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The rise of machine-learning (ML) techniques over the last
decade has impacted almost every scientific field to some
extent. Medical imaging and radiology are no exception.
Since radiologists are, in essence, recognizing patterns in
medical images, it seems reasonable to apply ML models
for supporting—or even fully automating—such image
interpretation tasks. However, while the vision of using ML
in radiology continues to spark excitement, clinical real-
world applications turned out to be more challenging than
initially anticipated and, up to now, ML techniques for
automated disease detection have not found the way into
routine practice. Nevertheless, for specific subproblems,
ML techniques have proven to be very powerful.

One prominent example is the segmentation of structures
on medical images, a problem that has led to the widely
used U-Net model. Another example is image reconstruction,
i.e., the formation of images from the raw signals that imag-
ing devices acquire. Seminal papers from multiple groups
have shown that ML models can be utilized to improve both
the visual image quality and diagnostic value (1), meaning
that pathologies can be better identified. Motivated by the
high excitement about ML, this has drawn many researchers
to work on the reconstruction problem, including members
from the medical-imaging field as well as from adjacent disci-
plines. Within a short time, publications on ML-based image
reconstruction have skyrocketed, and several dedicated con-
ferences have been organized.

Such enthusiasm, on the one hand, has been a blessing
for our field because it brings many fresh ideas and differ-
ent thinking into medical imaging. On the other hand, it
has also started a competitive race for the “best” recon-
struction model, measured by various metrics for the
reconstruction accuracy. This has led to an increasing
number of works that claim exceptional reconstruction
performance based on conducted numerical experiments.
However, when looking closely at the methodology, it often
turns out that the datasets utilized for validation do not
accurately reflect the signals received by imaging devices.
Hence, such results look impressive on paper, but they do
not hold true when implementing the techniques for real-
world use.

In many cases, validation datasets have been synthe-
sized from publicly available data sources such as image
repositories, which inherently introduces assumptions and
simplifications of the signal-generation process. This is
commonly referred to as “inverse crime” because the
same approximations are used when synthesizing and
when reconstructing the data. Consequently, it remains
unnoticed that an algorithm may perform much worse if
used with real-world data. While this topic has been the
subject of numerous discussions at conferences when pre-
senters showed “inverse crime,” the impact on the esti-
mated reconstruction performance has typically been
described only in qualitative or anecdotal terms.

In PNAS, Shimron et al. (2) present a comprehensive
investigation of this effect, in which they have analyzed
multiple scenarios of improper use of validation data gen-
erated from image libraries. This shows, in a quantitative
and very illustrative manner, how large of a mistake one
can make if not paying enough attention to the evaluation
of reconstruction algorithms, and they reveal two concrete
examples of how easily incorrect conclusions can be drawn
by accidentally utilizing image libraries that have under-
gone postprocessing steps that are not directly visible to
the human eye, namely zero-padding interpolation in Fou-
rier space and JPEG image compression.

Shimron et al. (2) selected magnetic resonance imaging
(MRI) as a representative example in their paper, one of
the most widely used and most fascinating modalities in
radiology. Unfortunately, MRI is also one of the most com-
plex imaging techniques, which sometimes leads to mis-
conception of the acquired imaging signal. To put Shimron
et al.’s work into context, it is helpful to review how the
imaging data are generated.

Signal Generation in MRI

In MRI, the patient is positioned in a strong magnetic field
(1.5 or 3 T). By creating a short time-varying electromag-
netic field using a waveform generator and radiofrequency
(RF) coil that surrounds the patient, protons of the tissue
get excited to a higher energy state if the frequency of this
“RF pulse” coincides with the Larmor frequency, ω¼ γ �B,
which is proportional to the magnetic field strength B (γ is
the gyromagnetic ratio of protons). After stopping the RF
pulse, a signal can be measured (also with Larmor fre-
quency) that is induced in the RF coil by the protons as
response to the prior excitation. The phenomenon is called
“magnetic resonance” and is only detectable for a short
moment until the protons relax back to the lower energy
state. This procedure is repeated sequentially in MRI to
obtain signals from the tissue. However, this, by itself,
would not allow looking inside the body.

Spatially resolving the signal is possible by switching an
additional magnetic field (after the RF excitation) that creates
a linear variation of the magnetic field strength in one spatial
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direction. This additional field is called “gradient field” (due to
the linear relationship between space and field strength),
and it can be generated in the X, Y, and Z direction using
three electrical coils built into the MRI device. Because the
frequency of the induced MR signal is proportional to
the field strength that the protons experience, the signal that
the protons induce in the RF coil suddenly becomes depen-
dent on the location of the protons. For example, when
switching a gradient field in the Z direction, protons at the
location z = �10 cm induce a lower frequency than protons
at z = 0 cm, while protons at z = +10 cm induce a higher fre-
quency. By analyzing which frequencies are contained in the
received RF signal, it is then possible to conclude from which
locations these signal components originated. This can be
achieved by performing a Fourier transformation (or spectral
analysis) of the received signal. In other words, by switching
gradient fields that create a linear relationship between
space and resonance frequency, it becomes possible to mea-
sure the Fourier transform. Nobel Prize winner Paul Lauter-
bur proposed this brilliant idea in 1973 (3).

The acquired MRI signal, therefore, corresponds to the
patient’s Fourier transform, which can be traversed by
switching gradient fields with varying amplitude along X, Y,
and Z. When switching the gradients in such order that the
Fourier space (or “k-space”) is sampled on a grid, an image
can be reconstructed by digitizing the signal, arranging the
values on a matrix, and calculating the fast Fourier trans-
form (FFT).

One limitation of the MRI principle is that traversing the
Fourier space takes time because the gradient fields can-
not be switched instantaneously. In the initial years, device
manufacturers have therefore strived to achieve faster
and faster switch times using more powerful amplifiers
and improved coil designs. However, eventually a limit was
reached where further acceleration would put the patient
at risk, as rapidly changing magnetic fields can trigger
unpleasant and potentially dangerous nerve stimulation.

Faster Speed with Smart Reconstruction

At this point, activities for MRI acceleration shifted to the
image-reconstruction side. The idea is to skip sampling
steps in Fourier space, resulting in shorter scan time but
incomplete datasets, and to compensate for the missing
data using intelligent reconstruction algorithms. This
explains the strong interest in applying ML techniques for
the reconstruction problem: Advanced algorithms can not
only create “nicer-looking” images but they can make MRI
faster, lower examination costs, and create a better patient
experience because the time during which patients must
hold still or hold breath is shortened.

Reconstruction from incomplete data is possible by incor-
porating “a priori” information into the algorithm, i.e., by tak-
ing advantage of assumptions that can be made upfront
about the image. Mathematically, this is done by formulating
the reconstruction as an inverse problem (instead of direct
FFT use) and by introducing regularization or penalty terms
that steer the algorithm toward a solution that is plausible
based on the a priori information. Thus, the aim is to find an
image that fits to the acquired (but incomplete) Fourier sam-
ples and that minimizes the penalty functions. A solution

can then be found using iterative numerical optimization,
e.g., with the conjugate-gradient method.

The first generation of such methods, known as com-
pressed sensing (4), used hand-picked and rather simplistic
functions for the a priori knowledge. One example is the
total variation (TV), implying that medical images are piece-
wise constant to some degree. Another example is the
wavelet transform, implying that medical images are
wavelet-compressible (whereas artifact patterns caused by
incomplete sampling are not). These first-generation
approaches are now available in clinical MRI devices.

Recently, it has been shown that ML techniques can be
used to train and learn regularization functions instead of
relying on basic hand-picked functions. It makes sense that
training a high-capacity ML model on a large amount of
reference data improves the ability to distinguish spurious
imaging artifacts (such as aliasing or noise patterns) from
the true object, and initial results have been very promis-
ing (1). This new generation of algorithms also introduces
additional degrees of freedom, e.g., by allowing the
imposed prior knowledge to vary during the reconstruction
process.

However, many questions are still unanswered, includ-
ing what the best model architecture for such application
is and to what extent the learned prior knowledge general-
izes, i.e., if a single trained model can be applied for differ-
ent applications or if separate models need to be trained
for each body region, examination type, or device type.
This makes image reconstruction a highly interesting
research topic, and it is not surprising that numerous
groups have decided to work on the problem.

The Simulation Pitfall

Unfortunately, some research groups do not have access
to MRI devices, typically if they are not affiliated with a
radiology department, which makes it difficult to get hold
of raw MRI data. Such datasets are rarely shared because
they can contain confidential patient information. As a
workaround, data are often simulated, both for the model
training and evaluation. Here, a common pitfall is to gener-
ate simulation data by taking images (e.g., from public
libraries), performing an inverse FFT, and using the values
as a substitute for the MRI signals.

While MRI devices, indeed, measure the Fourier trans-
form, the devil is in the details. As part of the devices’ proc-
essing pipeline, many additional (and nonlinear) operations
are applied before final images are exported, including filters
for distortion correction, intensity normalization, and noise
reduction. Moreover, MRI data are complex-valued (i.e.,
objects have a locally varying phase), but only the magnitude
value is exported. Modern MRI devices also use multiple
receive RF coils with different complex-valued sensitivity pro-
files, which are combined during the reconstruction. Such
properties are neglected when synthesizing data from
images. Because the acquisition is not instantaneous, real
MRI signals can also be affected by data inconsistencies from
motion (e.g., the beating heart), blood flow, and signal relaxa-
tion. Furthermore, physical constraints exist for the acquisi-
tion. For example, it is not possible to “jump” in Fourier space
(it must be traversed along trajectories). There is also a
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“memory” effect of the signal because the acquisition is often
faster than the protons’ relaxation time, making the sampling
order relevant. Finally, the digitalization of the signal, i.e., the
discrete sampling of the continuous Fourier transform, plays
a role as well because it leads to effects such as Gibbs ring-
ing and periodic copies in image space.

If these aspects are ignored, oversimplified simulation
data are created that do not reflect the complexity (and
impurity) of real-word MRI data. When additionally using
data sources that have undergone postprocessing steps to
reduce the information content, as illustrated in Shimron

et al.’s paper (2), reconstruction results are obtained
that are biased and just too good to be true. Therefore,
the work of Shimron et al. should be seen as a wake-up
call to be vigilant when evaluating new MRI reconstruc-
tion methods. Various helpful resources exist. Several
initiatives have now published libraries with anonymized
real-word MRI data, such as the fastMRI project (5), and
multiple Bloch simulation tools have been released (6),
which can simulate the MRI signals accurately. Such
offerings should be taken advantage of to prevent fur-
ther “inverse crime.”
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