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Abstract

Since Barbara McClintock’s groundbreaking discovery of mobile DNA
sequences some 70 years ago, transposable elements have come to be
recognized as important mutagenic agents impacting genome composition,
genome evolution, and human health. Transposable elements are a major
constituent of prokaryotic and eukaryotic genomes, and the transposition
mechanisms enabling transposon proliferation over evolutionary time
remain engaging topics for study, suggesting complex interactions with the
host, both antagonistic and mutualistic. The impact of transposition is
profound, as over 100 human heritable diseases have been attributed to
transposon insertions. Transposition can be highly mutagenic, perturbing
genome integrity and gene expression in a wide range of organisms. This
mutagenic potential has been exploited in the laboratory, where
transposons have long been utilized for phenotypic screening and the
generation of defined mutant libraries. More recently, barcoding
applications and methods for RNA-directed transposition are being used
towards new phenotypic screens and studies relevant for gene therapy.
Thus, transposable elements are significant in affecting biology both in vivo
and in the laboratory, and this review will survey advances in understanding
the biological role of transposons and relevant laboratory applications of
these powerful molecular tools.
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Introduction

Transposons are mobile repetitive genetic elements that are
widespread throughout prokaryotic and eukaryotic genomes,
considerably impacting many facets of biology, including
genome evolution, genome composition, and human health'~.
The spread of multiresistant bacterial strains is an increasing
healthcare problem worldwide, and the acquisition of pre-exist-
ing antibiotic resistance determinants is commonly achieved
through the actions of mobile genetic elements, notably
including transposons (reviewed in 6). Somatic transposition
is increasingly being recognized for its biological and health-
related significance. Postzygotic retrotransposition can occur
in healthy and diseased cortical neurons and non-brain tissue’,
and somatic retrotransposon insertions have been reported in
cancer patients, with high retrotransposition rates in tumors asso-
ciated with high rates of genomic rearrangement and somatic
mutation®’. Transposon mobilization is highly mutagenic,
as the insertion of a transposable DNA sequence is likely to
perturb native gene expression and/or function at the
locus of insertion'™'!. The consequences of transposon inser-
tion include open reading frame disruption, the alteration of
promoter sequence, perturbed splicing and transcriptional
termination, and epigenetic effects impacting nearby sequences.
Consequently, organisms have established extensive mecha-
nisms to combat transposition'’"'®. Despite these genome
defense mechanisms, transposable elements constitute approxi-
mately 46% of the human genome'’, and the interplay between
transposition and host mechanisms is an ongoing area of
study. This review will highlight current thought regarding
this interplay, which involves commensal or mutualistic strate-
gies. Recent studies have further shed light on the impact of
transposition on the expression of genes at the locus of inser-
tion, and these findings will be reviewed here. Transposons
have been and remain a relevant tool in the laboratory, and this
review will summarize several advances in the application of
transposable elements for mutagenesis and molecular biology
applications. Collectively, this review is designed to update our
understanding of transposons in the context of evolutionary
biology, molecular genetics, and biotechnology.

Transposable elements and host interactions

Transposable elements are predominantly viewed as “self-
ish” DNA elements, replicating to great numbers in many
genomes'®. Although a full summary of transposon classes
and structures is beyond the scope of this text, transposable ele-
ments have been divided into two large classes according to the
employed method of transposition. Class 1 elements, or ret-
rotransposons, transpose through an RNA intermediate by the
action of reverse transcriptase. These elements can be subdi-
vided into classes based on the presence or absence of long
terminal repeats (LTRs) and further by the autonomy of the
element—its ability to encode the necessary proteins for trans-
position. Long INterspersed Elements (LINEs) are autono-
mous non-LTR retrotransposons, and Short INterspersed
Elements (SINEs) are non-autonomous and highly abundant
non-LTR retrotransposons. Human Alu elements, each approxi-
mately 300 base pairs (bp) in length, are among the most abundant
SINEs observed in any organism; over one million copies of
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Alu elements are dispersed throughout the human genome'’.
Although immobile, endogenous retroviruses (ERVs) are a
type of abundant retroelement, with human ERVs (HERVs)
accounting for 8% of the human genome'’. HERV's have shaped the
evolution of the human genome, regulatory networks, and innate
immune responses'’. The residual expression capacity of many
HERVs can regulate genes and influence host immunity”**'.
Class 2 elements, or DNA transposons, transpose through a
mechanism involving a DNA intermediate. DNA transposons are
estimated to constitute over 3% of the human genome,
encompassing at least 125 different families exhibiting a
respective copy number of 100 or more”.

Transposon insertions are heritable and may spread vertically
within a population and horizontally within species®**. Natural
selection and genetic drift are important determinants of the evo-
lutionary fate of transposon insertions, with most extant insertions
being neutral or only mildly deleterious to the host*. Upon ini-
tial transposition, however, the majority of insertions are pre-
sumed to be disruptive of gene function at the insertion locus.
Additionally, transposon insertions, whether deleterious or not,
may promote chromosomal rearrangements by providing foci
for non-allelic homologous recombination'”*?’. Consequently,
numerous mechanisms have evolved through which host
organisms moderate or tolerate transposition.

A variety of regulatory mechanisms functioning at the tran-
scriptional and post-transcriptional levels act to limit trans-
position. In eukaryotes other than plants, PIWI-interacting
RNAs (piRNAs) are a primary and well-studied mechanism of
transposon silencing'****. piRNA-mediated inhibition of trans-
position is reviewed in Ozata et al’’. In animals and plants,
small interfering RNAs (siRNAs) derived from transposable
element loci trigger transposon silencing. Small RNAs can
inhibit the transcription of neighboring genes at the site of
transposon insertion through the deposition of repressive
epigenetic modifications’'. In mouse embryonic stem cells,
transposable elements are suppressed by heterochromatic his-
tone modifications, such as H3K9me3, and are regulated by a
host of epigenetic modifiers*”. In mammals, Kruppel-associated
box (KRAB) zinc-finger proteins bind transposable element
sequences, with significant impact on retrotransposons, and
recruit KRAB-associated protein-1 (KAP1/TRIM28), nucleat-
ing interactions with multiple proteins that generate a repressive
chromatin architecture at the transposon insertion locus*-.

DNA methylation has been recognized as an important mecha-
nism combating transposition. Methylation and other means by
which DNA modifications regulate transposition are reviewed
in Deniz et al.”’. ATP-dependent chromatin remodelers in mam-
mals and plants recruit methylases to produce a repressive
chromatin state inhibiting transposition'®**. 5-methylcytosine
is one of the more well-studied DNA modifications, and cyto-
sine methylation is linked with repressed transposition*—.
In zebrafish embryos, global DNA hypomethylation caused
by mutations in the DNA methyltransferase gene dnmtl
has been associated with widespread induction of class I ret-
rotransposons and subsequent activation of cytoplasmic
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DNA sensors, mimicking a viral infection®. In early studies,
Zhou and colleagues™ found that the Neurospora crassa
LINE-like 7Tad retrotransposon inserted in the 5’-non-coding
sequence of the am glutamate dehydrogenase gene -carries
a de novo cytosine methylation signal that causes reversible
methylation of Tad and am upstream sequences. This methyla-
tion inhibits 7ad expression and transposition, and the inhibi-
tion can be relieved by treatment with the drug 5-azacytidine,
which reduces cytosine methylation. In addition to 5-methylcy-
tosine, several studies suggest a role for N6-methyladenine in
regulating transposition’’**. N6-methyladenine has been iden-
tified across prokaryotes, archaea, and eukaryotes, although it
is not abundant in metazoans*~’. In Escherichia coli, activity
of the Tn/O transposon is highly elevated in strains with
decreased levels of N6-methyladenine from mutation of the
dam N6-methyladenine methyltransferase®. In zebrafish, N6-
methyladenine is enriched at repetitive elements, including
LINE-1, LTR, and DNA transposable elements’.

As proposed by Barbara McClintock and subsequent research-
ers, transposons have evolved commensal or mutualistic
strategies with host organisms, contributing to the widespread
evolutionary success of transposable elements™. Mutualism has
been commonly observed in prokaryotes, as transposons
and conjugative plasmids frequently shuttle antibiotic resist-
ance genes”. Prokaryotic mobile genetic elements may carry
genes beneficial to their host, encoding secretion proteins,
cation efflux pumps, copper resistance proteins, and pro-
teins in restriction modification systems’®. Numerous catabolic
genes are present on transposons, including insertion sequence
composite transposons, underlying the tendency of many
catabolic genes to undergo genetic rearrangements’’. The
origin of the CRISPR (Clustered Regularly Interspaced
Palindromic Repeats)-Cas system presents a striking exam-
ple of mutualism between host and mobile genetic elements.
Over the past 15 years, we have observed the widespread rec-
ognition of CRISPR-Cas systems as an adaptive immune
response in bacteria and archaea’*'. By these well-studied
systems, “spacer” sequences from phage and plasmids are
inserted into CRISPR sequence arrays; resulting CRISPR tran-
scripts are processed, such that the phage sequences are loaded
onto Cas proteins for recognition of the foreign genome. The
CRISPR-Cas adaptation module for the integration of for-
eign DNA fragments as unique spacers in the CRISPR array is
proposed to have evolved from a superfamily of Casl-
encoding genetic elements that were likely mobile, termed
Casposons (reviewed in 62,63).

Examples of mutualism are also evident in eukaryotes. In
jawed vertebrates, the Recombination Activating Gene (RAG)
proteins 1 and 2 mediate the site-specific double-stranded
DNA breaks necessary for V(D)J recombination and share
mechanistic and structural similarities with several families
of transposases®. Notably, the RAG proteins are thought to
have evolved from the ProtoRAG DNA transposon family®.
ProtoRAG was demonstrated to encode RAG1- and RAG2-like
proteins that constitute an active endonuclease and transposase
in vitro and in living cells, and structural analysis through
X-ray crystallography and cryo-electron microscopy of the
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RAG]1-like transposase Transib from the moth Helicov-
erpa zea has identified many mechanistic details relevant to
our understanding of cut-and-paste transposition®. Transpos-
able elements may contribute to the establishment of telomere-
like sequences in Drosophilid species lacking telomerase. In
nearly all Drosophila species, telomeric repeats have been
replaced with arrays of non-LTR retrotransposon sequences®’.
In Drosophila melanogaster, three families of Jockey-like retro-
transposons act cooperatively to enable their own amplification
and, consequently, the maintenance of telomeric sequence®.
Furthermore, the G2/Jockey-3 family of non-LTR retrotrans-
posons contributes directly to the function and organization of
centromeric sequences in D. melanogaster’. Transposable ele-
ments can carry virulence genes in some fungal pathogens’'.
In the ciliate Oxytricha trifallax, a family of DNA trans-
posons are mobilized during meiosis, cooperatively contribut-
ing to the remodeling of the germline micronucleus and somatic
macronucleus. RNAi-based silencing of the transposases
encoded by this family of transposons impairs cell growth and
causes cell death owing to aberrant micronuclear and macronu-
clear development™™". Proteins derived from ERVs have been
coopted repeatedly to promote cell-cell fusion, regulate the
expression of genes important for human pregnancy, and modu-
late immune responses in the placenta’®’’. Cosby et al’* fur-
ther review host—transposon interactions towards understanding
the impact of transposition on genome organization and biology.

Transposable elements modulate gene expression
Transposons are highly abundant in genomes and can encode
promoter sequences, splice sites, transcriptional termina-
tor sequences, binding sites for multiple transcription factors,
and sequences that modify chromatin conformation’**". Con-
sequently, transposable elements play significant roles in
regulating the expression of nearby genes®, and important
findings elucidating the regulatory role of transposons in
modulating gene expression are reviewed in Rebello er al.*.

From an evolutionary perspective, transposable elements may
have played an important role in the development of tran-
scriptional regulatory networks, as internal promoters and
binding sites for host transcription factors are evident in
transposable element sequences®. Transposition may have
promoted the distribution of these regulatory elements, with
subsequent selection resulting in the evolution of regulatory
pathways*®. Among these regulatory elements, enhancer-
like epigenetic features have been identified, particularly in
the LTRs of ERVs. Todd er al.* identified a large set of puta-
tive enhancers overlapping with ERV-encoded LTRs in mouse
embryonic and trophoblast stem cells, although in siru evalu-
ation of enhancer activity indicates that the majority of these
elements do not exhibit enhancer function. Work in humans®*-*
indicates that primate-specific LTRs encoding putative enhancers
impact gene transcription in situ to a greater degree than do the
elements observed in mouse stem cells, highlighting the
need for further consideration of these sequences. Tellier and
Chalmers® identified a broad impact on the human transcrip-
tome from the SETMAR protein methylase, which is a fusion
between a SET-domain protein methylase and the HsMarl
transposase. This work demonstrates that the DNA-binding
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domain of the transposase targets the enzyme to residual
transposon-end sequences, allowing for the regulation of gene
expression dependent on methylase activity.

Recently, Gagliardi and colleagues” identified an interesting
transposon-based mechanism for the regulation of gene expres-
sion at the HaWRKY6 locus in the sunflower genome. Analysis
of expressed sequence tags corresponding to this locus revealed
a non-coding RNA derived from an inverted repeat (IR) of the
Miniature IR Transposable Element (MITE) family situated
600-800 bp upstream of the HaWRKY6 transcriptional start
site. MITEs are 50-to-500 bp non-autonomous transposable
elements with terminal IRs typically found in gene-rich regions
of plant genomes’. Transcripts from the IR elements are
processed into 24-nucleotide siRNAs, which trigger DNA
methylation and nucleate the formation of tissue-specific
chromatin loops at the HaWRKY6 locus (Figure 1). In sun-
flower leaves, an intragenic loop forms, comprising the regula-
tory region of the HaWRKY6 gene up to its fourth intron. This
looped conformation inhibits the expression of HaWRKY6,
likely by blocking movement of RNA polymerase II. In coty-
ledons, however, an alternative loop forms, encompassing
the full HaWRKY6 gene and enhancing its transcription. The
formation of this loop changes RNA polymerase II direc-
tionality, which may reduce transcription of the IR region,
decrease siRNA production, and ultimately release the
looped conformation. This elegant mechanism highlights
the broad, and potentially undiscovered, functions that
transposons may fulfill in regulating gene expression.

Transposon-based phenotypic screening

Transposons have been employed at length as laboratory rea-
gents for the facile construction of mutants, including gene
disruption/replacement alleles, promoter fusions resulting in
altered timing and levels of transcription, and translational
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fusions for the construction of various chimeras includ-
ing epitope/fluorescent protein-tagged products. Relative to
chemical treatments for DNA mutagenesis, transposon-based
approaches provide a marked and defined mutation that can
be easily identified in mutants of interest by virtue of the trans-
poson sequence itself. CRISPR—Cas gene editing is a relevant
means of generating genomic mutations. While targeted muta-
genesis by CRISPR-Cas is a powerful strategy, CRISPR-based
approaches do not readily allow for the scale of mutations
needed to saturate a large genome. Furthermore, CRISPR—Cas
strategies are not currently applicable for genome-wide
screens in multicellular organisms. In contrast to targeted
mutagenesis approaches, transposons can be used to gener-
ate a larger number of mutations with economy of labor and
cost, although transposition bias can complicate genome-wide
studies where saturating coverage is desired”~*. Insertion
bias and the gene density of the targeted genome will impact
the observed density of coverage by transposon mutagenesis;
genomes with relatively small intergenic spaces are more easily
saturated by transposon mutagenesis. Strategies employing
in vitro mutagenesis with subsequent insertion alleles being
introduced into the relevant organism by DNA transformation and
approaches utilizing transposon mutagenesis in vivo have been
used for large-scale studies. The applicability of these respec-
tive approaches depends on the density of mutations desired
and the degree of insertion bias demonstrated by the transpo-
son. In vitro transposition systems may provide less insertion
bias and greater coverage, although the applicability of such
systems is dependent upon the availability of efficient meth-
ods for the chromosomal integration of exogenous DNA. Nota-
bly, saturating in vivo mutagenesis has been performed in
yeast™. Many early applications of transposon mutagenesis were
used for genome-wide phenotypic analysis in prokaryotes and
eukaryotes” ", and transposon-based approaches continue to be
utilized today.

Alternative HaWRKYE®6 locus

Region 2 (R2) Region 3 (R3)

} E4

ncRNA-W6

Exon 2
(R )X 7] (H e e
Region 1 (R1)

HaWRKYE6 locus

Figure 1. An inverted repeat (IR) transposable element regulates chromatin topology at the HaWRKY6 locus in sunflower. A simplified
representation of the HaWRKY6 locus is shown, with opposed arrows indicating an IR transposable element and boxed segments indicating
exons (E). Regions to which small RNAs (sRNAs) were mapped are indicated (regions R1-R3). The altered chromatin structure of the locus
in cotyledons and leaves is diagrammatically presented. The chromatin loop encompasses the HalWRKY6 gene in cotyledons, enhancing
transcription, while an intragenic loop forms in leaves, inhibiting transcription. The locus and exons are not drawn to scale.

Page 5 of 12



Recent screening strategies have incorporated barcodes in the
transposon, enabling the construction of barcoded mutant librar-
ies that can be effectively multiplexed or analyzed in parallel
for large-scale phenotypic analysis'”’. Helmann er al.'® utilized
random bar-coded transposon mutagenesis to identify genes
contributing to the fitness of the bacterial plant pathogen Pseu-
domonas syringae. In this work, a collection of 281,417
mutant P syringae strains in the B278a background were
generated by random mutagenesis using a DNA-barcoded
variant of a Mariner transposon. The library encompassed
169,826 strains containing an insertion within a known gene,
representing 84% of the protein-coding genes in P. syringae.
By virtue of the incorporated barcodes, amplicon sequenc-
ing of the barcoded regions was used as a relative meas-
ure of abundance of each mutant strain and a proxy of strain
fitness in pooled populations. The analysis identified at least 392
genes predicted to be essential for the growth of strain B278a
under standard laboratory conditions. The work further iden-
tified a set of P. syringae genes required for its colonization
of the surface and interior habitats of the bean Phaseolus vul-
garis, collectively highlighting the utility of barcoded transposon
sequencing for genome-wide mutagenesis screens.

Chang and colleagues'” have adapted transposon mutagen-
esis for genome-wide phenotypic screening in mice through an
approach enabling the easy identification of mice with inser-
tions, while requiring relatively modest numbers of mice and
researchers. This work utilized a modified form of the DNA
transposon piggyBac for use in mammalian cells and mammals.
Classic systems contain a non-autonomous piggyBac transpo-
son cassette, for the delivery of exogenous genes of interest
flanked by the piggyBac IR sequences, and a transgene express-
ing the piggyBac transposase, enabling induced transposition in
the germline'"’. Binding of the transposase to the IR sequences
results in the excision and reintegration of the cassette at
another locus. The study by Chang er al.'” presents a piggyBac
construct with a conditionally regulated promoter for gene
overexpression and a stop cassette with splice acceptor and
poly(A) signal for efficient disruption of target transcription.
Furthermore, the transposons are visually trackable, utilizing
a red fluorescent protein transgene and a codon-optimized
luciferase gene. Luciferase gene activity is disrupted by inser-
tion of the piggyBac construct, and luciferase activity is restored
upon excision of the insertion, providing a convenient means
of visually tracking transposon mobilization. For genome-wide
mutagenesis of the mouse germline, a transgenic line was
generated carrying 10 copies of the piggyBac transposon. By
this clever approach, Chang and colleagues implemented a
cost-effective and efficient pilot first-generation F1 dominant
screen for growth retardation phenotypes in mice.

The Sleeping Beauty transposon system has been used for
mutagenesis in somatic tissue and holds strong potential util-
ity for the analysis of cancer and other phenotypes both in vitro
and in vivo''"''>. The Sleeping Beauty system consists of the
eponymous transposase and transposon, initially found in the
genome of salmonid fish in the late 1990s'". Sleeping Beauty
transposons have been used extensively for insertional
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mutagenesis in embryonic stem cells'", somatic tissues

and germline tissues''’~'". Sleeping Beauty transposons have
been used to identify colorectal cancer-related genes in a mouse
model'”. Recently, Grisard and colleagues'”' utilized a
Sleeping Beauty-based forward genetic screen, coupled with
single cell assays, to uncover regulators of metastatic color-
ectal cancer. The analyses identified the microRNA MIR23-b
and BTBD7 as prognostic predictors of colorectal cancer
metastasis, illustrating the utility in transposon mutagen-
esis relative to chemical, radiation, or viral mutagenesis for
analyses of putative biomarker functions prior to clinical

122

applications of liquid biopsy assays'*.

115,116
s

Transposons as vectors for gene therapy

DNA transposons have emerged as viable vectors for gene ther-
apy (reviewed in 123), such that numerous proof-of-concept
studies of transposons for ex vivo and in vivo therapy in
disease models now exist. Approaches including codon
optimization of the transposase, the engineering of hyperac-
tive transposases, and modification of transposon terminal
repeats have improved transposition efficacy, enabling stable
gene transfer in stem/progenitor cells and in differentiated cell
types. With respect to Sleeping Beauty, hyperactive variants of
its transposase have been generated through methods for in vitro
evolution and selection'”* and structure-based design/molecular
engineering'”. Sleeping Beauty systems have been used
for the delivery of transgenes up to 8 kb in length'”®, and
Sleeping Beauty has been used in phase I trials to generate
CD19-specific Chimeric Antigen Receptor (CAR)-T cells for
immunotherapy relevant to the treatment of non-Hodgkin lym-
phoma and acute lymphoblastic leukemia'”’. Rational protein
design has been used to generate a Sleeping Beauty transposase
with high solubility and stability that can be effectively deliv-
ered with transposon DNA to genetically modify cell lines,
embryonic stem cells, hematopoietic stem cells, and induced
pluripotent stem cells. This approach has been used to generate
CAR-T cells, exhibiting potent antitumor activity in vitro and in
xenograft mice'”*. The transposase for piggyBac has been modi-
fied by approaches utilizing codon optimization'*’ and the incor-
poration of site-specific mutations'*’. The piggyBac system
is capable of delivering DNA cargo up to 100 kb in length'!,
including full-length human dystrophin for the treatment
of dystrophic mesoangioblasts'*>. The 7ol2 transposon sys-
tem can deliver transgenes up to 11 kb in length and has been
used in a number of transgenesis studies in zebrafish and other
organisms'**~'%_ although the efficiency of Tol2-based gene
transfer may not be as high as that observed in Sleeping
Beauty or piggyBac systems'*°.

RNA-guided transposon insertion

RNA-directed transposition provides a promising experimen-
tal approach for the generation of targeted insertions, and the
CRISPR—Cas system is proving to be important for this work.
Bioinformatic analyses have identified CRISPR-Cas systems
encoded on transposons, with the CRISPR-derived
sequences potentially fulfilling a role wunrelated to host
organism defense'’'*. Variants of the E. coli transposon
Tn7 (Figure 2A) have been found to encode CRISPR-Cas

some
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systems. Classically, Tn7 encodes TnsE, which contributes to
random Tn7 transposition in conjugal plasmids and replicat-
ing DNA, as opposed to targeted insertion mediated through
TnsD at attTn7 Tn7 attachment sites'”. Tn7 variants encod-
ing CRISPR-Cas systems lack sequence-encoding orthologs
of TsnE, and the CRISPR—Cas systems lack the Cas proteins
needed to acquire novel spacers and the nucleolytic activity
to cleave targets'”’. Genes enabling target recognition are still
present, suggesting that the transposons might utilize CRISPR
effectors, thereby guiding transposition to targets defined
by the spacers in the CRISPR arrays.

Two groups have recently demonstrated RNA-directed inser-
tion by Tn7 relatives containing CRISPR-Cas. Strecker and
colleagues'* analyzed a Tn7-related CRISPR-associated trans-
posase from the cyanobacterium Scyfonema hofimanni, called
CAST (Figure 2B). The transposase consists of Tn7-like trans-
posase subunits TnsB, TnsC, and TniQ and the type V-K CRISPR
effector Cas12k. This Tn7-like transposition can be directed to
target sites by CRISPR-Cas-mediated RNA-guided targeting.
Tn7 transposition can be reprogrammed to insert DNA into
targeted sites in the E. coli genome with frequencies of up to
80% without positive selection. Klompe et al.'*' identified a
Vibrio cholerae CRISPR—Cas effector complex in the element
Tn6677 (Figure 2C) that can direct an accompanying Tn7-
derived transposase to integrate DNA 48-50 bp downstream
of a genomic target site complementary to a guide RNA. The
Tn6677 element encodes TnsA, TnsB, TnsC, and TniQ. This
transposition involves the formation of a complex between the
DNA-targeting complex Cascade and the cas-encoded trans-
position protein TniQ, an ortholog of E. coli TnsD. The pres-
ence of TnsA allows for cut-and-paste transposition that would
result in a simple insertion event. As indicated above, the
CAST element lacks TnsA, and thus cleavages at the transpo-
son 5’-ends leading to simple insertions are presumably pro-
vided by a host factor and not a component of the transposase.
Maximum transposition of the Tn6677 element occurred with a
775 bp transposon donor, requiring 105 bp of sequence at the
Tn6677-left terminus and 47 bp of the right-end terminus.
Programmable transposition of the V. cholerae Tn6677 element
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(Figure 2C) was observed across dozens of unique target
sites, indicating the potential utility in these techniques as
a means of achieving site-specific DNA insertions in bacte-
ria without the generation of a dangerous double-strand break.
Notably, CRISPR—Cas mutagenesis results in a double-strand
break for repair by either non-homologous end joining or homol-
ogous recombination. RNA-guided transposition holds the
potential to enable targeted genomic insertion of transposable
elements with potentially large cargoes at selected sites con-
stituting “safe havens”, thereby diminishing the risk of
unanticipated insertional mutagenesis.

Aside from the relevance of RNA-guided transposition as a tool
for biotechnology, the identification of transposon-encoded
CRISPR-Cas variants poses interesting and unanswered
evolutionary questions as to the apparent selective advantage
in this biological design. CRISPR—Cas-guided transposition is
thought to have evolved independently at least three times in
Tn7-like elements'*”-'*. As discussed by Dimitriu et al.'*, this
mechanism is far from ubiquitous, suggesting that balanced
costs and benefits are at play in the evolution of systems for
RNA-guided transposition. The ability of transposons to
hijack CRISPR-Cas effector machinery may be advantageous
as a means of biasing transposition towards mobile genetic ele-
ments for enhanced horizontal transfer; however, it is unclear
how these CRISPR-Cas systems lacking genes needed for
spacer acquisition would be able to identify rapidly evolv-
ing mobile genetic elements. Strecker er al.'* suggest that host
CRISPR-Cas machinery may capture spacers for insertion
into Tn7-encoded CRISPR arrays. Klompe and colleagues'*!
found that the vast majority of type I-F CRISPR—Cas
systems within the Vibrionaceae family are associated with
mobile genetic elements, consistent with the possibility that
RNA-guided DNA integration may facilitate the sharing of
innate immune systems and virulence mechanisms through hori-
zontal gene transfer. Regardless of the evolutionary pressures
that have driven this unexpected interrelationship, RNA-guided
transposase systems are primed to be an important and rap-
idly expanding area of study in biotechnology and evolutionary
biology fields.
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Figure 2. Sequence structure of the Tn7 transposon and derivatives encompassing clustered regularly interspaced palindromic
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boxes and constituent genes shown as arrows. The diagram is based on the structure of the Escherichia coliR721 shufflon. B) The structure
of the Vibrio cholerae Tn6677 transposon is shown. Tn7-derived elements and the CRISPR array are indicated. C) A representation of the
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Along these lines of generating higher efficiency systems for
directed DNA delivery, Bhatt and Chalmers'* have recently
co-opted Cas9 to target integration in vitro through the recon-
stituted Mariner-family transposon HsMarl. For this work,
a chimeric protein was generated consisting of the HsMarl
transposase fused to the amino terminus of E. coli dCas9.
The transposase and Cas9 moieties in the chimera were able
to bind their respective substrates. Furthermore, the fusion
protein was effective in targeting HsMarl activity in vitro,
resulting in unidirectional integrations with a targeting
efficiency of more than 50%. It remains to be determined if this
approach will be effective and sufficiently selective in vivo in
large genomes. Hew et al.'* fused a hyperactive form of the
piggyBac transposase to catalytically dead high-fidelity SpCas9-
HF1 (dCas9). The researchers introduced mutations to the
native DNA-binding domain of piggyBac, decreasing non-
specific transposase binding and favoring binding of the chimera
by dCas9. By this approach, transposition was directed to
the safe harbor CCR5 sequence using appropriately designed
guide RNAs. The insertion profile of Sleeping Beauty
has been biased through fusion of its transposase, or an
N-terminal fragment of its transposase, with DNA-binding and
protein dimerization domains'*'*. Ongoing work in the Ivics
laboratory is addressing the modification of Sleeping Beauty tar-
get site selection using dCas9 and a single guide RNA against
the Alu retrotransposon for integration in genomic regions that
are otherwise poor targets for Sleeping Beauty transposition'’.
Cumulatively, the findings speak to the potential utility in
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harnessing CRISPR-Cas technology for RNA-targeted transpos-
able element integration.

Transposon-related studies in biological disciplines
The studies above highlight the current breadth of research
interests touching on the biology of transposable elements.
Mechanisms of transposition and the interplay between trans-
posons and host systems have been foci for intensive research
efforts over some time, and the persistent and important ques-
tions that remain regarding these topics of study continue to prime
investigations of the molecular basis of transposition and its uti-
lization or avoidance of host biological processes. The impact of
transposition on gene expression and function at insertion loci
is substantial, and the disease implications of transposons as
hotspots for mutation are still being understood. Transposons
have also been utilized as significant tools for large-scale phe-
notypic screening, and recent discoveries of CRISPR-Cas-
guided transposition hold high potential in facilitating targeted
DNA integration without the off-target mutagenic potential
of approaches utilizing homologous recombination. Collec-
tively, the coming years are likely to witness expanding interest
in transposon biology towards scientific advancements and
the establishment of broad human health benefits.
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