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Abstract

Motivation: Machine learning in the biomedical sciences should ideally provide predictive and interpretable models.
When predicting outcomes from clinical or molecular features, applied researchers often want to know which fea-
tures have effects, whether these effects are positive or negative and how strong these effects are. Regression ana-
lysis includes this information in the coefficients but typically renders less predictive models than more advanced
machine learning techniques.

Results: Here, we propose an interpretable meta-learning approach for high-dimensional regression. The elastic net
provides a compromise between estimating weak effects for many features and strong effects for some features. It
has a mixing parameter to weight between ridge and lasso regularization. Instead of selecting one weighting by tun-
ing, we combine multiple weightings by stacking. We do this in a way that increases predictivity without sacrificing
interpretability.

Availability and implementation: The R package starnet is available on GitHub (https://github.com/rauschenberger/
starnet) and CRAN (https://CRAN.R-project.org/package=starnet).

Contact: armin.rauschenberger@uni.lu

1 Introduction

High-dimensional regression requires regularization. The elastic net
(Zou and Hastie, 2005) generalizes ridge ðL2Þ and lasso ðL1Þ regu-
larization, and overcomes some of their shortcomings. Adapting the
sparsity of the model to the sparsity of the signal, it often improves
predictions. One issue with the elastic net is that it has two tuning
parameters: either two regularization parameters k1 and k2 for ridge
and lasso, or one regularization parameter k and one mixing param-
eter a for moderating between ridge and lasso. Tuning both a and k
is notoriously hard due to the flat cross-validated likelihood land-
scape (van de Wiel et al., 2019). Alternatively, fixing a close to the
lasso might be a good solution, because this introduces stability
(Friedman et al., 2010). As an alternative to tuning or fixing a, we
propose to combine multiple values of a, using stacked generaliza-
tion (Wolpert, 1992). Each a renders one model with one estimated
effect for each feature. Instead of selecting one a for making predic-
tions, stacking combines the predictions from multiple a (Fig. 1).
The resulting ensemble model (multiple a) might be more predictive
than any of the constituent models (single a) but is less interpretable
due to multiple effects for each feature (one for each a). Rather than

combining the predicted values from the base learners, we propose
to combine their linear predictors. This allows us to rewrite the com-
plex model (with multiple effects for each feature) as a simple model
(with one effect for each feature). The stacked elastic net thereby
increases predictivity while maintaining the interpretability of the re-
gression coefficients. Furthermore, feature selection is possible after
model fitting (Hahn and Carvalho, 2015). In the following, we
introduce the stacked elastic net, analyse simulated and experimen-
tal high-dimensional data and discuss possible extensions.

2 Materials and methods

2.1 Base learners
The data consist of one outcome and p features for n samples, pos-
sibly in a high-dimensional setting ðp� nÞ. For example, the out-
come might represent a clinical variable, and the features might
represent molecular data. Let the n� 1 vector y denote the outcome,
and let the n� p matrix X denote the features. We index samples by
i 2 f1; . . . ; ng and features by j 2 f1; . . . ;pg. In the generalized linear
model framework, we have
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E½yi� ¼ h�1 b0 þ
Xp

j¼1

bjXij

0
@
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where hð�Þ is a link function, b0 is the unknown intercept and b ¼
ðb1; . . . ; bpÞ> are the unknown slopes. Penalized maximum-
likelihood estimation involves determining

fb̂0; b̂g ¼ argmax
b0;b

fLðy; b0; bÞ � qðk; a; bÞg;

where Lðy; b0;bÞ is the likelihood, and qðk; a; bÞ is the elastic net
penalty. The likelihood depends on the type of regression model
(e.g. Gaussian, binomial or Poisson), and the penalty function is

qðk; a; bÞ ¼ k
Xp

j¼1

1� a
2

b2
j þ ajbjj

� �
;

where k is the regularization parameter ðk � 0Þ, and a is the elastic
net mixing parameter ð0 � a � 1Þ. The limits correspond to ridge
ða ¼ 0Þ and lasso ða ¼ 1Þ regularization. We consider m different
values for a, which are equally spaced in the unit interval and
indexed by k 2 f1; . . . ;mg. For each ak, we use 10-fold cross-
validation for tuning kk. We consider an exponentially decreasing
sequence of values for kk, starting with the intercept-only model
ðkk !1Þ and stopping with the (almost) unpenalized model
ðkk ! 0Þ. In short, we select the optimal k	k for each ak. We retain
the corresponding cross-validated linear predictors in the n�m ma-
trix Ĥ

ðcvÞ
.

2.2 Meta learner
We then regress the outcome on the cross-validated linear
predictors:

E½yi� ¼ h�1
�
x0 þ

Xm
k¼1

xkĤ
ðcvÞ
ik

�
;

where x0 is the unknown intercept, and x ¼ ðx1; . . . ;xmÞ> are the
unknown slopes. The intercept might allow the meta learner to re-
duce systematic errors from strongly correlated base learners. Since
the slopes are weights, we constrain them to the unit interval, i.e.
0 � xk � 1 for all k 2 f1; . . . ;mg. They weight the linear predic-
tors from the different elastic net mixing parameters. Penalized con-
ditional maximum-likelihood estimation involves determining

fx̂0; x̂g ¼ argmax
x0 ;x

fLðy; x0;xÞ � qðk; xÞg;

where Lðy; x0;xÞ is the likelihood conditional on Ĥ
ðcvÞ

, and qðk; xÞ
is the lasso penalty

qðk; xÞ ¼ k
Xm
k¼1

jxkj:

Using the same cross-validation folds as for the base learners, we
select the optimal regularization parameter k	 for the meta learner.
Accordingly, in the two consecutive cross-validation loops, we use
the same training sets for estimating the base and meta parameters
(b0 and b given ak for all k; x0 and x), and the same validation sets
for tuning the base and meta hyperparameters (kk for all k; k).

The tuned elastic net is a special case of the stacked elastic net: if
the intercept equals zero (x0 ¼ 0), one weight equals one (xk ¼ 1),
and all other weights equal zero (xl 6¼k ¼ 0), the meta learner simply
selects one mixing parameter (ak). In a broader sense, van der Laan
et al. (2007) distinguish between cross-validation selection and
super-learning, which consist of selecting one or combining multiple
base learners, respectively.

2.3 Combination
Given the cross-validated parameters k	 ¼ ðk	1; . . . ; k	mÞ

> and k	, we
refit the base and meta learners to all folds. For the base learners, let
the 1�m vector b̂0 and the p�m matrix b̂ denote the estimated

intercepts and slopes, respectively. For the meta learner, the esti-
mates are x̂0 and x̂ ¼ ðx̂1; . . . ; x̂mÞ>. We then use the estimates
from the base and meta learners to predict the outcome of previously
unseen samples.

If sample i has the feature vector X i� ¼ ðXi1; . . . ;XipÞ>, base
learner k returns the linear predictor ĝ ik ¼ b̂0k þ

Pp
j¼1 b̂jkXij. The

meta learner combines the linear predictors from all base learners:

ĝ	i ¼ x̂0 þ
Xm
k¼1

x̂kĝik ¼ x̂0 þ
Xm
k¼1

x̂k

�
b̂0k þ

Xp

j¼1

b̂jkXij

�

¼ b̂
	
0 þ

Xp

j¼1

b̂
	
j Xij;

where b̂
	
0 ¼ x̂0 þ

Pm
k¼1 x̂kb̂0k and b̂

	
j ¼

Pm
k¼1 x̂kb̂jk. Since the

stacked linear predictor is a function of pooled estimates, we per-
form stacking without loss of interpretability. For each feature, the
corresponding pooled estimate represents the estimated effect on the
outcome. Due to ridge regularization in one of the base learners,
however, all pooled estimates might be different from zero. Stacking
worsens the variable selection property of the elastic net, but we still
have the option to select variables after model fitting (see below).

2.4 Extension
Decoupling shrinkage and selection (Hahn and Carvalho, 2015)
allows us to perform feature selection after model fitting. The idea is
to approximate the fitted linear predictor ĝ	 ¼ Xb̂

	
by X ĉ, where b̂

	

is dense but ĉ is sparse. Instead of including many features
(
Pp

j¼1 I½b̂
	
j 6¼ 0� � p), we only want to include some features

(
Pp

j¼1 I½ĉ j 6¼ 0� 
 p). This can be achieved by regressing the fitted
linear predictor on the features and estimating a sparse model:

E½ĝ	i � ¼ c0 þ
Xp

j¼1

cjXij;

where c0 is the unknown intercept, and c ¼ ðc1; . . . ; cpÞ> are the un-
known slopes. Penalized maximum-likelihood estimation involves
determining

fĉ0; ĉg ¼ argmax
c0 ;c

fLðĝ	; c0; cÞ � qðk; cÞg;

where Lðĝ	; c0; cÞ is the Gaussian likelihood, and qðk; cÞ is the adap-
tive lasso penalty (Zou, 2006)

qðk; cÞ ¼ k
Xp

j¼1

jcjj
jb̂	j j

:

The absolute values of the dense estimates (b̂
	
) operate as

weights for the sparse estimates (ĉ). As k increases from 0 to1, the
number of non-zero coefficients decreases from minðn; pÞ to 0. We
can cross-validate k, or adjust k in order that the model includes a
specific number of non-zero coefficients (e.g.

Pp
j¼1 I½ĉ j 6¼ 0� ¼ 10).

We expect this approximation to work well when the pooled esti-
mates are relatively sparse, i.e. include few values far from zero and
many values close to zero. Such a situation is fairly natural for the
stacked elastic net because it pools mainly sparse and strongly corre-
lated models. Nevertheless, post-hoc feature selection might signifi-
cantly decrease the predictive performance of the stacked elastic net,
and should therefore be used with caution.

3 Simulation

3.1 Prediction accuracy
To examine the predictive performance of the stacked elastic net, we
conducted a simulation study. We compared ridge, lasso, tuned elas-
tic net and stacked elastic net regularization.

In three different scenarios, we repeatedly simulated high-
dimensional data. In each iteration, we sampled several n-dimen-
sional vectors from the standard Gaussian distribution, namely three
signal variables ðz1; z2; z3Þ and p noise variables ðe1; . . . ; epÞ. We
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constructed the outcome from the signal variables, and the features
from the signal and noise variables. In all scenarios, the n-dimen-
sional outcome vector equals the sum of the three signal variables
ðy ¼ z1 þ z2 þ z3Þ. The n � p feature matrix X, however, depends
on the scenario (Table 1). Let xj denote the jth column of X, for any
j in f1; . . . ;pg. Each feature equals a weighted sum of one signal
variable and one noise variable: xj ¼

ffiffiffi
p
p

zl þ
ffiffiffiffiffiffiffiffiffiffiffiffi
1� p
p

ej, where the
weight p is in the unit interval, and the index l equals 1 or 2. The
weight p determines whether the feature is weakly ðp ¼ 0:1Þ, moder-
ately ðp ¼ 0:5Þ or strongly ðp ¼ 0:9Þ correlated with the signal vari-
able, and consequently weakly, moderately or highly predictive of
the outcome. In the first scenario, one feature is strongly correlated
with z1, and another feature is strongly correlated with z2. In the se-
cond scenario, 50% of the features are weakly correlated with z1,
and the other 50% are weakly correlated with z2. And in the third
scenario, 5% of the features are moderately correlated with z1, and
another 5% of the features are moderately correlated with z2. The
weighting ensures that all features have unit variance: VarðxjÞ ¼
pVarðzlÞ þ ð1� pÞVarðejÞ ¼ 1 because VarðzlÞ ¼ 1; VarðejÞ ¼ 1 and
Covðzl; ejÞ ¼ 0.

In each scenario, we simulated the outcome (n� 1 vector y) and
the features (n � p matrix X) each 100 times, where n ¼ 10 000
and p¼500. We assessed the predictive performance using 100 sam-
ples for training and validation (internal 10-fold cross-validation)
and 9900 samples for testing (hold out). Figure 2 shows the mean
squared error for the test set under different flavours of elastic net
regularization (ridge, lasso, tuning, stacking). These out-of-sample
errors are estimates of the predictive performance on previously un-
seen data, with lower values indicating better predictions. Lasso out-
performs ridge if the signal is sparse (1st scenario), but ridge
outperforms lasso if the signal is dense (2nd scenario). Approaching
the performance of the optimal elastic net mixing parameter, tuning
is slightly worse than lasso in the sparse case (1st scenario), slightly
worse than ridge in the dense case (2nd scenario), or better than
both in the intermediate case (3rd scenario). We observe that stack-
ing outperforms tuning in all three scenarios. Stacking is even slight-
ly better than lasso in the sparse case and slightly better than ridge

in the dense case. The most important gains relative to the best com-
petitor occur in the intermediate case. In the three scenarios, stack-
ing is the best approach in 79%; 67% and 88% of the iterations,
respectively.

Next, we tested whether stacking leads to significantly better
predictions than ridge, lasso and tuning. For this purpose, we calcu-
lated the pairwise differences in out-of-sample mean squared error,
applied the two-sided Wilcoxon signed-rank test and used the
Bonferroni-adjusted 5% significance level (P-value � 0:05=9).
Stacking significantly outperforms tuning in all three scenarios.
Moreover, stacking is significantly better than ridge and lasso, but
not significantly different from ridge if the signal is dense (2nd scen-
ario). In practice, we often do not know whether ridge or lasso is
more suitable for the data at hand. An advantage of the elastic net is
that it automatically adapts to the sparsity level of the signal.

For comparison, we also examined the elastic net with the fixed
mixing parameters a ¼ 0:05 (close to ridge) and a ¼ 0:95 (close to
lasso). As expected, the ridge-like elastic net performs better than
ridge if the signal is sparse (1st scenario) and worse than ridge if the
signal is dense (2nd scenario). The results for the lasso-like elastic
net are similar to those for the lasso. Indeed, it has previously been
found that the elastic net without simultaneous tuning of both pen-
alties can mimic ridge or lasso regression (Waldron et al., 2011).

Some applications require models with a limited number of
selected features. We therefore verified how post-hoc feature selec-
tion affects the predictive performance of the stacked elastic net.
Figure 3 shows the generalization error for different numbers of
non-zero coefficients. Models with many selected features tend to be
more predictive than models with few selected features. While the
stacked elastic net outperforms the lasso given a small number of
non-zero coefficients, this difference vanishes for large numbers of
non-zero coefficients. Post-hoc feature selection increases predictiv-
ity if the signal is sparse (1st scenario) and otherwise decreases pre-
dictivity (2nd and 3rd scenarios).

3.2 Estimation accuracy
If we knew the effects of the features on the outcome, we could not
only examine the prediction accuracy but also the estimation accur-
acy of the stacked elastic net. We adapted the simulation study to
make this possible: (i) Simulating the features (n�p matrix X) from
the multivariate Gaussian distribution Nðl;RÞ with a constant mean
and correlation structure, namely lj ¼ 0; Rjj ¼ 1 and Rjk ¼ 0:1 for
all j and k 6¼ j in f1; . . . ; pg. (ii) Generating the effects (p� 1 vector
b) by setting most coefficients to zero and some coefficients to one,
namely 5 (sparse scenario), 50 (dense scenario) or 20 (mixed scen-
ario). (iii) Obtaining the outcome (n� 1 vector y) by summing up
the linear predictor and the residuals (y ¼ Xbþ e), where the resid-
uals are Gaussian noise with half the (sample) standard deviation of
the linear predictor.

In each scenario, we simulated 100 times the feature matrix X,
the coefficient vector b, and the outcome vector y, for 100 training
and validation samples (but no testing samples). We measure the dif-
ference between the true coefficients b and the estimated coefficients
b̂ with the mean absolute error and the mean squared error. For true
coefficients equal to zero, stacking is less accurate than tuning. This
matches our expectations because stacking leads to denser models
than tuning. For true coefficients different from zero, however,

Table 1. Scenarios for constructing features ðx1; . . . ; x500Þ from signal ðz1; z2; z3Þ and noise ð†1; . . . ; †500Þ

signal þ noise noise signal þ noise

(1) xj ¼
ffiffiffiffiffiffiffi
0:9
p

z1 þ
ffiffiffiffiffiffiffi
0:1
p

†j

j ¼ 1

xj ¼ †j

8j 2 f2; . . . ; 499g
xj ¼

ffiffiffiffiffiffiffi
0:9
p

z2 þ
ffiffiffiffiffiffiffi
0:1
p

†j

j ¼ 500

(2) xj ¼
ffiffiffiffiffiffiffi
0:1
p

z1 þ
ffiffiffiffiffiffiffi
0:9
p

†j

8j 2 f1; . . . ; 250g
– xj ¼

ffiffiffiffiffiffiffi
0:1
p

z2 þ
ffiffiffiffiffiffiffi
0:9
p

†j

8j 2 f251; . . . ; 500g

(3) xj ¼
ffiffiffiffiffiffiffi
0:5
p

z1 þ
ffiffiffiffiffiffiffi
0:5
p

†j

8j 2 f1; . . .; 25g
xj ¼ †j

8j 2 f26; . . . ; 475g
xj ¼

ffiffiffiffiffiffiffi
0:5
p

z2 þ
ffiffiffiffiffiffiffi
0:5
p

†j

8j 2 f476; . . . ; 500g

ω̂1 ω̂2 ω̂3 ω̂k ω̂m

β̂1|αk β̂2|αk β̂3|αk β̂j|αk β̂p|αk

x1 x2 x3 xj xp… …

ŷ|α1 ŷ|α2 ŷ|α3 ŷ|αk ŷ|αm
… …

ŷ

Fig. 1. Stacked elastic net. After predicting the outcome from the features given an

elastic net mixing parameter (bottom), we combine the predictions from multiple

elastic net mixing parameters (top)

2014 A.Rauschenberger et al.



stacking is more accurate than tuning. The median decrease in mean
absolute error (mean squared error) is 30:4% (15:4%) in the sparse
scenario, 3:1% (4:6%) in the dense scenario and 0:4% (1:1%) in the
mixed scenario. Stacking is significantly more accurate than tuning
in the sparse and dense scenarios in terms of both metrics, according
to the two-sided Wilcoxon signed-rank test at the Bonferroni-
adjusted 5% level (P-value � 0:05=3).

Additionally, we also examined the selection accuracy. We
allowed the stacked elastic with post-hoc feature selection, the lasso
and the lasso-like elastic net (a ¼ 0:95) to include at most 10 fea-
tures in the model. To compare the selection accuracy, we calculate
the precision TP=ðTPþ FPÞ, where TP ¼

Pp
j¼1 I½b̂ j 6¼ 0 \ bj 6¼ 0�

and FP ¼
Pp

j¼1 I½b̂j 6¼ 0 \ bj ¼ 0�, with TPþ FP � 10. Compared
to the lasso, the stacked elastic net selects more features among
those with an effect (TP: 4:4 > 3:7), and less features among those
without an effect (FP: 5:2 < 6:1). Accordingly, the stacked elastic
net has a higher mean precision than the lasso in the sparse
(57% > 51%), dense (36% > 27%) and mixed (49% > 36%) scen-
arios. The lasso-like elastic net performs slightly worse than the
lasso.

4 Application

4.1 Benchmark datasets
To further examine the performance of the stacked elastic net, we
analysed experimental genomics data. The R package plsgenom-
ics includes three preprocessed gene expression sets for binary or
multinomial classification, namely tumour against normal colon tis-
sue (Alon et al., 1999), two kinds of leukaemia (Golub et al., 1999)
and four types of small-blue-round-cell tumours (Khan et al., 2001).
For the last, we reduced the multinomial problem to four one-
versus-rest binary problems. All three datasets are high-dimensional:
the first covers 62 samples and 2000 features, the second covers 38
samples and 3051 features, and the third covers 83 samples and
2308 features. We did not perform any further preprocessing to en-
sure reproducibility and comparability. To obtain robust and almost
unbiased estimates of the predictive performance, we used repeated
nested cross-validation with 10 repetitions, 10 external folds and 10
internal folds. Table 2 shows the median cross-validated logistic de-
viance for the six binary classification problems. The stacked elastic
net decreases the loss, as compared to ridge, lasso and tuning, except
for lasso on the colon dataset. Under post-hoc feature selection with
the number of non-zero coefficients determined by cross-validation,
stacking remains competitive.

Figure 4 shows the median cross-validated loss for different elas-
tic net mixing parameters. For ‘leukaemia’ and ‘SRBCT’, the loss
decreases between 0 (ridge) and some a, and then increases between
this a and 1 (lasso). The optimal elastic net mixing parameter, across
all cross-validation repetitions, is a ¼ 0:95 for ‘colon’, a ¼ 0:2 for
‘leukaemia’ and a ¼ 0:4 for ‘SRBCT’. If we had known these values
before the analysis, we would have minimized the cross-validated
loss. Searching for the optimal a in each cross-validation iteration,
we either find or miss the optimal a. This is why the tuned elastic
net never outperforms the elastic net with the optimal a for a single
split. In contrast, the stacked elastic net may outperform the elastic
net with the optimal a. We observe this for two out of three applica-
tions, namely ‘leukaemia’ and ‘SRBCT’.

4.2 Normal/tumour classification
The Cancer Genome Atlas (The Cancer Genome Atlas Research
Network et al., 2013) provides genomic data for 33 cancer types.
We retrieved the upper quartile normalized RSEM (RNA-Seq by
expectation-maximization) TPM (transcript per million) gene ex-
pression values (R package curatedTCGAData), merged replicated
measurements (R package MultiAssayExperiment) and
extracted the sample definitions from the barcodes (R package
TCGAutils). We retained ‘solid tissue normal’ (collected near the
tumour) and ‘primary solid tumour’ samples. For each cancer type,
we retained the 2000 most variably expressed genes, and standar-
dized their expression values.

For cancer types with at least five normal and five tumour sam-
ples, we repeatedly trained and validated models with approximately
90% of the samples, and tested the models with approximately 10%
of the samples. Table 3 shows the cross-validated logistic deviance
under different regularization methods. Here, lasso performs better
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indicate ridge (a ¼ 0) and lasso (a ¼ 1) regularization. The dashed lines indicate
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Table 2. Median cross-validated logistic deviance for three classifi-

cation problems (rows) under different regularization methods

(columns), with the class frequencies (0/1) in the first two columns,

and the results for post-hoc feature selection in parentheses

#0 #1 Ridge Lasso Tune Stack

Colon 22 40 0.900 0.820 0.878 0.848 (0.840)

Leukaemia 27 11 0.252 0.199 0.145 0.039 (0.165)

SRBCT1 54 29 0.369 0.164 0.111 0.078 (0.140)

SRBCT2 72 11 0.111 0.035 0.047 0.001 (0.007)

SRBCT3 65 18 0.258 0.052 0.052 0.004 (0.005)

SRBCT4 58 25 0.338 0.102 0.070 0.015 (0.070)
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Fig. 3. Median out-of-sample mean squared error against number of non-zero coeffi-

cients, for the lasso (grey) and the stacked elastic net with post-hoc feature selection

(black), in the first (left), second (centre), and third (right) scenarios. The dashed

lines indicate the medians from the unrestricted versions
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than ridge for 13 out of 15 cancer types, and stacking performs better
than tuning for 11 out of 15 cancer types. The mean decrease in
cross-validated logistic deviance from tuning to stacking is 7:5%, and
the two-sided Wilcoxon signed-rank test returns a P-value of 0.06.
Post-hoc feature selection with the number of non-zero coefficients
determined by cross-validation leads to competitive models, except
for cholangiocarcinoma (CHOL). The problem with this cancer type
might be the small sample size together with the fact that normal and
tumour samples are derived from the same patients. In any case,
results for such small sample sizes are inherently unreliable.

5 Discussion

The elastic net is the method of choice for many biomedical applica-
tions, because it renders predictive and interpretable models. It
weights between ridge and lasso regularization, but the optimal
weighting is often unknown. Instead of selecting one weighting by
tuning, we combine multiple weightings by stacking. According to
our empirical analyses, this improves the predictive performance of
the elastic net in various settings. The increase in computational cost
is negligible, because the only addition is the low-dimensional re-
gression of the outcome on the cross-validated linear predictors. The
equivalence between stacking linear predictors and pooling regres-
sion coefficients allows us to increase the predictive performance
while maintaining the interpretability of the regression coefficients.

In contrast to the lasso, the stacked elastic net might or might
not perform feature selection. It selects features unless the meta
learner includes the base learner with pure ridge regularization, but
it tends to select more features than the tuned elastic net, because it
combines multiple base learners. The stacked elastic net selects a fea-
ture if and only if the meta learner selects a base learner that selects
this feature. It is therefore possible to impose feature selection by
excluding the base learner with pure ridge regularization (a > 0). As
this might fail to render sufficiently sparse models, we suggest to
perform post-hoc feature selection (Hahn and Carvalho, 2015) but
recommend to verify by cross-validation whether imposing sparsity
makes the model much less predictive.

An extension of the stacked elastic net would be to use a fused
penalty (Tibshirani et al., 2005) for the meta learner, because the
base learners are related in regard to the elastic net mixing parameter.
Another extension would be to combine two ensemble techniques,
namely stacking and bagging. While stacking involves fitting differ-
ent models to the same samples and weighting the predictions, bag-
ging involves fitting the same model to different bootstrap samples
and averaging the predictions. Since random (bagged) regressions
seem to be competitive with random forests (Song et al., 2013), we

could potentially combine stacking and bagging to make elastic net
regression even more predictive without making it less interpretable.
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