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Abstract

Background: Microbiome studies commonly use 16S rRNA gene amplicon sequencing to characterize microbial
communities. Errors introduced at multiple steps in this process can affect the interpretation of the data. Here
we evaluate the accuracy of operational taxonomic unit (OTU) generation, taxonomic classification, alpha- and
beta-diversity measures for different settings in QIIME, MOTHUR and a pplacer-based classification pipeline,
using a novel software package: DECARD.

Results: In-silico we generated 100 synthetic bacterial communities approximating human stool microbiomes
to be used as a gold-standard for evaluating the colligative performance of microbiome analysis software. Our
synthetic data closely matched the composition and complexity of actual healthy human stool microbiomes.
Genus-level taxonomic classification was correctly done for only 50.4–74.8% of the source organisms. Miscall
rates varied from 11.9 to 23.5%. Species-level classification was less successful, (6.9–18.9% correct); miscall rates
were comparable to those of genus-level targets (12.5–26.2%). The degree of miscall varied by clade of organism,
pipeline and specific settings used. OTU generation accuracy varied by strategy (closed, de novo or subsampling),
reference database, algorithm and software implementation. Shannon diversity estimation accuracy correlated
generally with OTU-generation accuracy. Beta-diversity estimates with Double Principle Coordinate Analysis (DPCoA)
were more robust against errors introduced in processing than Weighted UniFrac. The settings suggested in the
tutorials were among the worst performing in all outcomes tested.

Conclusions: Even when using the same classification pipeline, the specific OTU-generation strategy, reference
database and downstream analysis methods selection can have a dramatic effect on the accuracy of taxonomic
classification, and alpha- and beta-diversity estimation. Even minor changes in settings adversely affected the
accuracy of the results, bringing them far from the best-observed result. Thus, specific details of how a pipeline is
used (including OTU generation strategy, reference sets, clustering algorithm and specific software implementation)
should be specified in the methods section of all microbiome studies. Researchers should evaluate their chosen
pipeline and settings to confirm it can adequately answer the research question rather than assuming the tutorial or
standard-operating-procedure settings will be adequate or optimal.
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Background
Complex microbial communities colonize and affect a
variety of environments, including our own bodies.
Next-generation sequencing of amplicons from a taxonom-
ically informative gene (like the small subunit ribosomal
RNA gene) is useful for estimating the composition of mi-
crobial communities and has been widely applied in diverse
environments. Evaluating and optimizing the accuracy of
this technique requires a gold standard for which one
knows the true composition of the community.
Popular software packages for microbiome studies

include QIIME [1] and MOTHUR [2]. The flow for
most microbiome software is similar. The amplicon se-
quences are clustered into operational taxonomic units
(OTUs)—sequences with sufficient similarity to be con-
sidered as arising from the same organism in the initial
community. Analysis can proceed at that level, associating
clinical outcomes with the presence or absence of a given
OTU, calculating microbial alpha-diversity (richness and
evenness) of the community, or beta-diversity (distance)
between communities, with the OTU as a marker. Re-
searchers often proceed to a classification step to identify
each OTU as representing a given already-known organism
in a shared reference database. This process can connect
the OTU sequences to the larger body of microbiological
research, converting associations into a deeper understand-
ing of the members of the community and their capabilities.
Even within a given analysis pipeline, there are a variety of
settings to be selected: Which OTU generating strategy
should be used; which clustering algorithm; which classifier
and reference database?
Using constructed mock-communities as a gold-standard

allows for a detailed assessment of the effects of DNA stor-
age, extraction, PCR enzymes and primers, sequencing
technique and classification software. The DNA extraction
technique and PCR conditions dramatically affect accuracy
of the technique more than sequencing platform, and
in ways that are not easily addressed by software [3–5].
Community composition can affect the reliability of the
results [6] and result in bias, with more complex commu-
nities particularly challenging [7]. Spiked in DNA into real
samples has been successfully employed to test beta-
diversity measuring techniques [8]. Standardized mock
communities have been created to facilitate future work in
this productive area [9].
In-silico data can serve as a gold standard as well,

allowing uncultivated organisms and more complex
communities to be considered, something not possible
or practical with mock communities. Using in-silico simu-
lations, early clustering algorithms were found to be overly
stringent when generating OTUs [10]. The different
alignments produced by references databases affected
the quality of the downstream results [11]. Average
neighbor clustering algorithms performed better in OTU

generation [12], with large differences in output between
algorithms [13]. The Clostridiales order was identified as
particularly challenging for software to properly cluster
[14]. In-silico data has been used to optimize the PCR pri-
mer selection process [15, 16] and identify misidentified
sequences [17].
Despite all of this excellent work, it remains a challenge

for a researcher performing a microbiome experiment, a
reviewer critically evaluating a study for publication, or a
reader considering the validity of the study to determine
which pipeline, selected OTU strategy, reference database
and classification tactics are the best—or even adequate in
accuracy and precision—to support the conclusions of the
study. In most papers, the standard methods described in
the tutorials for the respective pipelines are used.
Here, we developed a software package DECARD (De-

tailed Evaluation Creation and Analysis of Read Data) to
generate realistic synthetic datasets for which we have a
known source of the sequences to be used as a gold
standard when evaluating microbiome analysis software.
We used DECARD to synthesize in-silico communities
that approximate those we observe in healthy human
stool to test the colligative performance of different
microbiome analysis pipelines and settings in an ideal-
ized setting of no novel organisms and perfect PCR and
sequencing or limited simulated sequencing and PCR er-
rors. We performed in-silico PCR followed by simulated
sequencing of the amplicons. The resultant amplicons
were classified with QIIME, MOTHUR and a pplacer-
based [18] classifier. We compared the outputs of each
classification method against the true origins of the ampli-
cons. We assessed for robustness, accuracy and resolution.
All experiments were done with simulated MiSeq and
454-style amplicons, with and without simulated sequen-
cing errors. Unless specified, results were similar for 454
and MiSeq, with or without simulated sequencing errors.

Results
Synthetic community generation
We generated 100 communities with a composition
(specific clades of organisms, down to the genus level)
and diversity (evenness and richness) similar to our esti-
mates of normal stool. We used data from the healthy-gut
cohort of the human microbiome project and our own
samples from healthy donors to estimate the composition
of a typical gut microbiota and define mathematical pa-
rameters (mean fractional abundance, standard deviation
of fractional abundance, and number of species to be rep-
resented per genus) suitable for the DECARD “generate
target module” (Additional file 1: Tables S1–S4). Figure 1a
shows the community profile of the real stool microbiome
data as compared to the synthetic communities, demon-
strating similar representations of clades between our syn-
thetic and real data. For diversity we used the approach
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suggested by [19], calculating diversity scores across Hill
values of −1 to 5, with results shown in Fig. 1b. As we
intended, at the extremes of the Hill value (low empha-
sizes rare organisms, high dominant organisms), our simu-
lated populations had a higher diversity than the estimates
from real data from healthy human stool (from the human
microbiome project and stool samples from eight healthy
donors). In the core range of Hill numbers from zero to
one (the latter approximating the exponent of Shannon
Diversity) our synthetic data closely matches that of the
real data.
For each amplicon we know the true origin organism

(represented by a full-length unambiguous 16S sequence
from a reference organism deposited in the NCBI micro-
bial 16S database on Silva database), with an associated
full taxonomy.

OTU generation
We then asked how well the various pipelines were at
forming operational taxonomic units or OTUs. Each
OTU (or clustered-together set of sequences) is meant
to represent an organism in the initial community, suitable
for unit measures of community diversity, for correlation
analysis and for classification to a named organism.
There are three broad strategies used to generate OTUs:

Closed OTU generation strategies align to a reference set,
and cluster all amplicons aligning to the same reference
sequence. De novo OTU-generation uses pairwise clus-
tering to assemble amplicons into groups—often with
some sort of identity thresholding or difference metric.
Subsampled (Sub) OTU generation [20] is a hybrid of
the two techniques, starting with a closed strategy, and
then taking all of the unmatched amplicons remaining
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Fig. 1 Estimated Real versus Synthetic Health Human Stool Microbiota. a Each column represents one sample. Each band represents one organism.
The height of each band of color is proportional to the relative abundance of each sequence type. Taxonomically similar organisms are closer in color.
Colors are by phylum (inspired by a gram stain): Blue and purple for Firmucutes; orange for Bacteroides; Tan and pinks for Proteobacteria. Estimated
relative abundances from real data are on the left and underlined in purple for healthy donor human stool microbiota, blue for the human microbiome
project samples; synthetic data is on the right, and underlined in green. b The diversity of the each microbiota (synthetic in green, healthy donor in
purple and Human Microbiome Project (HMP) in blue) for Hill numbers varying from −1 to 5, in 0.5 intervals. Solid lines are the mean, and dashed lines
span the 95% confidence interval after bootstrapping 5000 iterations (with replacement) for the mean
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and assembling them into OTUs via a de novo OTU-
generation process.
To test OTU generation we took the amplicons gener-

ated from our 100 communities through QIIME, Mothur
and a pplacer-based classification pipeline to generate
OTUs. For QIIME, we attempted several different methods
of OTU generation available in that package. Mothur uses
a unique approach, including dereplication, alignment to
the Silva reference database, further dereplication and
finally clustering with Uclust; we consider this a closed
strategy, given the discarding of sequences that do not align
to the Silva reference. The pplacer-based pipeline uses an
open OTU generation strategy via the swarm algorithm
[21] (with pplacer itself agnostic to the OTU strategy and
algorithm used).
For each amplicon we know the true origin organism.

We can use this knowledge to ask if pairs of amplicons
from the same organism are paired into OTUs by the
classifier (true match), or not (false split). Similarly, for
pairs of amplicons from different organisms we can ask
if the pipeline correctly split these reads (true split), or
incorrectly matched them into OTUs (false match). These
results (with known true positives and true negatives, and
tested outcomes for the same) are suited to the familiar
sensitivity (true match over the sum of true match and
false split) and specificity (true split over the sum of true
split and false match) metrics used to evaluate tests. In
this situation, sensitivity drops as incorrect splitting of
amplicons increases. Conversely, specificity declines as
amplicons are incorrectly matched by a pipeline.
Figure 2 shows the distribution of sensitivity, specificity

and percentage of amplicons dropped for the different
pipelines, settings and strategies used for OTU generation
for MiSeq data, without (Fig. 2a) and with simulated error
(Fig. 2b), respectively, as a set of box-and-whiskers plots.
Not surprisingly, in the idealized circumstance of perfect

sequencing and PCR, the rate of false splitting of
amplicons from the same organism into different OTUs
was rare to non-existent, resulting in most sensitivities
at 1. Specificity also approached 1, demonstrating that
sequences from different organisms were only rarely
lumped together. While the differences between settings
and communities were significant by a paired Student’s
T-test, the practical differences were slight.
With the addition of simulated sequencing errors in

Fig. 2b, both the sensitivity (false splitting) and specificity
(false matching) worsen, but remain modest. De-novo
OTU generation with UCLUST-based methods consist-
ently performed more poorly than Swarm-based methods,
particularly as reflected by more incorrect splitting of
amplicons during classification (statistically significantly
different as compared to all other tested settings by a
paired Student’s T-test with a target p-value of < 0.05).
With and without simulated sequencing error, closed

OTU generation resulted in some dropped amplicons, a
feature either non-existent or minimal in the sub or de
novo OTU generation strategies.

Classification
Classification is the process by which the clusters of
amplicons generated in the OTU step are taxonomically
assigned (and named). All of these pipelines take con-
sensus amplicon sequences from each OTU, aligned
against a set of (named) reference sequences; based on
the alignment scores, names and taxonomies are se-
lected for each OTU. Differences between pipelines arise
in the selection of reference set, in how the alignments
are completed and judged, and in how ties or similarly
scoring alignments are settled with different names or
taxonomies.
All of the source amplicons on our synthetic dataset

have a name (almost exclusively to the species-level) and
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Fig. 2 Assessment of OTU Performance. On the left are the various conditions tested. The first column specifies the pipeline, the second the
strategy, the third the methodological details (e.g. reference set or algorithm used). Abbreviations: gg is GreenGenes. Sub is Subsetted OTU
generation. a No sequencing error. b Simulated sequencing error
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a defined taxonomy. For each true organism, we have a
set of associated amplicons. Each of these amplicons can
be: correctly classified (to the desired resolution, species
or genus); under-called in the correct clade but not
down to the desired rank; miscalled as a sibling, with the
correct parent but wrong final identification (e.g.
Streptococcus intermedius as S. mitis); overcalled down
the right clade but overconfidently (e.g. as a strain when
only a species should be called); miscalled down the en-
tirely wrong clade; or dropped, and lost at this or an
earlier stage.
Tables 1 and 2 summarize the performance of the

pipelines using MiSeq data with simulated sequencing
error, and targeting to species-level (Table 1) or genus-
level (Table 2) resolution. Genus-level classification is
correctly done for 50.4–74.8% of the source organisms,
with QIIME, de-novo OTU generation and a curated
subset of the Silva 123 reference set (as in Mothur) as
the most successful strategy. Genus-level miscall rates
varied from a low of 11.9–23.5%. Species-level classifica-
tion was significantly less successful, (6.9–18.9% correct);
when targeting species-level classification, miscall rates
were comparable to those of genus-level targets (12.5–
26.2%).
Table 3 shows the relative performance of all the pipe-

lines (and all data types) broken down by the order of
the source organism. The ability of pipelines to correctly
resolve organisms varied by the clade of the organism,
particularly when considering the magnitude of error (by
ranks off ). Among the orders heavily represented in a
typical stool sample, all pipelines struggled when attempt-
ing to classify Enterobacteriales and Clostridiales; perform-
ance for Bacteroidales was consistently stronger.
Additional file 2: Figure S1 shows the true as compared

to estimated relative abundance from three randomly
selected synthetic communities and subjectively dem-
onstrates the integrated effects of both misestimating

in OTU generation and classification on complexity
and composition of the community.

Shannon index estimation
The Shannon Index [22] is a commonly used metric for
describing the alpha-diversity (both evenness and num-
ber of distinct organisms) of a community. Diversity is a
key feature of microbial communities, and a meaningful
way to compare communities. As diversity is mostly
used as a comparator between communities, what we
wish is for our estimates to be monotonic with the true
diversity. To test how well each classifier estimates di-
versity, for each community we calculated a Spearman’s
correlation coefficient when comparing the true diversity
of the community to that estimated for a given pipeline
as a test of monotonicity. Monotonicity is allows for sys-
tematic under or overestimation of true diversity, but re-
tains the ability to accurately compare communities—and
thus is a realistic and meaningful means of evaluating the
pipeline output. Figure 3 graphically shows the results as
scatter plots for MiSeq data with simulated error. The
pplacer-based classifier achieved the best results with
Spearman’s R2 of 0.96; the poorest performance was from
Uclust-based de novo OTU generation, with a Spearman’s
R2 of 0.77. Overall, de novo OTU generation via Swarm
resulted in significantly better results (regardless of sur-
rounding pipeline) than other methods (as determined by
bootstrapped 95% confidence intervals from 1000 itera-
tions with replacement).

Pairwise distance estimation
The pairwise distance between two communities is a fre-
quently used beta-diversity metric employed in clustering,
multidimensional scaling, principle component analysis
and other methods to demonstrate the relationships
between communities. Again, as a comparator, ideally
the estimated pairwise distance between communities

Table 1 Species Level Classification

Pipeline OTU Strategy OTU algorithm Reference Undercalled (%) Undercalled
(Ranks off)

Correct (%) Misscalled (%) Miscalled (Ranks off) Lost (%)

QIIME Closed GreenGenes 55.8 1 (1–4) 18.9 22.3 4 (1–10) 3.0

QIIME Sub UClust GreenGenes 63.3 1 (1–3) 12 24.5 4 (1–10) 0.2

QIIME Sub UClust Silva 77.1 1 (1–6) 8.8 13.8 4 (1–14) 0.2

QIIME De novo UClust GreenGenes 61.4 1 (1–3) 12.2 26.2 4 (1–10) 0.1

QIIME De novo UClust Silva 77.7 1 (1–3) 8.7 13.4 4 (1–12) 0.1

QIIME De novo Swarm GreenGenes 61.5 1 (1–4) 12.4 25.9 4 (1–10) 0.1

MOTHUR Closed Silva/RDP 54.6 1 (1–3) 6.9 21.9 10 (4–12) 16.6

pplacer De novo Swarm RDP 68.2 1 (1–8) 18.1 12.5 4 (1–10) 1.2

Summary of Classification Performance. On the left are the various conditions tested. The first column specifies the pipeline, the second the OTU strategy, the
third the methodological details (e.g. reference set or algorithm used). Table 1 is for species-level classification, Table 2 is for genus-level. Source organisms can be
correctly called, undercalled (in the correct clade, but not the target species or genus level classification), or miscalled (placed down the wrong taxonomic clade).
We present both the percentage in each category (correct, undercalled, and miscalled) and the median (min and max parenthetical) taxonomic ranks off for
underacalled and miscalled source organisms
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would be monotonic as compared to the true pairwise
distance. Some means of calculating distance consider
the relationships between organisms phylogenetically
when weighting the differences in their abundance,
such as UniFrac [23] (weighted or not) and double
principle coordinate analysis (DPCoA) [24]. The ration-
ale is phylogenetically-related organisms contribute
similar functions to communities and the functional
similarity should be considered as part of a distance be-
tween communities. Weighted UniFrac has become the

dominant method in the field for pairwise distance
measurement.
We used the Spearman’s correlation coefficient to test

the monotonicity between the true pairwise distance be-
tween communities and the estimated pairwise distance
by the different pipelines. Figure 4 shows the results as a
series of density plots for weighted UniFrac and DPCoA.
QIIME with closed OTU generation against the green

genes database (the method described in the QIIME tutor-
ial) has a distinctive method for phylogeny generation. As

Table 2 Genus Level Classification

Pipeline OTU Strategy OTU algorithm Reference Undercalled (%) Undercalled
(Ranks off)

Correct (%) Misscalled (%) Miscalled (Ranks off) Lost (%)

QIIME Closed GreenGenes 24.0 1 (1–3) 53.7 19.3 4 (1–9) 3.0

QIIME Sub UClust GreenGenes 27.8 1 (1–3) 50.4 21.6 4 (1–9) 0.2

QIIME Sub UClust Silva 11.6 1 (1–5) 74.8 13.4 4 (1–13) 0.2

QIIME De novo UClust GreenGenes 22.9 1 (1–3) 53.5 23.5 4 (1–9) 0.1

QIIME De novo UClust Silva 12.0 1 (1–3) 74.6 13.3 4 (1–11) 0.1

QIIME De novo Swarm GreenGenes 26.3 1 (1–3) 50.5 23.1 5 (1–9) 0.1

MOTHUR Closed Silva/RDP 5 1 (1–2) 56.5 21.9 9 (1–11) 16.6

pplacer De novo Swarm RDP 31.7 2 (1–7) 55.2 11.9 4 (1–9) 1.2

Summary of Classification Performance. On the left are the various conditions tested. The first column specifies the pipeline, the second the OTU strategy, the
third the methodological details (e.g. reference set or algorithm used). Table 1 is for species-level classification, Table 2 is for genus-level. Source organisms can be
correctly called, undercalled (in the correct clade, but not the target species or genus level classification), or miscalled (placed down the wrong taxonomic clade).
We present both the percentage in each category (correct, undercalled, and miscalled) and the median (min and max parenthetical) taxonomic ranks off for
underacalled and miscalled source organisms

Table 3 Classification outcomes by order for all pipelines

Order Percent Ranks Off

Correct Miscalled Undercalled Dropped Miscalled Undercalled Total

Verrucomicrobiae 57.4 0.0 35.6 7.1 0.0 0.5 0.5

Lentisphaeria 30.9 0.0 57.5 11.5 0.0 1.3 1.3

Fusobacteriales 23.9 8.0 51.0 17.2 0.6 0.5 1.2

Acholeplasmatales 22.6 13.1 54.3 10.0 0.8 1.0 1.8

Pasteurellales 19.5 36.9 34.0 9.6 1.8 0.4 2.2

Bacteroidia 15.8 8.2 67.1 8.9 0.6 0.8 1.3

Lactobacillales 13.9 11.9 65.7 8.6 0.8 0.8 1.7

Selenomonadales 12.9 13.8 65.3 8.0 0.6 0.9 1.5

Mycoplasmatales 12.3 65.9 10.7 11.2 5.5 0.6 6.1

Clostridiales 10.0 30.9 48.7 10.5 1.8 0.8 2.6

Deltaproteobacteria 9.1 7.5 74.8 8.6 0.6 1.3 1.9

Burkholderiales 8.0 29.1 56.0 6.9 1.2 0.6 1.8

Actinobacteridae 7.8 15.2 70.1 6.9 1.0 0.8 1.8

Coriobacteridae 7.7 11.1 74.0 7.3 0.9 1.6 2.5

Erysipelotrichales 7.4 2.9 81.7 7.9 0.2 1.5 1.8

Enterobacteriales 2.2 37.9 50.0 10.0 2.3 1.0 3.3

Rhodospirillales 0.0 85.3 0.0 14.7 5.2 0.0 5.2

Classification Performance by Order of Source Organism. Combined performance for all pipelines and settings, broken down by the order of the organism. Correct
are correctly classified organisms. Miscalled are organisms that are classified into the wrong clade. Undercalled are organisms placed into the correct clade, but at
the higher order than species
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per the tutorial, one prunes the pre-made phylogenetic
tree from greengenes (made from full length 16S se-
quences) down to the leaves recruited in the classification
step. For the case of the pplacer-based pipeline, the re-
cruited full-length 16S sequences are used to generate
a de novo phylogeny. The other methods construct a
de novo phylogeny from the amplicon sequences. The
GreenGenes phylogeny performed distinctly and particu-
larly poorly when compared to the true phylogenetic-based
distance (based on the true full length 16S sequences from
which the amplicons were generated assembled into a
phylogeny with MG-RAST), regardless of distance metric
(Spearman’s R2 of 0.049 or 0.033 for Weighted UniFrac or
DPCoA respectively, as compared to all other settings
resulting in a Spearman’s R2 of 0.54–0.97).
For settings resulting in a Spearman R2 around 0.7

(QIIME Sub OTU generation with the GreenGenes
database for the closed portion, and Uclust for de novo
and Mothur), DPCoA proved significantly more robust
than weighted UniFrac. For setting resulting in a Spear-
man R2 in the 0.9’s (QIIME with de novo OTU gener-
ation by Uclust and the pplacer-based pipeline) weighted
UniFrac was significantly better as a technique.

Discussion
Amplicon-based approaches to describe complex micro-
bial communities have theoretical limitations, including
limited information available in some variable regions of
taxonomically informative genes (like the 16S rRNA
gene), and horizontal gene transfers scrambling the rela-
tionship between taxonomy and phylogeny. With a careful
selection of a proper computational pipeline and settings
for the pipeline one can achieve results close to theoretical
limits for a given community type. A lack of close atten-
tion to these variables when selecting computational tools
and settings can lead to skewed results.
Constructed communities remain an invaluable tool for

optimizing methods for DNA storage, extraction, PCR
and sequencing. DECARD and other in-silico techniques
to generate a gold standard are complementary, with an
ability to objectively evaluate the computational aspects of
amplicon-based microbiome studies. In the current iter-
ation, DECARD tests a relatively idealized circumstance in
which there is no novel organism (organisms not repre-
sented in a reference set) in the communities. DECARD

Target

Spearman R2 = 1.0 (1.0 - 1.0)

QIIME. Closed OTU. GreenGenes.

Spearman R2 = 0.855 (0.778 - 0.910)

QIIME. Sub OTU. Uclust. GreenGenes.

Spearman R2 = 0.844 (0.766 - 0.903)

QIIME. Sub OTU. Uclust. Silva.

Spearman R2 = 0.816 (0.724 - 0.888)

QIIME. De novo OTU. Uclust.

Spearman R2 = 0.760 (0.647 - 0.846)

QIIME. De novo OTU. Swarm.

Spearman R2 = 0.938 (0.899 - 0.965)

Mothur. Closed OTU. RDP and Silva.

Spearman R2 = 0.879 (0.813 - 0.926)

pplacer. De novo OTU. Swarm.

Spearman R2 = 0.959 (0.932 - 0.977)

Fig. 3 True versus Estimated Shannon Diversity. In each scatter plot,
the x-axis is the true Shannon diversity for a community, and the y-axis is
the estimated for the given pipeline. The top graph is true-versus-true for
comparison in the others. We used Spearman’s correlations coefficients
(inset, with 95% confidence intervals in parentheses) to test for
monotonicity (consistency) of the estimates to true
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cannot assess how pipelines handle novel organisms, nor
is it ideal for testing PCR or sequencing errors.
Even with these limits, for healthy human stool-like

communities we discovered careful selection of reference
sets, curation of reference sets and improved OTU gener-
ation techniques can all improve the accuracy of results.
Shannon for alpha-diversity proved quite robust with the
more optimal settings (e.g. Swarm-based de novo OTU
generation). For beta-diversity, DPCoA was superior to
weighted UniFrac when OTU generation was less robust.

Classification and taxonomic assignment to the species
level remains a challenge for all of the pipelines, particu-
larly in highly relevant orders like Enterobacteriales and
Clostridiales. We hypothesize the clade-dependent per-
formance to be primarily related to phylogenetic and
taxonomic (or genomic) divergence in these clades—where
the 16S sequence has less correlation with the overall
function of the organism.
We were surprised at the significant challenges in

classification. In our preliminary studies, we used 16S

Spearman R2  = 0.542 (0.521 - 0.562)

Spearman R2  = 0.897 (0.890 - 0.902)

Spearman R2  = 0.917 (0.912 - 0.922)

Spearman R2  = 0.881 (0.873 - 0.888)

Spearman R2  = 0.754 (0.741 - 0.766)

Spearman R2  = 0.974 (0.972 - 0.976)
pplacer. 
De novo OTU. 
Swarm. 
Filtered RDP.

Spearman R2  = 0.887 (0.879 - 0.893)

Spearman R2  = 0.892 (0.886 - 0.898)
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Spearman R2  = 0.876 (0.868 - 0.882)

Spearman R2  = 0.821 (0.811 - 0.831)
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Uclust. 
Silva.

QIIME. 
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Fig. 4 True versus Estimated Pairwise Distance. In each density plot, the x-axis is the true pairwise distance and the y-axis is the estimated
pairwise distance between communities. We used Spearman’s correlations coefficients (inset, with 95% confidence intervals in parentheses) to
test for monotonicity (consistency) of the estimates to true. The left column is pairwise distance as calculated by Weighted UniFrac distance.
The right column is pairwise distances as calculated by double principle coordinate analysis (DPCoA)
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SSU rRNA exclusively from reference organisms or
complete genomes to generate our synthetic reads without
simulated PCR or sequencing errors; even in this very ide-
alized circumstance, classification success was limited in a
similar way to the data presented here.
We speculate duplicated, misannotated and imperfectly

sequenced entries in reference databases contribute to
classification errors. Further, an amplicon sequence can
match multiple reference database entries with different
taxonomic classifications, due to duplicated sequences
and the amplicon region sequence being shared between
distinct full-length sequences. How a pipeline handles this
ambiguity can affect the result quality. We favor classifiers
that reflect the ambiguity and offer higher rank classifica-
tions in this situation.
It’s imperative for reproducibility and interpretability

of results that researchers include the specific method
details in microbiome studies: the version of the software
used; the specific OTU-generation strategy (closed, de
novo, sub, etc.) and details (algorithm and reference data-
base, including version or date); and the specific tactic
used for classification and the version or date of the refer-
ence set selected. We demonstrate here that seemingly
minor differences in these details can have a meaningful
and statistically significant impact on the validity of the
outputs. It is insufficient for good science to simply specify
the software pipeline used. Nor is it sufficient to use the
settings in the tutorials or standard operating procedures
of a computational pipeline and assume the results will be
optimal.
We demonstrate here that with some optimization of

the settings selected, the amplicon-sequence based esti-
mation of microbial communities remains a valuable
technique. But investigators should strive to optimize
the reliability of their results and understand how the
computational pipeline selected and specific settings
chosen may influence results as they design and interpret
experiments.

Conclusion
Amplicon-based methods for describing complex micro-
bial communities can be accurate and precise, but only
with careful attention to settings and method details.
Synthetic datasets and constructed communities will
help researchers select these settings and details. The
methods and classification details must be included
when microbiome studies are published to ensure repro-
ducibility and validity.

Methods
Reference sequence curation
Near-full length (>1000 bp) 16S ribosomal rRNA se-
quences with no ambiguous bases were acquired from
the NCBI 16S microbial (downloaded on April 21 2016)

and Silva 16S (version 123) rRNA databases. Sequences
were categorized to genus and then species. When mul-
tiple sequences were available for a given species, all of
the sequences for a given species were clustered and
outliers dropped—defined as sequences greater than the
90th percentile in distance from the nearest centroid
using the deenurp [25] package in filter outlier mode.

Stool microbiome estimation
The mean and standard deviation of relative abundance
of genera from a random selection 100 of stool micro-
biomes from the NIH Human Microbiome Project and
from healthy hematopoietic stem cell donors were used to
determine the composition of a typical stool microbiome.

Defined community creation
The generate_targets.py module picks specific
sequences and their relative abundance to generate com-
munities. A CSV file is taken as an input to define the
community characteristics; each row is a genus, with a
targeted mean and standard deviation for fractional
abundance. Each genus is also given parameters, either a
mean and standard deviation number of species to be in-
cluded for this genus, or parameters (a, b) for the log
function:

n ¼ a � log fð Þ þ b

Where n is the number of species, f is the fractional
abundance of this organism in the community.
Using these parameters, the module selects specific

reference sequences, and then calculates the fraction of
the community that this specific reference sequence
(and organism) represents.

In-silico PCR and amplicon generation
The generate_sequences.py module of DECARD
takes the target file generated in the community creation
step, a desired read depth and a FASTA file containing
the primer sequences and performs in-silico PCR to gen-
erate amplicons with a known origin. For simulated 454
sequencing, we used a read depth of 5000 reads per
community, and the human microbiome project (HMP)
primers (F (357F): CCTACGGGAGGCAGCAG. R (926R):
CCGTCAATTCMTTTRAGT). For Illumina MiSeq simula-
tions, we used a read depth of 50,000 per community, and
the EMP primers (F (U515F): GTGYCAGCMGCCGCGGTAA.
R (806R): GGACTACNVGGGTWTCTAAT).
For each reference read in the target file, the number

of reads is calculated by multiplying the target fractional
abundance by the read depth. Provided the rounded
value is at least one, in-silico PCR is performed by align-
ing primer sequences to the reference sequence, testing
for annealing at the 3′ end of the primer and a sufficient
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degree of sequence similarity. Amplicons are then taken
by slicing from the 5′ to 3′ primer, a unique ID is gener-
ated, and the combination stored in FASTA format in a
new file. Separately, a mapping file is generated connect-
ing the sequence ID to a source reference accession, or-
ganism and taxonomy.

Error generation
The resultant amplicon files are run through the ART
[26] to simulate sequencing errors. art_454 was used for
454-style sequencing. We used our own recent 454 data
to build a new error model (available in supplemental
materials). For Illumina MiSeq style data, art_illumina
was used to generate simulated paired-end reads with a
length of 250 bp, using the built-in MiSeq error model.
For each simulated amplicon, one read with sequencing
error was generated.

Calculation of species diversity of real and synthetic data
As per [19], we used the formula:

qD ¼
XS

i¼1

pqi

 ! 1
1−q

Where qD is the species diversity, q is the Hill number,
S is the number of organisms, pi is the relative abundance
of organism i. For q = 1, we took the limit of q = 1. To
calculate 95% confidence intervals, we bootstrapped
with replacement 5000 iterations.

QIIME classification
Quantitative Insights Into Microbial Ecology (QIIME)
[1] open-source software (version 1.9.1) was used fol-
lowing the standard operating procedures on the web-
site. The default QIIME settings for preprocessing were
used, including filtering out sequences that had any
ambiguous bases or homopolymer runs longer than 6.
For simulated 454 sequences, the length requirement
was modified to be between 200 and 1000 and a more
lenient maximum ambiguous base of 6. The communities
where errors were introduced had either a minimum aver-
age quality score of 25 or a minimum Phred quality score
of three and truncation at three consecutive poor quality
base calls.
We used three OTU picking strategies with default

parameters: de novo, closed and subsampled open-
reference [20]. In de novo, sequences are clustered into
centroids with each cluster fulfilling the 97% identity
with Uclust version 1.2.22q [27] or with a local
difference of one with Swarm [21]; a representative se-
quence for each OTU is aligned with PyNAST [28] to a
reference set for taxonomy assignment, either Green-
Genes [29] version 13.8 or Silva version 119 [30]. In

closed OTU picking, sequences were queried against
the reference database (Greengenes version 13.8) at the
default 97% identity with Uclust for clustering, Uclust
classifier with Silva version 119 (97% OTU), or Swarm
classifier with Greengenes (version 13.8). In sub-sampled
open-reference OTU picking, sequences were first queried
against the reference database (Greengenes version 13.8)
and if matched they were classified with Uclust (fast uclust
settings). From the pool of sequences that did not match a
reference OTU at greater than 97% percent identity,
0.001% sequences were subsampled and clustered de
novo. These cluster centroids were used as new reference
OTUs for the remaining pool of sequences that had not
matched an OTU in the reference database. Alternative
runs of subsampled open reference OTU picking included
using Silva version 119 as reference database.

MOTHUR classification
Mothur [2] (version 1.36.1) was employed following the
standard operating procedures from the website. For
preprocessing the sequences were screened for having
no ambiguous bases and maximum homoploymer run 8.
In the communities with simulated error we combined
the paired end reads with all quality scores higher than
25 considered acceptable, and used a 50-bp sliding win-
dow (miseq data) or trim sequence with average quality
score drops below 30 over a 50 base window (454 data).
The preprocessed sequences were de-duplicated and
aligned to a 50,000–column wide SILVA-based reference
database (Silva version 123, previously trimmed to the
section of 16S rRNA genes amplified by the PCR primer
used to generate the amplicons) using a NAST-based
aligner.
Aligned sequences were filtered to remove any se-

quences that contain just gaps, and this was done prior
to deduplication and a merge of all sequences that had
two or fewer base pairs different. Next chimeras (which
were defined as having at least three bases more similar
to a chimera of reference sequences than to a single ref-
erence sequence) were identified with Uchime [31] and
removed. Finally sequences were classified with RDP
[32] version 14 with a bayesian classifier (RDP) with a
kmer size of 8, 100 iterations and a cutoff of 80% boot-
strap value for taxonomic assignment.

pplacer classification
This classification was done as in [33], using a pplacer-
based pipeline. The 14.0 revision of the RDP reference
database [32] (in turn culled from the NCBI databases)
was broken down into reference sequences with well-
formed species names (e.g. genus, species) and those
without names (e.g. ‘uncultured bacterium’) using the
deenurp package. Potentially mis-annotated reference
sequences were identified using “deenurp filter_outliers”
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using the default parameters on the basis of within-
species pairwise distances and discarded. Only the
named references were used for the subsequent steps.
The synthetic reads were first clustered into OTUs via

simple dereplication for 454 reads (combining identical
sequences) or with Swarm [21] for MiSeq reads to a
local difference of 1, and dropping of singleton clusters.
The resultant representative sequences were then used
to recruit sequences from the named reference set (using
“deenurp select_references” with default parameters).
Following recruitment of reference sequences, species
that were the only representatives of a genus were iden-
tified as “lonely” taxa; additional reference sequences
representing closely related species from the same genus
were added (using “deenurp fill_lonely” with default param-
eters) to provide additional taxonomic context. pplacer [18]
was then used to place the representative sequence reads
onto the reference tree. The placed sequences were then
classified using guppy (part of the pplacer package) with
the ‘hybrid2’ classifier.

Standardization to a common output format
For each classification pipeline considered, DECARD
has modules that convert the pipeline output to a com-
mon table mapping each sequence to an OTU and clas-
sification. This OTU table is in CSV format with the
following headers:
seq,community,otu_id,ncbi_rank,name,ncbi_

tax_id,taxonomy_string,weight

Testing of OTU generation
The OTU tables can be compared to the mapping file
with the test_otu.py module of DECARD. For each
pair of sequences, we determined if they were or were
not from the same source, and then determined if the
classifier appropriately split or matched the sequences in
the OTU generation step. For each community, we used
the results of these pairwise tests to determine specificity
(truly from different sources divided by the sum of truly
from different sources + incorrectly matched pairs) and
sensitivity (truly from the same source divided by the
sum of truly from the same source and incorrectly split
pairs) of the OTU generation step.

Assessment of classification accuracy and precision
The test_classification.py module of DECARD
takes the OTU output, the mapping file and a target rank
(species or genus) and then scores the classification per-
formance. Sequences are grouped by their source acces-
sion. The classification of the sequences is compared to
their true source, and scored as visually described in
Additional file 3: Figure S2.

Shannon diversity and pairwise distance calculation
Shannon diversity and pairwise distance calculations
were completed via the Phyloseq package in R. [34]. For
tree-based distance metrics (UniFrac, DPCoA), a phyl-
ogeny was generated to be used as a ‘true’ phylogeny
with RaXML from an alignment generated by cmalign of
the full length source 16S SSU rRNA sequences from
which the amplicons were generated in-silico to create
the community.

Additional files

Additional file 1: Table S1–S4. Community composition definitions.
(ZIP 11 kb)

Additional file 2: Figure S1. True versus Estimated Relative Abundance
for Three Synthetic Communities. Each band represents one organism.
The height of each band of color is proportional to the relative abundance
of sequence types. Taxonomically similar organisms are closer in color.
Colors are by phylum (inspired by a gram stain): Blue and purple for
Firmucutes; orange for Bacteroides; Tan and pinks for Proteobacteria. The
left-most column for each community is the true composition of the
community. The second column is as estimated by Mothur, the second
as by our internal pplacer-based classifier, the third as by QIIME with
Uclust-based de novo OTU generation and then classification against
Silva, the fourth QIIME with closed OTU generation and classification
against the GreenGenes reference. (EPS 615 kb)

Additional file 3: Figure S2. Possible Classification Outcomes.
(EPS 1039 kb)
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