and g1 chains). In mammalian tissues there exist

at least 16 laminin isoforms with various degrees of cell

specificity. For example, LN511 and LN521 are dominant

in embryonic BM and the inner cell mass of the blastocyst

(Miner et al., 1998), while LN111 (the Matrigel isoform)

is mainly present in Reichert’s membrane (Klaffky et al.,

2001). Indeed, we have previously shown that human re-

combinant LN511 or LN521 alone can support long-term

self-renewal of mouse ESCs (Domogatskaya et al., 2008)

and hESCs in completely defined and xeno-free culture

conditions (Rodin et al., 2010, 2014a). In subendothelial

BM ofmost vessels, the laminins contain a4 and a5 chains,

with a4 being expressed in various vessel types indepen-

dent of developmental stages, while a5, a ubiquitous lami-

nin chain, is expressed in placental vasculature and most

capillary BM postnatally (Sorokin et al., 1997). We have

shown that mice lacking the a4 chain exhibit hemorrhages

during embryonic and neonatal stages as well as impaired

microvessel maturation (Thyboll et al., 2002). These mice

exhibited excessive filopodia and tip cell formation in the

retina, indicating that a4 chain plays a crucial role in regu-

lating tip cell numbers and vascular density (Stenzel et al.,

2011). On the other hand, deletion of the a5 chain gene

causes embryonic lethality at the later stage, possibly due

to placental dysfunction (Miner et al., 1998). This empha-

sizes the critical developmental roles of laminin chains

during embryogenesis and the maintenance of structural

integrity in adult tissues.

In this study, we have developed a three-step protocol to

differentiate hESCs to endothelial progenitor cells (EPCs)

using human recombinant laminins that are biologically

relevant (LN521, LN511, and LN421) to mimic the in vivo
endothelial substrata. First, vascular cell lineages emerge

from mesoderm during embryogenesis (Huber et al.,

2004). The next phase directs these mesoderm-committed

cells toward the endothelial lineage (CD34+vascular

endothelial growth factor receptor [VEGFR2]+CD31+VE-

Cadherin+) (Sahara et al., 2014). At the last stage, to

obtain a pure population of ECs, a CD31+ population

is purified using CD31-coupled magnetic beads. With

this three-step protocol, we were able to obtain a

95% CD34+VEGFR2+CD31+VE-Cadherin+ population after

15 days. Using RNA-sequencing (RNA-seq) technology, we

compared transcriptomes of our hESC-derived EPCs with

that of human umbilical vein endothelial cells (HUVECs),

which are fully mature and the most commonly used hu-

man primary ECs. The results confirmed expression of

markers in the early endothelial lineage, as well as the pres-

ence of some mature markers. In short, our differentiation

protocol allows efficient generation of pure EPCs in a

chemically defined and xeno-free system, which can be

applicable for therapeutic purposes as well as modeling hu-

man diseases.
RESULTS

Step 1: Mesoderm Induction

We have previously reported that human recombinant

LN511 or LN521 alone can support monolayer culture

and self-renewal of hESCs (Rodin et al., 2010, 2014a). In

the present study, hESCs were seeded onto LN521- or

LN511-coated plates 2–3 days prior to the start of differen-

tiation (day 0) (Figure 1). Cells collected on day 0were char-

acterized and their pluripotency confirmed by high mRNA

expression of NANOG (Figure 2), 99% Oct3/4+, and 100%

TRA-1-60+ and weak expression of VEGFR2 in total cell

population (Figure 3A), as reported previously (Sahara

et al., 2014). During embryogenesis, endothelial progeni-

tors are derived from a subpopulation of mesoderm (Huber

et al., 2004). Several studies have emphasized critical roles

of bone morphogenetic protein 4 (BMP4), Activin/Nodal,

andWnt signaling activation via glycogen synthase kinase

3 (GSK3) inhibition in directing hESCs toward the meso-

dermal lineage (Goldman et al., 2009; Lian et al., 2014;

Patsch et al., 2015; Sahara et al., 2014; Sumi et al., 2008).

When the cultures reached 40%–50% confluency (Fig-

ure 1A), NutriStem was replaced by mesoderm induction

medium containing 20 ng/mL BMP4, 10 ng/mL activin

A, and 6 mM GSK3b-specific inhibitor CHIR99021. These

concentrations were previously optimized to derive ECs

from hESCs (James et al., 2010; Lian et al., 2014; Patsch

et al., 2015; Sahara et al., 2014). Indeed, after 3 days

of mesoderm induction, we observed a drastic change in

cell morphology (Figure 1B) and the peak expression of
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Seeding 25,000 cells/cm2

onto laminin-coated plates 
in NutriStem

 -2 0 

Mesoderm induction: 
Activin A 10 ng/ml 
BMP4 20 ng/ml 
CHIR99021 6 μM

3 Day 

Vascular specification: 
VEGF 50 ng/ml 
bFGF 10 ng/ml 
BMP4 20 ng/ml 
DAPT 10 μM

7 

Endothelial amplification: 
VEGF 50 ng/ml 
bFGF 10 ng/ml 
SB431542 10 μM

11 15 

Protocol I: 

Purification using 

CD31-coupled 

magnetic beads 

Protocol II: 

Purification using 

CD31-coupled 

magnetic beads 

A B C D E 

Figure 1. Differentiation Protocol
(A) hESCs (H1) were seeded on LN521- or LN511-coated plates. Differentiation started on day 0.
(B) Phase 1 (from day 0 to day 3) directed hESCs into mesodermal lineage.
(C) Phase 2 (from day 3 to day 7) induced vascular specification. CD31+ population was purified by MACS beads on day 7 (protocol I) or day
11 (protocol II), and plated onto new LN521- or LN511-coated plates (with and without LN421).
(D) Cell morphology on day 11 of differentiation without purification (phase 3).
(E) Cells were purified on day 7 and continued to expand until day 11 (protocol I). For both protocols, cells were harvested for analysis
4 days after purification (day 11 and day 15, respectively).
Scale bars, 100 mm. See also Figure S1.
MIXL1 (Figure 2), a transcription factor expressed during

mesodermal development. Similar cell morphological

changes were observed with HS1001 and HS983A hESC

lines (Figure S1).

Step 2: Vascular Specification

To drive these mesoderm-committed cells toward the

endothelial lineage, we switched to vascular specification

medium on day 3. Sahara et al. (2014) reported that the

combination of Notch signaling inhibitor DAPT and

VEGF promoted efficient generation of EPCs, defined as

VEGFR2highVE-Cadherin+CD34+CD14�. The presence of

BMP4 throughout this stage also facilitated the generation

of immature ECs (Goldman et al., 2009), while basic fibro-

blast growth factor (bFGF) was reported to be necessary dur-

ing vascular specification and endothelial amplification

stages (James et al., 2010). After 2 days of incubation in

vascular specificationmedium (day 5), we observed a signif-

icant increase inKDR (encodingVEGFR2)mRNAexpression

versus day 3 (p < 0.001, Figure 2). On day 7, KDR mRNA

expression increased further together with significant in-

creases inCD34 andCDH5 (encoding VE-Cadherin) expres-

sion, compared with day 3 (p < 0.0001, p < 0.05, and p <

0.05, respectively; Figure 2), suggesting that the majority

of the culture contained endothelial progenitors. Flow cy-

tometry analyses of hESC-derived cells collected on day 7

showed 74% CD34+, 82% VEGFR2+, 76% CD31+, 76% VE-

Cadherin+, and overall 62% VEGFR2+CD31+VE-Cadherin+
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in the total cell population (Figure 3B), indicating that there

was a significant populationofCD31-expressing cells at this

time point with relatively low mRNA expression.

Step 3: Endothelial Amplification

From day 7 on, hESC-derived cells were maintained in

endothelial amplification medium, containing SB431542,

an inhibitor of transforming growth factor b (TGF-b)

signaling, together with VEGF and bFGF. TGF-b inhibition

has been suggested to maintain the vascular-committed

state following specification and to prevent the loss of

endothelial identity, thus promoting the expansion of

pure populations of hESC-derived ECs (James et al.,

2010). To obtain a pure population of ECs and remove

cell clumps (Figures 1C and 1D), we tested two different

protocols: purification of CD31+ cells on day 7

(protocol I) and on day 11 (protocol II). As suggested

from themRNA expression profile, cells on day 11 (without

purification) expressed significantly higher EC markers

PECAM1 (encoding CD31) and CDH5 mRNA levels,

compared with day 7 (p < 0.0001 and p < 0.01, respectively;

Figure 2). Therefore, we purified cells at these two time

points to compare the final yields between purified cultures

from endothelial progenitors (protocol I) and from more

mature cells (protocol II). Four days after purification,

4.25 EPCs from protocol I and 5.03 EPCs from protocol

II were generated from every one hESC plated. To

study the role of laminin a4 subunit in maintaining the
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Figure 2. Gene Expression during Differ-
entiation
Gene expression of pluripotency marker
(NANOG), mesoderm marker (MIXL1), and
endothelial lineage markers (CD34, KDR,
PECAM1, and CDH5) was analyzed on days 0,
3, 5, 7, 9, and 11 without purification,
normalized to GAPDH. Means ± SEM; each
dot represents one independent differenti-
ation batch (n = 4–7). *p < 0.05.
phenotypes of the derived EPCs, we plated CD31+-purified

cells on LN521 (or LN511) with or without LN421 substrata

in both protocols. Figure 3A demonstrated typical fluores-

cence-activated cell sorting (FACS) analysis data on

comparing protocol I (LN521 and LN521/421) with proto-

col II (LN521 and LN521/421). Figure 3B summarizes final

yields of each protocol by FACS analyses. The VEGFR2+

population was reduced significantly after 4 days in endo-

thelial amplification medium (days 7 through 11, without

purification), suggesting the maturation progress in endo-

thelial lineage. We did not observe significant differences

in CD31+ or VE-Cadherin+ populations by FACS between

days 7 and 11 even though their mRNA levels were

increased during endothelial amplification, also indicating

the progression toward maturity of hESC-derived cells in

our cultures.

Both purification protocols have significantly improved

the final yield of EPCs. Specifically, in protocol I, on both

LN521 and LN521/421, we have consistently obtained
97% VEGFR2+, 95% CD34+, 96% CD31+, and 95% VE-

Cadherin+ populations, whereby 94% of the final culture

was triple-positive for VEGFR2, CD31, and VE-Cadherin

(Figures 3A and 3B). In protocol II, 4 days after purification,

the hESC-derived cultures contained 94% CD34+, 95%

CD31+, and 93% VE-Cadherin+ populations, without any

significant differences compared with those in protocol I.

Interestingly, the VEGFR2+ population decreased to 86%

(on LN521) and 88% (on LN521/421). As a result, the tri-

ple-positive populations of VEGFR2, CD31, and VE-Cad-

herin were 84% (on LN521) and 87% (on LN521/421).

One-way ANOVA analysis revealed a significantly lower

VEGFR2+ population in protocol II compared with proto-

col I on LN521 alone; in consequence, the VEGFR2+CD31+

VE-Cadherin+ population from protocol II was also lower

than that from protocol I. However, with the addition of

LN421 in the coating substrata, the differences in VEGFR2+

and VEGFR2+CD31+VE-Cadherin+ populations were not

significant between the two protocols. The lower yield of
Stem Cell Reports j Vol. 7 j 802–816 j October 11, 2016 805



VEGFR2+ population in protocol II could again be attrib-

uted to the maturity of EPCs when cells were cultured for

4 more days before purification. Overall, with either proto-

col, we were able to achieve almost pure populations of

EPCs that highly expressed endothelial lineage markers

VEGFR2, CD31, and VE-Cadherin. Similar results were ob-

tained with HS1001 and HS983A cell lines (Figure S2).

To confirm the cellular localization of CD31, we per-

formed immunofluorescence analysis at the endpoints of

both protocols (Figure 4). We observed similar membrane

localization of CD31 and of VE-Cadherin on either

LN521 or LN521/421 in the entire cultures, regardless of

whether protocol I or II was used for EPC purification.

We also obtained a 98% culture of EPCs when using

LN511 and LN511/421 as coating substrates (Figure S3).

However, we did not observe significant differences

in VEGFR2+ or VEGFR2+CD31+VE-Cadherin+ populations

between protocols on either substrate. As both LN521

and LN511 have been shown to support long-term self-

renewal of hESCs, we suggested that LN511 could be used

as an alternative coating substrate.

Functional Analyses of hESC-Derived EPCs

One of the hallmarks of ECs is their ability to take up acet-

ylated low-density lipoprotein (AcLDL) via the ‘‘scavenger

cell pathway’’ of LDL metabolism (Voyta et al., 1984). At

the endpoints of each protocol, we incubated our endothe-

lial cultures with 1 mg/mL AcLDL conjugated with DiI dye.

After incubation, cells were either harvested for FACS anal-

ysis or visualized by fluorescence microscopy (Figure 5). In

protocol I, 96% of EPCs in both LN521 and LN521/421 cul-

tures were positive for DiIAcLDL, while 94% were positive

from protocol II, suggesting our cultures consisted of

nearly homogeneous EPCs. The presence of perinuclear

fluorescent puncta also confirmed that cells had taken up

the red dye. Similar results were seen when EPCs were

derived from HS1001 and HS983A lines (Figure S4) and

from H1 cultured on LN511 (Figure S5).

We then carried out a tube formation assay on Matrigel

(protocol adapted from Patsch et al., 2015) to determine

the angiogenic potential of our hESC-derived cells. We

observed tube-like structures 4 days after plating purified

EPCs at a low density. Figure 5 shows typical tube forma-

tion observed when replating EPCs in protocol I onto

LN521. To assess the viability of the cells in this assay, we

added calcein-AM dye to the culture and were able to

detect strong green fluorescent signals emanating from

the vascular network-like structures.

Gene Expression Profiles of hESC-Derived EPCs

We did not observe significant differences in VEGFR2,

CD31, and VE-Cadherin protein expression via FACS

analyses, CD31 membrane localization, or AcLDL uptake
806 Stem Cell Reports j Vol. 7 j 802–816 j October 11, 2016
when purified cells were replated onto LN521/421,

compared with LN521 alone (Figures 3, 4, and 5). There-

fore, we focused on characterizing EPCs derived from either

protocol on LN521 alone, with references to hESCs and

fully mature HUVECs that were also cultured on LN521.

To identify global transcriptomic changes across these cell

states, we carried out RNA-seq analysis and analyzed the

transcriptome abundance data for the enrichment of bio-

logical processes in different cell types, compared with

hESCs. Principal component analysis, based on the overall

transcriptome signatures from expressed genes (fragments

per kilobase of exon per million reads [FPKM] >5 in at least

one sample), revealed 63.7% of the total expression

variability in the first principal component due to the sep-

aration of hESCs from the other cell types. The second

principal component explained 31.3% of the variability

originating from the separation of EPCs samples from the

mature HUVECs (Figure 6A). We next performed gene set

enrichment analysis (GSEA) on the transcriptomic data

to identify biological pathways that are enriched for up-

and downregulated genes in EPC and HUVEC samples,

compared with hESCs. Using the KEGG and Gene

Ontology Biological Process (GOBP) pathway repositories,

we identified several biological mechanisms that were

significantly altered at a false discovery rate (FDR) of <5%

(data not shown). From this list, a selection of key KEGG

and GOBP pathways related to extracellular matrix (ECM)

biology and endothelial lineage was further investigated

to identify the pattern of changes in their constituent genes

across hESC, EPC, and HUVEC samples. Specifically, from

their gene-level expression patterns via heatmaps, we high-

lighted changes in the GOBP pathways ‘‘wound healing’’

and ‘‘vasculature development,’’ and in the KEGG path-

ways ‘‘JAK-STAT signaling’’ and ‘‘ECM-receptor interac-

tions’’ (Figure 6B). For each of these pathways, we observed

subsets of genes that displayed cell-stage-specific maximal

expression, suggesting that different segments of the

pathways were operative at different points of cellular dif-

ferentiation. For example, considering the ‘‘ECM-receptor

interactions’’ pathway, we identified a subset of genes

that show lowest expression in the hESC state and highest

expression in the HUVECs (e.g., ITGA2, VWF,HSPG2, etc.).

Another set of genes in the same pathway showed highest

levels of expression in hESCs and most reduced expression

in the HUVECs (e.g., ITGA7, SPP1, COL1A2, etc.). A third

category of genes showed maximal expression in EPC

samples compared with both hESCs and HUVECs (e.g.,

COL4A1, COL4A2, ITGA4, etc.).

These findings are further elaborated in the gene-level

plots (Figures 6C–6E). Here, we extracted relevant genes

within each pathway and plotted their expression profiles

(in normalized FPKM) on the same scale. First, we exam-

ined the expression of some major ECM genes during
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Figure 4. Immunofluorescent Analysis of CD31 and VE-Cadherin after Purification
Cells were purified on day 7 (protocol I) and day 11 (protocol II), replated on either LN521 or LN521/421, and immunostained with anti-
CD31 and anti-VE-Cadherin antibodies. Green, CD31 or VE-Cadherin; blue, DAPI. Scale bars, 100 mm.
maturationofhESC-derivedendothelial lineage(Figure6C).

Our primaryHUVECs exhibited high expression of laminin

a4, b1, b2, and g1 chains, corresponding to LN411 and

LN421, revealing that mature ECs express high levels of

those isoforms that are specific for subendothelial BM. In

comparison, a5, b2, and g1 were the predominant laminin

chains found in the hESC-derived EPCs. HUVECs also

expressed high levels of HSPG2 (encoding Perlecan) as

well as matrix metallopeptidases MMP1 and MMP2, while

hESC-derived EPCs significantly exhibited higher levels of

collagen IV a1 and a2 subunits (COL4A1 and COL4A2)

compared with those in HUVECs.

Next, expression analysis of major receptors for ECM

proteins, e.g., integrin subunits, provided insight into

cell-matrix interactions (Figure 6D). The data demon-

strated a shift from a6b1 integrin (ITGA6, ITGB1) in hESCs

(Toya et al., 2015) to predominantly a5b1 (ITGA5) integrin

in the EPCs (Francis et al., 2002), and to a lesser extent

aVb5 (ITGAV, ITGB5), an integrin required for VEGF- or

TGF-a-induced angiogenesis (Friedlander et al., 1995).

Lastly, the expression profile of the EPCs revealed upre-

gulation of specific genes along the endothelial lineage
Figure 3. Flow Cytometry Analysis of Specific Markers during Dif
(A) hESCs were immunostained with pluripotency markers Oct3/4 and
testing. In protocol I, we obtained almost 100% pure population of
LN521/421 substrate. In protocol II, we observed a decrease in VEGFR2
maintained almost 100%. Red trace, isotype control; blue trace, posi
(B) Quantification of flow cytometry analysis of endothelial lineage m
VEGFR2+, CD31+, and VE-Cadherin+ populations. VEGFR2 expression w
Similar reduction was observed when CD31+ cells were purified usin
represents one independent differentiation batch (n = 6–10). *p < 0
See also Figures S2 and S3.
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(Figure 6E). Compared with mature HUVECs, the hESC-

derived EPCs from both protocols highly expressed early

endothelial markers, such as CD34, FLT1, KDR, and NRP1

(encoding Neuropilin 1, which together with CD31 identi-

fied a population of hESC-derived cells capable of giving

rise to stable cord-blood endothelial colony-forming

cells [Prasain et al., 2014]). The expression of some mature

endothelial markers, such as CDH5, TIE1, TEK,MCAM, and

PECAM1, was comparable between EPCs and HUVECs.

These results suggested that hESC-derived EPCs from

both protocols were still at a progenitor stage.

Maturation of hESC-Derived EPCs

To determine whether our hESC-derived EPCs had the po-

tential to reach a fully mature phenotype, we allowed cells

tomature further in endothelial amplificationmedium and

analyzed their mRNA expression profiles at 2, 3, 4, 5, and

6 weeks after purification (Figure 7). During the matura-

tion, cell numbers did not decline and were similar

in both protocols (Figure S6). We observed a decrease in

mRNA level of KDR (immature marker) and increases in

the expression of VWF and LAMA4 (encoding laminin a4
ferentiation
TRA-1-60, and endothelial lineage markers for antibody specificity
EPCs (CD34+ and VEGFR2+CD31+VE-Cadherin+) on either LN521 or
expression 4 days later while CD31 and VE-Cadherin expression still
tive population. y axis represents percentage of maximum count.
arkers. Both protocols significantly improved the yields of CD34+,
as significantly reduced from days 7 to 11 (without purification).
g protocol I versus protocol II on LN521. Means ± SEM; each dot
.05.



Figure 5. Functional Assays
Acetylated LDL uptake: cells were purified on day 7 (A and B; protocol I) and day 11 (C and D; protocol II), replated on either LN521 or
LN521/421, and incubated with DiIAcLDL 4 days after purification. In all conditions, 93%–96% of DiIAcLDL+ population was obtained from
the culture. The uptake was confirmed by perinuclear staining of DiI dye (red). Blue, DAPI. Scale bars, 100 mm. Means ± SEM; each dot
represents one independent differentiation batch (n = 5–6). See also Figures S4 and S5.
Tube formation assay: On day 11, cells were dissociated into single-cell suspension and plated onto Matrigel. Tube-like structures were
observed 4 days later. Calcein-AM dye (green) stained live cells in the culture.
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chain) (mature endothelialmarkers) over time, comparable

with those of HUVECs. Importantly, high PECAM1 and

CDH5 expression levels were maintained over long-term

culturing. The major laminin b chain expressed by our

EPCs was b2 (LAMB2), whereas HUVECs showed a much

higher b1 mRNA level (LAMB1). Interestingly, one of the

keymatrixmetallopeptidases,MMP1, exhibited an increase

in gene expression over time to a similar extent as seen in

HUVECs, indicating a faster turnover rate once the cells

become more mature. Overall, we have demonstrated

that hESC-derived EPCs fromprotocol IIweremoremature

than those from protocol I, as evidenced by lower KDR and

higher VWF, LAMA4, andMMP1 expression levels. We also

showed that the presence of a TGF-b inhibitor allowed

hESC-derived EPCs to mature to ECs.
DISCUSSION

Our laboratory has produced multiple laminin isoforms as

recombinant proteins, and developed chemically defined

and xeno-free hESC derivation and culture systems using

biologically relevant substrata LN511 or LN521. Both of

these laminins, which are developmentally regulated, are

also present in other BMs that, additionally, may contain

other tissue-specific laminin isoforms (Domogatskaya

et al., 2012; Miner et al., 1998). The results of this study

demonstrate the possibility to produce high-quality, ho-

mogeneous cultures of EPCs from pluripotent hESCs that

are cultured on these two laminins found in all subendo-

thelial BM. Our hESC-derived cells were functionally

demonstrated by tube formation and DiIAcLDL uptake as-

says, and expressed specific markers for the endothelial

lineage and vasculogenesis.

Global transcriptome analysis shed light on the expres-

sion of genes involved in cell-cell and cell-matrix interac-

tions, as well as expression signatures during differentia-

tion toward maturity of the endothelial cell lineage

(Figure 6). The data revealed that pluripotent hESCs do

not produce high amounts of BM components, empha-

sizing the importance of providing the initial relevant sup-

porting matrix, such as LN521, for hESCs to survive and

maintain their pluripotency (Rodin et al., 2014a). hESCs,

EPCs, and mature HUVECs did not produce Fibronectin

(FN1), Fibulin-1 (FBLN1), Fibrillin-1 (FBN1), or Vitronectin

(VTN), suggesting that these proteins are not biologically

relevant coating substrata when culturing these cells

in vitro. Interestingly, the subendothelium-specific lami-

nin a4 chain did not appear until cells became fullymature.

Along the endothelial lineage, our EPCs expressed collagen

type IV as the main structural BM component, which is

likely to provide structural support, while laminin a5 chain

expression was low, possibly because it was added exoge-
810 Stem Cell Reports j Vol. 7 j 802–816 j October 11, 2016
nously. When we allowed our cells to mature further after

purification, important endothelial-specific BM markers,

such as von Willebrand factor, laminin a4 chain, and ma-

trix metallopeptidase MMP1 had an increase in mRNA

levels over the 6-week period, reaching levels similar to

those of HUVECs. Our results suggested that a switch in

ECM composition might occur alongside a faster turnover

as the cells progress towardmaturation. For example, Perle-

can was the main BM component expressed in HUVECs,

indicating that this proteoglycan bearing a high affinity

for growth factors is needed for EC proliferation during

vascular development (Zoeller et al., 2009). Both laminin

a4 chain and matrix metallopeptidases MMP1, MMP2,

and MMP14 were highly expressed, suggesting that the

main laminins LN411 and LN421 in the HUVEC BM

undergo a constant turnover.

Given that the ECM becomes more complex as ECs

differentiate, it is of particular interest to understand the

outside-in signaling that might modulate their behavior.

Similar to other cell types, ECs interact with their environ-

ment in large part via the integrin family of adhesion recep-

tors that consists of a and b subunits. The pairing of these

two subunits confers specificity of binding to one or

more ligands. ECs have been shown to express different

integrin heterodimers, including a1b1, a2b1, a3b1, a5b1,

aVb1, aVb5, a6b1, and aVb3 (reviewed in Luscinskas and

Lawler, 1994). Our analyses showed the highest expression

of b1 integrin subunit in both EPCs and mature HUVECs,

explaining its indispensable role for cell-cell junction

integrity in growing and maturing vasculature (Yamamoto

et al., 2015). Among the integrin heterodimers, a5b1 integ-

rin interacts with fibronectin to regulate early vasculogen-

esis and angiogenesis (Francis et al., 2002). Our results

suggested a5b1 integrin as a potential receptor for LN411

and LN421 as well.

Compared with other protocols developed for differenti-

ation of hPSCs to EPCs, our approach offers major advan-

tages from the point of view of both clinical and research

applications. First, it emphasizes a crucial role for specific

biologically relevant laminin isoforms at different stages

of EC differentiation and phenotype maintenance. Since

laminins are tissue specific, they are likely to play a signif-

icant role in transducing signals in cell-matrix interaction.

By differentiating hESCs on their relevant laminin mole-

cules, this approach allows the mimicking of the in vivo

cell niche. This, in turn, enables detailed analyses of cell-

type-specific molecular signal transduction pathways.

Second, without any animal products and undefined com-

ponents in the system, we can confidently provide a repro-

ducible system to generate a large amount of functional

ECs thatmay be used in regenerativemedicine for the treat-

ment of vascular diseases, myocardial infarction, heart fail-

ure, and diabetes. Lastly, the use of specific recombinant
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matrix proteins such as laminins has enabled the develop-

ment of reproducible differentiation protocols for obtain-

ing a homogeneous population of EPCs. These cells may

have the potential to mature further into particular endo-

thelia depending upon the specific cues provided by other

cell types in the microenvironment, for instance, the tight

endothelium in the blood-brain barrier or the fenestrated

endothelium in the glomerular filtration barrier. With an

unlimited source of pure EPCs, such in vitro models can

now be studied in molecular detail and are most appro-

priate for the screening of potential therapeutic drugs.
EXPERIMENTAL PROCEDURES

Differentiation Protocol
Tissue culture plates (24-well; Costar) were coated overnight at 4�C
with sterile LN521, LN511, LN521/421, and LN511/421 (1:1 ratio)

combinations at 10 mg/mL according to the manufacturer’s in-

structions (LN521 and LN421 were purchased from BioLamina,

LN511 was generated in our laboratory). hESC line H1 (WiCell

Research Institute) was cultured as monolayer on pre-coated plates

and maintained in NutriStem hESC XF medium (Biological Indus-

tries). We also tested our protocol on two other cell lines, HS1001

and HS983A, derived at the Karolinska Institute, and obtained re-

sults similar to those obtained with the H1 cell line.

Figure 1 illustrates our three-step differentiation protocol. Specif-

ically, hESCs were plated on LN521 or LN511 pre-coated 24-well

tissue culture plates at a density of 50,000–100,000 cells/well (de-

pending on the cell line) and refreshed daily with NutriStem.

The basal medium used throughout the differentiation process

consisted of DMEM/F12 medium, 13 chemically defined

lipid concentrate, 0.13 insulin-transferrin-selenium-X, 2 mM

GlutaMAX (Gibco), 450 mM mono-thio glycerol (Sigma), and

50 mg/mL L-ascorbic acid 2-phosphate (Sigma). When hESC cul-

tures reached 40%–50% confluency (after 2–3 days depending on

the cell line), on day 0 of differentiation NutriStem was replaced

with mesoderm induction medium, consisting of basal medium

supplemented with 10 ng/mL activin A, 20 ng/mL BMP4 (R&D

Systems), and 6 mM CHIR99021 (Tocris Bioscience). After 3 days,

the medium was replaced by vascular specification medium, con-

sisting of basal medium supplemented with 50 ng/mL VEGF165
(Gibco), 10 ng/mL bFGF, 20 ng/mL BMP4 (R&D Systems), and

10 mM DAPT, a Notch signaling inhibitor (Tocris Bioscience). For

protocol I, on day 7 of differentiation adherent differentiated cells

were dissociated with TrypLESelect (Gibco) and MACS purified

using a CD31 Microbead Kit according to the manufacturer’s
Figure 6. Global Transcriptome Analyses of hESCs, hESC-Derived
(A) Principal component analysis of 10,370 genes with FPKM >5 in at
component 1 and 31.13% along component 2.
(B) Detailed gene-level heatmaps for key KEGG and GOBP biological
compared with hESCs (FDR <5). Rows represent genes and columns repr
FPKM values with blue denoting a lower and red a higher expression
(C–E) Relative expression of extracellular matrix proteins (C), differen
were plotted in their respective scales. y axis represents normalized F
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instructions (Miltenyi Biotec). CD31+ cells were replated on

LN521- or LN511-coated plates (with or without LN421) at the

density of 32,500 cells/cm2 in endothelial amplification medium,

consisting of basal medium supplemented with 50 ng/mL

VEGF165, 10 ng/mL bFGF, and 10 mM SB431542, a TGF-b signaling

inhibitor (Tocris Bioscience), expanded for 4 more days, and char-

acterized on day 11. For protocol II, vascular lineage committed

cells were allowed to grow in endothelial amplification medium

until day 11, then CD31+ population was purified and hESC-

derived cells were harvested on day 15 for characterization. All

media were refreshed every other day.

HUVEC Isolation
Human umbilical cords were freshly obtained from the KK

Women’s and Children’s Hospital, Singapore, with the approval

from the Singhealth Centralized Institutional Review Board (ref.

no: CIRB Ref: 2014/323/D). The protocol to isolate and culture

HUVECs was adapted from Baudin et al. (2007). In brief, umbilical

vein was flushed with 13 PBS to remove all red blood cells and

digested with 2 mg/mL collagenase (Roche) solution for 10 min

in 37�C saline bath. Cells were detached from the cord vein,

plated onto LN521-coated plates, and cultured in M199 medium

supplemented with 1% L-GlutaMAX, 1% penicillin-streptomycin,

15 mM HEPES (Gibco), 0.135% NaHCO3 (Lonza), 30 mg/mL endo-

thelial cell growth supplement (Sigma), 10 U/mL heparin (Merck),

and 20% fetal bovine serum (Gibco). HUVECs were passaged

onto new LN521-coated plates upon confluency. In this study, we

compared the expression profiles of our hESC-derived cells with

HUVECs at passage 1 to ensure the maintenance of their pheno-

typic features.

qPCR Analysis
Total RNA from HUVECs and hESC-derived cells at different time

points was purified using an RNeasy Micro Kit (Qiagen) according

to the manufacturer’s instructions. The yield was determined by

NanoDropND-2000 spectrophotometer (NanoDrop Technologies).

For qRT-PCR analysis, cDNA was synthesized from 500 ng of total

RNA in a 20-mL reactionmixture using a TaqMan Reverse Transcrip-

tion Reagents Kit (Applied BioSystems) according to the manufac-

turer’s instructions. Real-time qRT-PCRwas performedwith synthe-

sized cDNA in assay mix containing iQ SYBR Green Super mix

(Bio-Rad) and primers for genes of interest. GAPDH was used as

the normalizing control. Primer sequences are listed in Table S1.

FACS Analysis
Cells were collected at different time points during differentiation

process and single-cell suspensions were fixed with Fixation
EPCs, and HUVECs
least one sample revealed 63.76% variability of the dataset along

pathways that are significantly upregulated in EPCs and HUVECs,
esent samples. Row z-score transformation was performed on log2 of
level compared with the average expression level.
t a and b integrin subunits (D), and endothelial lineage markers (E)
PKM values from RNA-seq.
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Figure 7. Expression Profiles of hESC-Derived Cells during Long-Term Culturing
Gene expression of EC-specific markers and BM components were analyzed 2, 3, 4, 5, and 6 weeks after purification in each protocol,
compared with those of HUVECs, normalized to GAPDH. Means ± SEM (n = 3–10 independent batches; n = 3 HUVEC lines from three separate
cords).
Reagent (mediumA; Life Technologies) for 15min at room temper-

ature, washedwith FACS buffer (0.5%BSA, 2mMEDTA in 13 PBS),

blocked with 5% goat serum in FACS buffer, immunostained with

primary antibodies in Permeabilization Reagent (medium B; Life
Technologies) for 15 min at room temperature, detected with sec-

ondary antibodies diluted in 1% goat serum in FACS buffer. For flu-

orophore-conjugated antibodies, fixed cells were incubated with

antibodies diluted in medium B and human FcR blocking reagent
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(Miltenyi Biotec, 1:50) for 30 min at room temperature. Stained

cells were resuspended in FACS buffer and subjected to FACS anal-

ysis (MACSQuant VYB,Miltenyi Biotec) to detect the expression of

specific cell-surface markers and transcription factors. Antibodies

used in this study are summarized in Table S2. CD34 was assessed

via single stainingwhile VEGFR2, CD31, andVE-Cadherinwere as-

sessed together via triple staining, i.e., the VEGFR2+ population

was first determined via histogramanalysis, followed by scatterplot

analysis of both CD31 and VE-Cadherin within the VEGFR2+

population. CD31 and VE-Cadherin were analyzed individually,

overlaid with their respective isotype controls to determine

gate settings for the scatterplot. Data were analyzed using

MACSQuantify (Miltenyi Biotec) and FlowJo software.

Immunocytochemistry
On day 11 (protocol I) or day 15 (protocol II), adherent cells were

fixed with 4% paraformaldehyde in 13 PBS for 20 min at 4�C, per-
meabilized and blocked in 0.1% Triton X-100, 5% goat serum, and

1% BSA in 13 PBS for 15 min at room temperature. Cells were

immunostained with primary antibodies, followed by secondary

antibodies, 30 min each at room temperature (Table S2). The anti-

bodies were diluted in 5% goat serum and 1% BSA in 13 PBS. Sam-

ples were preserved in ProLong Gold Antifade Reagent with DAPI

(Life Technologies) and visualized under a Leica DMi8 fluorescent

microscope.

DiIAcLDL Uptake Assay
On day 11 (protocol I) or day 15 (protocol II), cells were incubated

with 1 mg/mL AcLDL labeled with the fluorescent probe DiI

(DiIAcLDL; Alfa Aesar) in endothelial amplification medium for

5 hr at 37�C. Thereafter, cells were washed with Dulbecco’s PBS,

dissociated in single-cell suspensions, fixed with medium A, and

permeabilizedwithmediumB. After a final wash with FACS buffer,

cells were subjected to FACS analysis. To confirm the localizationof

DiIAcLDL taken up by hESC-derived cells, after 5 hr of incubation

we fixed the cells with 4% paraformaldehyde for 20min at 4�C and

preserved them using ProLong Gold Antifade Reagent with DAPI.

Fluorescent signals were detected using rhodamine filter of the

Leica DMi8 fluorescent microscope.

Tube Formation Assay
Growth factor reducedMatrigel (Corning) was thawed on ice over-

night, and 300 mL added in each well of a pre-chilled 24-well plate.

The plate was incubated at 37�C for 45 min for gel formation. On

day 11 of differentiation (protocol I), cells were dissociated by

TrypLESelect and 7 3 104 cells were added onto Matrigel in

500 mL of endothelial amplificationmedium. After 4 days, tube for-

mation was visualized under a light microscope. To determine the

cell viability onMatrigel, we incubated cells with 500 mL of calcein-

AM dye diluted in Hank’s balanced salt solution (8 mg/mL; Life

Technologies) for 30 min at 37�C according to the manufacturer’s

instructions. Fluorescent images were obtained by a Leica DMi8

fluorescent microscope.

RNA-Seq and Bioinformatics Studies
RNA-seq libraries were prepared using Tru-Seq Stranded Total RNA

with Ribo-Zero Gold kit protocol, according to the manufacturer’s
814 Stem Cell Reports j Vol. 7 j 802–816 j October 11, 2016
instructions (Illumina). Libraries were validated with an Agilent

Bioanalyzer (Agilent Technologies), diluted, and applied to an

Illumina flow cell using the Illumina Cluster Station. Sequencing

was performed on an Illumina HiSeq2000 sequencer at the

Duke-NUS Genome Biology Facility with the paired-end 100- bp

read option.

The quality of the paired sequencing reads was ascertained

via the FASTQC tool (Andrews, 2010). The average sequencing

depth was 213.14 million reads per sample and the per-sequence

quality scores were >30 for the majority of the reads. No further

trimming of the bases was performed. Sequencing reads were

then mapped to the human reference genome (hg19) using

the TopHat-2.0.9 alignment tool (Kim et al., 2013). The mean

mapping rate was 80.78%. Transcript/gene assembly and abun-

dance estimation were performed using Cufflinks-2.1.1 (Trapnell

et al., 2012), resulting in the generation of counts, normalized for

transcript length and library size (FPKM). Pathway enrichment

analysis was conducted using a ranked list of genes (ranked

by their log2 fold change between two sample groups), and by

using the pre-ranked option in the GSEA tool (Subramanian

et al., 2005).

Statistical Analysis
Data are presented as means ± SEM from independent differentia-

tion batches. Differences in relative mRNA expression and surface

marker protein expression at different time points were assessed

by one-way ANOVA, corrected for multiple comparisons using

Tukey’s post hoc test. All graphs and statistical analyseswere gener-

ated by Prism Software 7.0 (GraphPad). Differences were regarded

as significant at p < 0.05.
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