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Abstract

Oxytocin (Oxt) is known to regulate social communication, stress and body weight. The activation of Oxt receptors
(OTR) has clinical potential to abate stress disorders and metabolic syndrome. Kamikihito (KKT) is a traditional Jap-
anese medicine used to treat psychological stress-related disorders. We investigated the effects of KKT, its ingredients
and chemical components on Oxt neurons and OTR. C-Fos expression was examined after oral and peripheral admin-
istration of KKT in rats. Electrophysiological change of Oxt neurons and Oxt release upon application of KKT were
measured in rat brain slice. The direct effect of KKT, its ingredients and its chemical components were examined by
cytosolic Ca2þ ([Ca2þ]i) measurement in Oxt neurons and OTR-expressing HEK293 cells. Both intraperitoneal and oral
administration of KKT in rats induced c-Fos expression in neurons of the paraventricular nucleus (PVN) including Oxt
neurons. Application of KKT induced activation of Oxt neurons and Oxt release. KKT increased [Ca2þ]i in OTR-
expressing HEK293 cells, and failed to activate with OTR antagonist. KKT-induced PVN Oxt neuron activation was also
attenuated by OTR antagonist. Seven chemical components (rutin, ursolic acid, (Z )-butylidenephtalide, p-cymene,
senkunolide, [6]-shogaol, [8]-shogaol) of three ingredients (Zizyphi Fructus, Angelicae Acutilobae Radix, Zingiberis
Rhizoma) from KKT had potential to activate OTR. KKT can directly activate PVN Oxt neurons by interacting with OTR.
The interaction of seven chemical components from KKT may contribute to activate OTR. Effect of KKT on Oxt neurons
and OTR may contribute to the treatment of Oxt related disorders.

Keywords: Kamikihito, Oxytocin neuron, Oxytocin receptor, Traditional Japanese medicine

1. Introduction

O xytocin (Oxt) is a neuropeptide known to have
important peripheral actions, such as the

contraction of the uterus during labor and milk
ejection [1]. Oxt is produced in the hypothalamus,
mainly in the paraventricular nucleus (PVN) and
supraoptic nucleus (SON), and is released within
the central nervous system or circulation through
the body via the posterior pituitary gland. Recent
studies have revealed that in the brain, Oxt is
considered to be involved in mood control and

psychological stress adaptation [2e4]. Genetic
deletion of Oxt in rodents was reported to increase
anxiety-like behavior, which was reversed by Oxt
treatment [5]. In humans, polymorphism of the Oxt
receptor (OTR) has been reported to be associated
with stress vulnerability [6], and epigenetic alter-
ation of the OTR gene caused by stress in early life
was found to be related to psychological malfunc-
tion [7]. We have also shown in the past that Oxt can
treat metabolic syndrome and obesity in mice
[8e10]. In addition to this, plasma Oxt levels are
known to decrease with age and are considered to
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be related to the pathogenesis of sarcopenia and
osteoporosis [11,12]. Importantly, application of Oxt
is reported to contribute to the recovery of muscle
regeneration and osteoporosis as well.
Recently, external application of Oxt to the central

nervous system (CNS) through nasal spray was re-
ported to be clinically effective in treating patients
with neuropsychological disorders such as autism
and obesity [9e11,13e15].
As the external application of Oxt is effective, a

drug that induces secretion of endogenous Oxt from
Oxt neurons in the hypothalamus would be effective
in the treatment of neuropsychological disorders.
Although such a drug is very much expected, it is as
yet to be discovered.
Kamikihito (KKT), a traditional Japanese (Kampo/

herbal) medicine composed of 14 crude drugs, is
clinically used in Japan for the treatment of neuro-
psychological stress disorders including neurosis,
amnesia, and insomnia [16]. As Oxt and KKT have
common clinical effects, it is possible that KKT has
an effect on Oxt neuron or OTR positive cells. Here,
we analysed the effect of KKT on Oxt neurons in the
hypothalamus and OTR expressing cells. We found
that KKT can directly activate PVN Oxt neurons by
interacting with OTR. We further elucidated seven
chemical components of three ingredients from
KKT that induce PVN Oxt neuron activation.

2. Materials and methods

2.1. Animals

8- to 10-week old Male Wistar rats, transgenic rats
expressing Oxt-monomeric red fluorescent protein 1
fusion gene (Oxt-mRFP rats) [17] aged 6 weeks, and

10-week old male OTR-Venus mice [18] were used
in this study. The animals were kept on a 12-h light/
dark cycle and given conventional food (CE-2; Clea,
Osaka, Japan) and water ad libitum in individual
cages. The lights were turned on at 07:00 am and
turned off at 19:00. All experimental procedure and
care of animals were carried out according to rele-
vant guidelines and regulations and approved by
Fukushima Medical University Institute of Animal
Care and Use Committee.

2.2. Reagents

KKT, Hochuekkito (HE), Shikunshito (SKS) and
Ninjinto (NJ) were kindly provided by Tsumura &
Co (Tokyo, Japan). These Kampo medicines were
manufactured under strict scientific and quality
control, and approved for ethical clinical use by the
Ministry of Health, Labor, and Welfare of Japan.
KKT comprises 14 herbal medicines in fixed pro-
portions (see Table 1). KKT, HE, SKS and NJ were
prepared as spray-dried powders from hot-water
extracts. For in vitro studies, these Kampo medi-
cines were dissolved in an experimental solution
and, after centrifugation at 3000 rpm for 5 min, the
supernatant was filtrated and used. For animal
studies, KKT was orally administered or intraperi-
toneal (ip) injected to rats, as described below.

Table 1. Crude drugs in KKT, Hochuekkito, Shikunshito, Ninjinto.

KKT Hochuekkito Shikunshito Ninjinto

Astragali Radix Astragali Radix
Ginseng Radix Ginseng Radix Ginseng Radix Ginseng Radix
Zizyphi Fructus Zizyphi Fructus Zizyphi Fructus
Angelicae Acutilobae Radix Angelicae Acutilobae Radix
Zingibeiis Rhizoma Zingibeiis Rhizoma Zingibei is Rhizoma
Polygalae Radix
Atractylodis Lanceae Rhizoma Atractylodis Lanceae Rhizoma Atractylodis Lanceae Rhizoma Atractylodis Lanceae Rhizoma
Saussweae Radix
Gardenia Fructus
Longan Aiillus
Buplewi Radix Buplewi Radix
Zizyphi Semen
Glycyrrhizae Radix Glycyirhizae Radix Glycyirhizae Radix Glycyirhizae Radix
Poria Poria

Citii Unshiu Pericarpium
Cimicifugae Rhizoma

Zingibeiis Rhizoma Processum

Abbreviations

KKT Kamikihito
Oxt Oxytocin
OTR Oxytocin receptor
PVN paraventricular nucleus
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Six chemical components of Zizyphi Fructus (ZF),
ten chemical components of Angelicae Acutilobae
Radix (AR) and seven chemical components of Zin-
giberis Rhizoma (ZR) were provided by Tsumura &
Co (Tokyo, Japan) and listed in Table 2. These
chemical components were dissolved in DMSO or
ethanol and used after over 1:1000e1:10000 dilution.

2.3. Immunostaining of c-Fos after KKT
administration

Twenty-two male Wistar rats were used in this
experiment. The rats kept in individual cages were
habituated for 10 days. On the experiment day, food
was removed at 09:00, and oral or ip administration
of KKT was performed at 11:00. The KKT for oral
administration was dissolved in distilled water, and
the dose and concentration was 500 mg/kg/5 mL.
KKT for ip administration was dissolved in saline
and centrifuged for 20 min at 3000 rpm, and the
obtained supernatant was then filtered. The dose
and concentration of KKT for ip administration was

500 mg/kg/10 mL. The dose of KKT was decided
based on the prior studies on effects of KKT
(200e2000 mg/kg oral administration in mice or
rats) [19e22].
Two hours after injection, the rats were deeply

anesthetized by a mixture of three types of anes-
thetic agents (5 mL/kg) (composed of a2 adrenaline
receptor agonist (medetomidine), GABAA receptor
agonist (midazolam), and opioid k receptor agonist
(butorphanol)) and, perfused with 4% PFA con-
taining 0.2% picric acid. Then, 40-mm-thick brain
sections were cut using a freezing microtome. Sec-
tions at 160 mm intervals between �1.3 and �2.1 mm
from the bregma were used for c-Fos immuno-
staining. C-Fos staining was performed similar with
the previous article [23]. Briefly, sections were
rinsed in phosphate buffered saline (PBS: 0.01 M,
pH 7.4) and incubated for 20 min with 0.3% H2O2.
Then, sections were incubated in PBS containing
0.3% Triton-X, 2% normal goat serum (Cat# 005-000-
121; Jackson Laboratories Inc. PA) and 2% bovine
serum albumin (Cat# B2064, Sigma Aldrich, CA)
(BSA) and then incubated with rabbit anti-c-Fos
polyclonal IgG (Cat# sc-52; Santa Cruz, CA; 1:5000)
[8,23] overnight at 4 �C. Subsequently, sections were
washed in PBS and incubated with biotinylated goat
anti-rabbit polyclonal IgG (Cat# BA-1000; Vector
Laboratories Inc., CA; 1:500), and then with avidin-
biotin complex (Cat# PK-6100; ABC kit; Vector
Laboratories Inc., CA). Immunoreactions were
visualized by incubation in a 0.02% dia-
minobenzidine solution containing 0.3% nickel
ammonium and 0.015% H2O2 for 5 min. The num-
ber of c-Fos-positive cells per section was counted
for PVN (5-6 sections/rats) and SON (4-5 sections/
rats) under light microscope. The average of c-Fos in
these sections are treated as individual data.
For double immunostaining of c-Fos and Oxt, c-

Fos staining was performed in the similar methods
as described above except immunoreactions were
visualized by incubation in a 0.02% dia-
minobenzidine solution containing 2% nickel
ammonium and 0.015% H2O2 for 5 min. After
washing, the sections were incubated with rabbit
anti-oxytocin polyclonal IgG (Cat# 20068; Immu-
nostar Inc., WI; 1:5000) [24] for overnight at 4 �C.
Subsequently, sections were washed in PBS and
incubated in PBS containing 2% normal goat serum
(Cat# 005-000-121; Jackson Laboratories Inc. PA) and
2% BSA (Cat# B2064, Sigma Aldrich, CA), and
incubated with biotinylated goat anti-rabbit poly-
colonal IgG (Cat# BA-1000; Vector Laboratories Inc.,
CA; 1:500). Then sections were incubated with

Table 2. Chemical components of Zizyphi Fructus, Angelicas Acutilobae
Radix and Zingiberis Rhizoma.

Ingredients Chemical components Concentrations References

Zizyphi
Fructus

Rutin 0.8-8 mM [56]
Ursolic acid 0.05-2 mg/mL

(0.1-4.4 mM))
[57,58]

Scopoletin N/A
Jujubeside A 1-25 mM [59]
Jujubeside B 0.1-100 mM [60]
Betulinic acid 5 mM [61]

Angelicas
Acutilobae
Radix

(r)-butylidenephthalide 10-50 mM [62]
Bergapten 2.5-100 mM [63]
Umbeliferone N/A
Xanthotoxin 25-100 mM [64]
p-Cymene 50-250 mM [65]
b-Cytosterol N/A
Senkyunolide H 6.25-100 mM [66]
Senkyunolide A 13-80 mg/mL

(68.3-420 nM)
[67]

Falcarinfiol 5-25 mM [68]
Levistolide A 12.5-100 mM [69]

Zingiberis
Rhizoma

[6]-gingerol 1-10 mM [70]
[8]-gingerol 10 mM [71]
[10]-gingerol 5-200 mM [72]
Zingerone 5-15 mM [73]
[6]-shogaol 1-10 mM [70]
[6]-paradol 1-20 mg/mL

(3.7-74.5 mM)
[74]

[8]-shogaol 10-50 mM [75]

Concentrations means the used concentration in vitro experiment
in the each reference indicate right.
N/A: Scopletin and Umberifelone failed to measure [Ca2þ]i due to
toxicity by interaction of excitation light.
N/A: There were no previous reports (in vitro) about b-Cytosterol.
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avidin-biotin complex (Cat# PK-6100; ABC kit;
Vector Laboratories Inc., CA). Immunoreactions
were visualized by incubation in a 0.02% dia-
minobenzidine solution containing 0.015% H2O2 for
5 min. The number of c-Fos-positive cells, Oxt
positive cells and double positive cells per section
were counted for PVN (5-6 sections/rats) and SON
(4-5 sections/rats) under light microscope. The
average of c-Fos in these sections are treated as in-
dividual data.

2.4. Preparation of single PVN neurons and
measurement of [Ca2þ]i and subsequent
immunocytochemistry in single neurons

Nine male Wistar rats were used in this experi-
ment. Single neurons were prepared from the PVN
by using papain, accordingly to the previous report
[8]. Cytosolic Ca2þ concentration ([Ca2þ]i) was
measured by ratiometric fura-2 microfluorometry
combined with digital imaging, as previously re-
ported [8]. Briefly, prepared single neurons on a
glass-bottom dish were incubated with 2 mM fura-
2/AM (Dojin chemical, Kumamoto, Japan) for
30 min at room temperature, placed in a chamber,
and superfused with KRB at 1 mL/min at 30 �C.
Cells loaded with fluorescent dye were illuminated
by alternating 340 and 380 nm, and the resultant
fluorescent images were captured. The ratio (F340/
F380) images were produced by Aquacosmos
version 2.6 (Hamamatsu Photonics, Hamamatsu,
Japan). The concentrations of KKT in the present
study (5e50 mg/mL) for [Ca2þ]i measurements in
single neurons were based on the prior studies
(0.01e10 mg/mL) [19,20]. Therefore, the concentra-
tions of ZF, AR and ZR were also set at 5e50 mg/mL,
accordingly to concentrations used for KKT.
After the [Ca2þ]i measurements, single neurons

were fixed in 4% PFA overnight. For immunocyto-
chemistry, staining was carried out as previously
reported [8]. Briefly, cells were incubated for 20 min
with PBS containing 0.3% H2O2. Then, sections
were incubated in PBS containing 2% normal goat
serum (Cat# 005-000-121; Jackson Laboratories Inc.
PA) and 2% BSA (Cat# B2064, Sigma Aldrich, CA)
and then incubated with rabbit anti-oxytocin poly-
clonal IgG (Cat# 20068; Immunostar Inc., WI;
1:5000) for overnight at 4 �C. Subsequently, cells
were washed in PBS and incubated with bio-
tinylated goat anti-rabbit polyclonal IgG (Cat# BA-
1000; Vector Laboratories Inc., CA; 1:500), and then
with avidin-biotin complex (Cat# PK-6100;
ABC kit; Vector Laboratories Inc., CA). Immuno
reactions were visualized by incubation in a 0.02%

diaminobenzidine solution containing 0.015% H2O2

for 5 min.

2.5. Criteria for [Ca2þ]i responses

Amplitudes of [Ca2þ]i responses to agents were
calculated by subtracting the prestimulatory basal
[Ca2þ]i ratio from the peak [Ca2þ]i ratio. When in-
creases in [Ca2þ]i took place within 5 min after the
addition of agents, and their amplitudes were 0.4 or
larger, they were considered responses. For calcu-
lation of 0 mg/mL of KKT, ZF, AR and ZR, basal
[Ca2þ]i ratio from peak [Ca2þ]i ratio for 5 min within
10 min from onset of measurement was analysed.
To combine individual [Ca2þ]i imaging with

immunocytochemical data, at the end of [Ca2þ]i
imaging, we took photographs of the cell in which
[Ca2þ]i was recorded and correlated [Ca2þ]i data
with immunocytochemical results.

2.6. Electrophysiology

Coronal brain slices (300 mm) containing the PVN
were prepared from transgenic rats expressing Oxt-
monomeric red fluorescent protein (Oxt-mRFP rats).
Seven male Oxt-mRFP rats were used in this
experiment. All electrophysiological experiments
were performed as previously described [25]. KKT,
HE, SKS and NJ were prepared as solution of
500 mg/mL. The concentrations of KKT (500 mg/mL)
for patch clamp in brain slice were decided based on
the concentration of KKT used in single neurons
(5e50 mg/mL). The concentration of KKT in brain
slice patch clamp was set 10 times higher than
concentration of KKT used for [Ca2þ]i measurement
in single neurons. Thus, the concentration of HE,
SKS and NJ were also set at similar concentration
(500 mg/mL). OTR inhibitor, H4928 (BACHEM,
Bubendorf, Switzerland) was applied at 10�7 M. The
concentration of H4928 (10�7 M) was decided based
on the previous study [8].

2.7. Measurement of oxytocin secretion from PVN
slices

Eighteen male Wistar rats were used in this
experiment. The measurement of oxytocin from
PVN was performed accordingly to previous reports
[8,25]. Briefly, Wistar rats aged eight weeks were
deeply anesthetized by a mixture of three types of
anesthetic agents, decapitated, and their brains were
removed. Three 400 mm thick slices were prepared
using a vibrating microtome, and the PVN-con-
taining area was punched out.
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These processes were performed in a buffer
composed of (in mM) 229 mannitol, 3 KCl, 26
NaHCO3, 1H3PO4, 0.5 CaCl2, 7 MgCl2, 7 glucose,
and 1 kynurenate at pH 7.4 with 95% O2 and 5%
CO2 mixed gas.
Prepared PVN slices were incubated at 37 �C for

30 min in artificial cerebrospinal fluid (aCSF)
composed of (in mM) 126 NaCl, 3 KCl, 26 NaHCO3,
1H3PO4, 2 CaCl2 and 1 MgSO4 at pH 7.4, with 95%
O2 and 5% CO2 mixed gas for recovery. Next, the
PVN slices were incubated in aCSF with or without
KKT (500 mg/mL) for 1 h. The concentrations of KKT
(500 mg/mL) for Oxt secretion from brain slice were
decided based on the concentration of KKT used in
brain slice patch clamp experiments (500 mg/mL).
These incubations were performed in pairs (control
and KKT). Secreted Oxt in the supernatant was
determined using an oxytocin ELISA kit (Enzo Life
Sciences) [10].

2.8. Immunostaining of Oxt in OTR-Venus mice

Three male OTR-Venus mice were deeply anes-
thetized by a mixture of three types of anesthetic
agents, and perfused and 40-mm-thick brain sections
were cut using a freezing microtome. PVN con-
taining sections at 160 mm intervals between �0.58
and �1.22 mm from the bregma were used for Oxt
immunostaining. The sections were incubated with
in PBS containing 0.1% Triton-X, 2% normal goat
serum (Cat# 005-000-121; Jackson Laboratories Inc.
PA) and 2% BSA (Cat# B2064, Sigma Aldrich, CA),
and then incubated with mouse anti-oxytocin
monoclonal IgG (Cat# MAB5296; Millipore, CA,
1:1000) [25] for overnight at 4 �C, and incubated with
Alexa flour 594-labelled goat anti-mouse IgG (Cat#
A11005; Life Technologies, CA, 1:400) for 30 min.
Fluorescence images of double positive of oxytocin
and OTR were acquired by using a confocal laser-
scanning microscope (Fluoview FV10i; Olympus,
Tokyo, Japan). Oxt, OTR and double-positive neu-
rons were counted from these confocal images.

2.9. Plasmid construct

The mouse oxytocin receptor (mOTR) gene was
amplified by using the primers 5’- ATA GGG AGA
CCC AAG CTG GCT AGC GTT TAA ATG GAG
GGC ACG CCC GCA GCC -3’ and 5’- GCC AGT
GAA TAA TTC TTC ACC TTT AGA CAT TGC CGA
GGA TGG TTG AGA ACA -3’. The amplified DNA
fragment was incorporated into the multicloning
site in the pcDNA™3.1(þ) plasmid by homogeneous
recombination with primers 5’- ATG TCT AAA
GGT GAA GAA TTA TTC ACT GGC -3’ and 5’-

TTA AAC GCT AGC CAG CTT GGG TCT CCC
TAT -3’. The RFP-encoding gene, which was kindly
provided by Prof. Kazuto Kobayashi of Fukushima
Medical University, was amplified with primers 5’-
CAG AGG AGC TGT TCT CAA CCA TCC TCG
GCA ATG GTG TCT AAG GGC GAA GAG -3’ and
5’-CGA GCG GCC GCC ACT GTG CTG GAT ATC
TGC CTA ATT AAG TTT GTG CCC CAG-3’. The
amplified fragment was incorporated into the C-
terminus of the mOTR gene by homogeneous
recombination with primers 5’- GCA GAT ATC
CAG CAC AGT GGC GGC CGC TCG -3’and 5’-
TGC CGA GGA TGG TTG AGA ACA GCT CCT
CTG -3’. Homogeneous recombination was per-
formed by using the In-Fusion HD Cloning Kit
(Takara Bio, Shiga, Japan).

2.10. Transfection of OTR to HEK293 cells and
measurement of [Ca2þ]i

Cells were cultured in 35 mm a non-coated glass-
bottom dish with antibiotics (0.5% (v/v) penicillin/
streptomycin) in an incubator at 37 �C, 5% CO2.
When the cell confluency reached approximately
50e70% after 48 h incubation, 2.5 mg of OTR plasmid
DNA and 5.0 mL of Lipofectamine2000 reagent were
mixed and incubated for 10 min according to the
manufacturer’s instructions, and applied to the
cells.
HEK293 cells, which were transfected with OTR-

RFP, were incubated with 2 mM fura-2/AM (Dojin
chemical, Kumamoto, Japan) for 30 min at room
temperature, placed in a chamber and superfused
with KRB containing 10 mM glucose at 1 mL/min at
30 �C. The ratio (F340/F380) images were produced
by an Aquacosmos version 2.6. These cells were
applied Oxt (Peptide institute Inc. Osaka, Japan)
(10�9-10�5 M) or KKT (0.5e75 mg/mL). OTR inhibi-
tor, H4928 (10�7 M), was applied under treatment of
Oxt or KKT. Amplitudes of [Ca2þ]i responses to each
agent were calculated by subtracting the prestimu-
latory basal [Ca2þ]i ratio from the peak [Ca2þ]i ratio
within 5 min after onset of agent application.
The concentration of Oxt used for the measure-

ment of [Ca2þ]i responses in cultured HEK cells was
decided based on the prior study (10�11-10�6 M) [26].
The concentration of KKT in measurement of [Ca2þ]i
responses in cultured HEK cells was decided based
on the results shown in Fig. 2d-f (5e50 mg/mL). The
concentration of H4928 (10�7 M) was decided based
on the previous study [8].
The OTR antagonizing experiment using H4928

with Oxt or KKT administrations, the concentrations
of Oxt (10�7 M, which are enough dose to increase
[Ca2þ]i in OTR expressing HEK293 cells) and KKT
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(50 mg/mL, which is the maximum dose to increase
[Ca2þ]i in OTR expressing HEK293 cells) were
decided based on the results shown in Fig. 4l and q.
The concentrations of 21 chemical components of

ZF, AR and ZR were also decided based on data
provided by Tsumura & Co. and the prior in vitro
studies (Table 2). As shown in Table 2, these
chemical components were used in ranges of mM.
Therefore, the concentrations of chemical compo-
nents in ZF, AR and ZR are all used in concentration
of 10 mM in this study.
After measurement of [Ca2þ]i, the cells were fixed

in 4% PFA for 2 h. The cells were mounted on a
cover glass with a mount medium with DAPI
(Vector laboratories, CA). The confocal images were
captured by FV10i (Olympus, Tokyo, Japan). The
percentage of OTR expression was analysed from 15
areas (200 mm � 200 mm/area) from three plates.

2.11. Measurement of plasma concentrations of
carvacrol and quercetin

Three male wistar rats (aged 9 weeks) were used.
Food was deprived at 19:00 before the day of
experiment. On the experiment day, KKT (500 mg/
kg/5 mL) was orally administered at 9:00. Blood
samples were collected from tail vein into potassium
EDTA-treated tubes (BD Microtainer® blood
collection tubes, Becton Dickinson, Tokyo, Japan)
before oral administration (0 min), and at 20, 60 and
120 min after oral administration. Blood samples
were centrifuged at 10,000 g for 10 min, and plasma
samples were stored at �80 �C until analysis.
Plasma concentrations of carvacrol and quercetin

were determined using ultra-performance liquid
chromatography (UPLC) system (Waters Corp.,
Milford, MA) with UV and fluorometric detection.
Myricetin and thymol were used as internal stan-
dards (I.S.) for the quantification of quercetin and
carvacrol, respectively. Sample preparation was
performed using a Monolithic solid-phase extrac-
tion column (MonoSpin® C18, GL Sciences, Tokyo,
Japan) according to the manufacturer’s instruction
with minor modifications. After filtration thorough a

0.22 mm membrane filter (Millex LG, Millipore),
10 mL of the sample solution was injected to the
UPLC system. The mobile phase consisted of 0.2%
formic acid (A) and acetonitrile (B), and chromato-
graphic separation was achieved on an AQCUITY
BEH Shield RP18 column (particle size 1.7 mm;
2.1 mm � 50 mm, Waters) at 40 �C using gradient
elution with a flow rate of 0.6 mL/min. The gradient
program for carvacrol determination was set as
follows: 0e4.0 min, 30e40% B; 4.0e5.0 min, 40e90%
B; and 5.0e8.0 min, 30% B. The gradient program for
quercetin determination was set as follows:
0e4.0 min, 10e30% B; 4.0e5.0 min, 30e80% B; and
5.0e8.0 min, 10% B. Carvacrol was detected with the
excitation wavelength set at 278 nm and the emis-
sion at 306 nm. Quercetin was detected at 370 nm.
The limits of quantification for carvacrol and quer-
cetin were 6 nM and 3 nM, respectively. The mean
intra- and inter-assay coefficients of variance (CV)
for quercetin were 9.9% and 2.3%, respectively. The
mean intra- and inter-assay CVs for carvacrol were
4.9% and 5.2%, respectively. The accuracies for
quercetin and carvacrol were 100 ± 0.6% and
100 ± 6.6%, respectively. Typical chromatograms of
quercetin and carvacrol with the respective I.S. were
shown in Fig. 9b.

2.12. Statistical analysis

All data are presented as mean ± SEM. Numbers
for every experiment (group) are given in the figure
legends and refer to the number of every individual
mouse in the respective group.
Animals used for c-Fos expression after ip or oral

KKT treatment (Fig. 1), were randomly divided into
two group. Animal and cells were given to experi-
menter lacking the information regarding condi-
tions of cells or treatment done to rats in order to
make experimenter blind to treatment or condition.
All data were not treated as technical replicates,
treated as independent values.
For statistical analysis, GraphPad Prism 7.0

(GraphPad Software, San Diego, USA) were used.
After ANOVA, post hoc test were only performed if

Fig. 1. c-Fos expression in the PVN after oral or intraperitoneal (ip) administration of KKT. a, b: c-Fos expression after oral administration of
distilled water (a) or KKT (500 mg/kg) in the PVN (b). 3V: third ventricle. c: Number of c-Fos-positive neurons per section in the PVN (n ¼ 6, 6). deg:
Double staining of c-Fos and Oxt after oral distilled water (d, e) or KKT (f, g). e and g indicate the enlarged image of the dotted area in d and f,
respectively. Arrows indicate c-Fos and Oxt double-positive neurons. h: The percentage of c-Fos-positive neurons among Oxt neurons (n ¼ 6, 6). Scale
bars in a, b, d, f ¼ 100 mm. Scale bars in e, g ¼ 10 mm * p < 0.05, unpaired t-test. i, j: c-Fos expression after ip administration of saline (i) or KKT (500
mg/kg) in the PVN (j). 3V: third ventricle. k: Number of c-Fos-positive neurons per section in the PVN (n ¼ 5, 5). leo; Double staining of c-Fos and
Oxt after ip saline (l, m) or KKT (n, o) administration. m and o indicate the enlarged image of the dotted area in l and n, respectively. Arrows indicate
c-Fos and Oxt double-positive neurons. p: The percentage of c-Fos-positive neurons among Oxt neurons (n ¼ 5, 5). Scale bars in i, j, l, n ¼ 100 mm.
Scale bars in m, o ¼ 10 mm ** p < 0.01, unpaired t-test.

JOURNAL OF FOOD AND DRUG ANALYSIS 2021;29:653e675 659

O
R
IG

IN
A
L
A
R
T
IC

L
E



660 JOURNAL OF FOOD AND DRUG ANALYSIS 2021;29:653e675

O
R
IG

IN
A
L
A
R
T
IC

L
E



F had achieved the significance level of p < 0.05.
Differences are considered statistically significant
when p-values are lower than 0.05. Assessment of
significance was only done for numbers �5.
All data were analyzed without any trans-

formation except the data from the effect of chemi-
cal components of ZF, AR, ZR on measurements of
[Ca2þ]i in OTR-expressing HEK293 cells (Fig. 8).
This is because in order to compare the effect of Oxt
itself to each chemical components on OTR, we
calculated ratio of average of [Ca2þ]i treated with
Oxt as “1”. Thus, the data shown in Fig. 8 are pre-
sented as fold of control mean ratio. The differences
in fold of control mean ratio between OTR(�) and
OTR(þ) were analyzed using unpaired t-test. Con-
cerning with sample size in experiment using
cultured cells, sample size was decided based on the

previous study [27]. Fujitsuka et al. measured [Ca2þ]i
in 100% GHS-R expressing COS cells at n ¼ 8e12. In
our experiment 46% HEK293 cells were transfected
OTR. Thus, it was estimated three times sample size
were considered to be reliable. Therefore we
decided to measure [Ca2þ]i at least n > 30.

3. Results

3.1. Induction of c-Fos expression by peripheral
administration of KKT

Oral administration of KKT (500 mg/kg) in rats
induced c-Fos expression localized in the PVN (con-
trol: 74.6 ± 12.8/section, KKT: 177.9 ± 13.1/section,
Fig. 1aec). There were also significant differences in
the number of c-Fos positive neurons in the SON

Fig. 2. Effects of KKT on the activation of PVN Oxt neurons and the release of Oxt. a: Representative recording of membrane potential from an
identified Oxt neuron in Oxt-mRFP rat. b: Mean membrane potential (þSEM) before, during, and 5 min after 500 mg/mL KKT washout (n ¼ 5). c:
Mean firing frequency (þSEM) before (control), during, and 5 min after 500 mg/mL KKT washout (n ¼ 5). **p < 0.01, one-way ANOVA followed by
Tukey’s multiple range test. d: Representative cytosolic Ca2þ ([Ca2þ]i) chart upon absence of KKT (KKT0), 5 mg/mL (KKT5) and 50 mg/mL (KKT50)
treatment in the single neuron of Oxt. Scale bar ¼ 10 mm. e: Amplitude of ([Ca2þ]i) in each dose of KKT-responsive neurons in the PVN. *p < 0.05,
one-way ANOVA followed by Tukey’s multiple range test. f: Incidence of KKT-responsive neurons in PVN neurons (%). (n ¼ 18). g: Oxt concen-
tration after incubation with or without KKT (500 mg/mL). (n ¼ 9, 9) *p < 0.05, paired t-test.

Fig. 3. Co-localization of Oxt and OTR in the PVN. aec: Confocal images of Oxt (a), OTR (b) and merged image of a and b (c). 3V: third ventricle.
Scale bars ¼ 100 mm. def: Enlarged image of the dotted area in a-c, respectively. Scale bars ¼ 10 mm. Arrow heads indicate representative Oxt and
OTR double-positive neurons. Arrows indicate representative single Oxt immunoreactive neurons. Asterisk (*) indicates representative single OTR
positive neurons.
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(control: 55.2 ± 6.7/section, KKT: 95.1 ± 4.2/section).
The percentage of Oxt neurons among c-Fos positive
neurons in the PVN were significantly higher in the
KKT group (15.4 ± 2.4%) compared to the water-
administered control group (5.0 ± 0.6%) (Fig. 1deh).
It has been known that oral Kampo administration

can change its state of ingredients by the gastroin-
testinal factors such as gastric digestion or gut flora.
In order to examine weather activation of PVN
neurons by KKT is induced by the components of
KKT or by the gastrointestinal factors mediated end
products, we performed i.p injection of KKT to skip
the gastrointestinal factors. Similar results were
obtained when the same dose of KKT was ip
administered (Fig. 1iek). The number of c-Fos pos-
itive neurons after ip injection of KKT in the PVN
and SON were significantly higher (PVN:
156.8 ± 36.5/section, SON: 159.9 ± 20.9/section)
compared with the saline-injected control (PVN:
47.2 ± 20.6/section, SON: 30.2 ± 14.5). The percent-
age of Oxt neurons among c-Fos-positive neurons in
the PVN were significantly higher in the KKT group
(12.8 ± 1.8%) compared to the saline-administered
control group (1.4 ± 0.4%) (Fig. 1lep). These results
indicate that KKT can affect the PVN with both oral
and ip administration, indicating that gastrointes-
tinal factors such as gastric digestion or gut flora has
only small effect if any.

3.2. KKT directly activates PVN Oxt neurons with
secretion of Oxt

Application of 500 mg/mL KKT dramatically
increased the electrical activity of identified Oxt
neurons in the PVN from Oxt-mRFP rats (Fig. 2a).
KKT significantly increased the membrane potential
from a hyperpolarized (�48.2 ± 2.1 mV) to depo-
larized (�36.3 ± 2.3 mV) state (n ¼ 5; p < 0.01)
(Fig. 2b). In parallel with the increase in the mem-
brane potential, the action potential frequency
increased from 0.3 ± 0.2 Hz to 8.4 ± 1.2 Hz (n ¼ 5;
p < 0.001) (Fig. 2c). An increase in firing frequency
was reversed after washing out KKT for 5 min
(0.6 ± 0.5 Hz after washout; n ¼ 5; p < 0.001) (Fig. 2c).

To examine whether KKT had a direct effect on
PVN Oxt neurons, we monitored [Ca2þ]i levels in
isolated single neurons. After finishing [Ca2þ]i
measurements, these neurons were stained immu-
nocytochemically with a specific antiserum for Oxt.
Administration of 5 and 50 mg/mL KKT to single
PVN neurons increased [Ca2þ]i (Fig. 2d) which
neuron was subsequently shown to contain Oxt. The
amplitude of [Ca2þ]i (Fig. 2e) and the percentage of
KKT responsive neurons (Fig. 2f) increased dose
dependently. Seven (38.9%), and eight (44.4%) out of
18 neurons responded to 5 mg/mL and 50 mg/mL of
KKT, respectively. Three out of eight (37.5%) KKT
(50 mg/mL)-responsive neurons were identified as
Oxt neurons.
Data from the electrophysiological experiment

and [Ca2þ]i imaging indicate that KKT directly acts
on PVN neurons including Oxt neurons, and in-
duces its activation.
Next, in order to see whether Oxt neuron activa-

tion by KKT is reflected in the secretion of Oxt, we
measured the amount of secreted Oxt from brain
slices containing PVN with and without KKT by
using a batch incubation technique [25]. As shown
in Fig. 2g, 1-h application of KKT (500 mg/mL)
significantly increased the amount of secreted Oxt,
indicating that activation of Oxt neurons by KKT is
indeed reflected in Oxt secretion.

3.3. OTR expression in the PVN Oxt neurons

Taking the results of c-Fos expression after KKT
administration (oral and ip) and measurement of
[Ca2þ]i under KKT application into consideration,
we hypothesized that KKT may activate Oxt neu-
rons through OTR expressed in the Oxt neurons.
Therefore, we examined the colocalization of Oxt
and OTR in the PVN. By staining Oxt immunolog-
ically in OTR-Venus mice, which express Venus
fluorescent proteins in OTR-expressing neurons,
abundant co-localization of Oxt and OTR in the
neurons of the PVN were identified (Fig. 3). Further
analysis showed that, 52.5 ± 4.2% (696/1240 cells) of
Oxt neurons expressed OTR.

Fig. 4. The effect of KKT on OTR-expressing HEK293 cells. aeh: Representative confocal image of HEK293 cells with (eeh) or without (aed)
transfection of OTR. Among analysis of 2705 cells from 8 plate, 1248 (46.1 ± 3.6%) cell were found to be transfected. a, e indicate bright images. b, f
indicate DAPI nuclear staining. c, g indicate OTR expressing cells. d, h indicate merged images of b and c, f and g, respectively. Scale bars ¼ 10 mm.
iek: Representative [Ca2þ]i images upon applying 10�9M Oxt (i), 10�7 M Oxt (j) and 10�5 M Oxt (k). l: Mean amplitude of [Ca2þ]i in each dose of
Oxt. (�) indicate absence of Oxt (control). (Controln¼ 105, 10�9 M Oxt n ¼ 35, 10�7M Oxt n¼ 35, 10�5 M Oxt n¼ 35). m-p: Representative [Ca2þ]i
images upon applying KKT 0.5 mg/mL (m), 25 mg/mL (n), 50 mg/mL (o) and 75 mg/mL (p). q: Mean of [Ca2þ]i amplitude in each dose of KKT.
0 indicates the absence of KKT (control). (Control n ¼ 242, 0.5 mg/mL n ¼ 72, 25 mg/mL n ¼ 103, 50 mg/mL n ¼ 33, 75 mg/mL n ¼ 34). **p < 0.01,
one-way ANOVA followed by Tukey’s multiple range test.
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Fig. 5. The effect of OTR inhibitor on the effect of KKT in HEK293 cells and PVN Oxt neurons. a: Representative change of [Ca2þ]i image applying
with 10�7M Oxt in HEK293 cells, which was not transfected OTR. b, c: Representative change of [Ca2þ]i image applied with 10�7M Oxt (b) or 10�7 M
Oxt pre-treatment of 10�7M H4928 (c) in OTR-transfected HEK293 cells. d: Representative change of [Ca2þ]i image applying with 50 mg/mL KKT in
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3.4. KKT stimulates cells with OTR expression

Since we found that 50% of PVN Oxt neurons ex-
press OTR, we examined the effect of KKT on OTR-
transfected cultured cells. As shown in Fig. 4aeh,
OTR was expressed in HEK293 cells, and we moni-
tored [Ca2þ]i levels upon application of KKT. As
shown in Fig. 4iel, HEK293 cells with OTR showed

increase in [Ca2þ]i level upon application of 10�9M to
10�5 M Oxt in a dose-dependent manner, indicating
that the HEK293 cells with OTR expression that we
used in this study were properly functional. We then
applied KKT in these cells and measured the change
in [Ca2þ]i level. The application of KKT from 0.5 mg/
mL to 50 mg/mL induced a dose-dependent increase
in [Ca2þ]i level (Fig. 4meq). Because the application

Fig. 6. The membrane potential and firing frequency under treatment of Hochuekkito (HE), Shikunshito (SKS) and Ninjinto (NJ). a, d, g:
Representative recording of membrane potential under treatment of HE (a), SKS (d) and NJ (g) from an identified Oxt neuron in Oxt-mRFP rat. b, c, e,
f, h, i: mean membrane potential (þSEM) (b, e, h) and mean firing frequency (þSEM) (c, f, i) before (control), during, and 5 min after 500 mg/mL HE
(b, c, n ¼ 5), SKS (e, f, n ¼ 5) and NJ (h, i, n ¼ 5) washout. **p < 0.01, *p < 0.05. one-way ANOVA followed by Tukey’s multiple range test.

HEK293 cells, which was not transfected OTR. e, f: Representative change of [Ca2þ]i image applying with 50 mg/mL KKT (e) or 50 mg/mL KKT pre-
treatment of 10�7M H4928 (f) in OTR transfected HEK293 cells. g, h: Mean of amplitude of [Ca2þ]i in each cell and treatment. (g; from left bar, n ¼ 91,
104, 49. h; from left bar, n ¼ 97, 103, 138). **p < 0.01, one-way ANOVA followed by Tukey multiple range test. i, j: Representative recording of
membrane potential with application of 500 mg/mL KKT with pre-treatment of 10�7M H4928 in the Oxt neurons in Oxt-mRFP rat. Two from eight
neurons exhibited slight action potentials, as shown in i, and six from eight exhibited no action potential, as shown in j. k, l: Mean membrane potential
(þSEM) and Mean firing frequency (þSEM) before (control), with H4928 and with both H4928 and KKT treatment (n ¼ 8).
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Fig. 7. The effect of Zizyphi Fructus (ZF), Angelicae Acutilobae Radix (AR), Zingiberis Rhizome (ZR) on [Ca2þ]i in PVN Oxt neurons. a, d, g:
Representative [Ca2þ]i image under treatment of 5 mg/mL (5) and 50 mg/mL (50) ZF (a), AR (d) and ZR (g) in Oxt neurons. b, f, i: Mean of amplitude
of [Ca2þ]i under treatment of 5 mg/mL (5) and 50 mg/mL (50) ZF (b, n ¼ 83), AR (f, n ¼ 44) and ZR (i, n ¼ 15) measured in the PVN neurons.
0 indicates the basal control before treatment of each crude drug. *p < 0.05, one-way ANOVA followed by Tukey’s multiple range test. b, e, h: The
incidence of each dose of ZF- (c), AR- (f) and ZR- (i) responsive neurons in the PVN neurons. The criteria of responsive neurons were described in
detail in the Methods section. j: Representative [Ca2þ]i image under treatment of 50 mg/mL ZF-AR-ZR mixture (MIX) and 50 mg/mL KKT in PVN Oxt
neuron. k: Mean of amplitude of [Ca2þ]i under treatment of MIX and KKT (n ¼ 16). There were no significant differences. Unpaired t-test.
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Fig. 8. The effect of chemical components of Zizyphi Fructus (ZF), Angelicae Acutilobae Radix (AR), Zingiberis Rhizome (ZR) on [Ca2þ]i in
OTR-expressing HEK293 cells. a: Fold of control ((þ)Oxt)) mean ratio under treatment of each chemical components of ZF. (from left bar; n ¼ 244,
274, 35, 35, 35, 35, 245, 208, 98, 35, 105, 35, 65, 34, 35, 33). b: Fold of control ((þ)Oxt)) mean ratio under treatment of each chemical components of
AR. (from left bar; n ¼ 208, 103, 35, 68, 70, 68, 65, 65, 67, 65, 68, 69, 102, 33, 34, 35, 31, 35, 34, 32, 68, 60, 99, 102). c: Fold of control ((þ)Oxt)) mean
ratio under treatment of each chemical components of ZR. (from left bar: n ¼ 206, 210, 35, 35, 65, 67, 35, 35, 35, 35, 65, 34, 70, 104, 102, 102, 70, 67,
32, 35). Each ratios were normalized by the ratio for amplitude of [Ca2þ]i under treatment of 10-5 M Oxt in each experiment. (�) indicates HEK293
cells without OTR expression. (þ) indicates OTR-expressing HEK293 cells. **p < 0.01, *p < 0.05, unpaired t-test.
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Fig. 9. The change of plasma quercetin levels after oral KKT administration and the effects of quercetin on [Ca2þ]i in OTR-expressing
HEK293 cells. a: Plasma quercetin concentration after oral KKT (500 mg/kg) administration at 0, 20, 60 and 120 min (n ¼ 3). b: Typical

668 JOURNAL OF FOOD AND DRUG ANALYSIS 2021;29:653e675

O
R
IG

IN
A
L
A
R
T
IC

L
E



of 75 mg/mL KKT did not further increase the [Ca2þ]i
level compared to that of the level of 50 mg/mL KKT,
50 mg/mL can be considered as a saturated concen-
tration for the effect of KKT on the OTR. The ampli-
tude of [Ca2þ]i in the 10�5 M Oxt was four times
higher to that of the amplitude of [Ca2þ]i in the 50 mg/
mL KKT. Therefore, it is suggested that KKT induces
moderate activation ofOTR comparedwithOxt itself.

3.5. KKT activates PVN Oxt neuron by directly
interacting with OTR

From measurement of [Ca2þ]i level upon appli-
cation of KKT, the OTR can be considered as a key
factor that mediates the effect of KKT on activating
the PVN Oxt neurons. However, it was not clear as
to whether KKT directly acts on OTR or simply
modifies the receptor property. We therefore
treated the OTR-expressing HEK293 cells with the
OTR antagonist, H4928, and measured the [Ca2þ]i
level. We showed that 10�7 M Oxt slightly increased
[Ca2þ]i in the HEK293 cells without transfection of
OTR (OTR(�)) (Fig. 5a), but dramatically increased
[Ca2þ]i in the OTR-transfected cells (OTR (þ))
(Fig. 5b). However, pre-treatment of H4928 reduced
the increase in [Ca2þ]i level compared with the in-
crease in [Ca2þ]i level upon application of a single
Oxt in the OTR (þ) cells (Fig. 5c). Pretreatment of
H4928 significantly reduced [Ca2þ]i level by 50%
upon application of Oxt and there were no signifi-
cant differences in [Ca2þ]i amplitude when
compared with single application of Oxt on OTR(�)
cells (Fig. 5g). Similar results were obtained from
experiments using KKT. In addition, KKT 50 mg/mL
slightly increased [Ca2þ]i in the OTR(�) cells
(Fig. 5d), and resulted in an apparent increase in
[Ca2þ]i in the OTR(þ) cells (Fig. 5e). Pre-treatment of
H4928 reduced the increase in [Ca2þ]i level
compared with a single KKT application (Fig. 5f).
Pre-treatment of H4928 significantly reduced [Ca2þ]i
level by 50% upon application of KKT, and there
were no significant differences in [Ca2þ]i amplitude
when compared with a single application of KKT on
OTR(�) cells (Fig. 5h).
In order to determine whether this observed effect

in OTR(þ) cells also occurs in rat PVN Oxt neurons,
we used brain slices containing PVN from Oxt-

mRFP rats, and measured the change in membrane
potential and firing frequency of Oxt neurons upon
applying KKT with H4928. As shown in Fig. 5i and j,
the PVN Oxt neurons were less activated (Fig. 5i;
25% of examined PVN Oxt neurons), or failed to be
activated (Fig. 5j; 75% of examined PVN Oxt neu-
rons) by KKT (500 mg/mL) application in the pres-
ence of H4928. There were no changes in firing
frequency (Fig. 5k) or membrane potential (Fig. 5l)
upon applying KKT on H4928 pre-treated PVN Oxt
neurons. These results indicate that KKT activates
PVN Oxt neurons directly via OTR.

3.6. Clarification of crucial crude drugs that
activate Oxt neurons in KKT

The clinically used Japanese Kampo/herbal med-
icines are based on a systematic combination of
crude drugs. KKT is composed of 14 different crude
drugs: Astragali Radix, Ginseng Radix, Zizyphi Fructus
(ZF), Angelicae Acutilobae Radix (AR), Zingiberis Rhi-
zoma (ZR), Polygalae Radix, Atractylodis Lanceae Rhi-
zoma, Saussureae Radix, Gardenia Fructus, Longan
Arillus, Bupleuri Radix, Zizyphi Semen, Glycyrrhizae
Radix and Poria. There are three other Kampo/
herbal medicines that include some of the above
crude drug components of KKT (Hochuekkito, Shi-
kunshito, Ninjinto). As shown in Table 1, in order of
Hochuekkito, Shikunshito and Ninjinto, they grad-
ually lose the crude drug components that are pre-
sent in KKT. Therefore, we considered that
comparing the activating effects of these three
Kampo/herbal medicines on PVN Oxt neurons
would allow us to pinpoint the crucial crude drugs
that activate Oxt neurons. When measuring Oxt
neuron activity using a brain slice patch clamp,
Hochuekkito activated PVN Oxt neurons similar to
that of KKT (Fig. 6aec). On the other hand, Shi-
kunshito did activate PVN Oxt neurons, although
activation took a longer time compared to KKT
(Fig. 6def). Ninjinto failed to activate the PVN Oxt
neurons (Fig. 6gei). Therefore, by comparing the
components of these three Kampo/herbal medicines
(Table 1), we narrowed down the candidates to three
crude drugs; ZF, AR, and ZR. These three crude
drugs are absent in Ninjinto, which failed to activate
Oxt neurons.

chromatograms of carvacrol (upper panel) and quercetin (bottom panel) with the respective internal standards thymol and myricetin. c-e: Repre-
sentative [Ca2þ]i image under 10�7M Oxt application (c), 10�5M quercetin (d) and 10�8M quercetin (e) in HEK293 cells without OTR transfection. f-
h: Representative [Ca2þ]i image under treatment of 10�7M Oxt (f), 10�5M quercetin (g) and 10�8M quercetin (h) in OTR-transfected HEK293 cells.
The bars in figures c-h indicate the term of treatment. i: Mean of amplitude of [Ca2þ]i under applications of 10

-7 M Oxt (n ¼ 31, 35), 10�5M quercetin
(n ¼ 35, 32) and 10�8M quercetin (n ¼ 35, 35). **p < 0.01, unpaired t-test.
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We then applied these three crude drugs indi-
vidually and measured the [Ca2þ]i level in single
PVN Oxt neurons (Fig. 7aei). The administration of
ZF and ZR to single PVN neurons increased [Ca2þ]i.
The amplitude of [Ca2þ]i and the percentage of each
responsive neuron were increased followed by
ascending concentration of each crude drug. Upon
application of 50 mg/mL ZF, 47% PVN neurons
responded to ZF, and 33% of ZF-responsive neurons
were identified as Oxt neurons. On the other hand,
upon application of 50 mg/mL ZR, 60% of PVN
neurons responded to ZR, and 89% of ZR-respon-
sive neurons were identified as Oxt neurons. With
regards to AR, 5 mg/mL but not 50 mg/mL AR
increased [Ca2þ]i. There was no dose-dependent
response in [Ca2þ]i amplitude or incidence of AR-
responsive neurons. However, upon application of
50 mg/mL AR, 32% of PVN neurons responded to
AR, and 29% of AR-responsive neurons were iden-
tified as Oxt neurons.
In order to examine whether the combination of

these three crude drugs explains the activation of
PVN Oxt neurons by KKT, the amplitude of [Ca2þ]i,
upon application of mixture of three crude drugs
(50 mg/mL each) (MIX) and KKT (50 mg/mL), was
compared in the PVN neurons. The MIX increased
the amplitude of [Ca2þ]i to same level as that of
50 mg/mL KKT (Fig. 7j, k). Approximately 44% of the
measured PVN neurons responded to MIX and
KKT. Among these neurons, over 50% were Oxt-
positive neurons. These results indicate that the
three crude drugs in MIX are indeed the key factors
to activate PVN Oxt neurons, and also that a com-
bination of these three crude drugs is important to
induce KKT’s activating effect.

3.7. Identification of chemicals that activate OTR

Since we found KKT activates Oxt neurons by
directly interacting with OTR and that the crucial
crude drugs for the activation being ZF, AR and ZR,
we attempted to identify the chemicals that activate
OTR within ZF, AR and ZR. We examined the effects
of chemicals composing ZF, AR and ZR by moni-
toring [Ca2þ]i levels in OTR expressed HEK
293 cells. Based on information provided by the
manufacturer (Tsumura & Co.) and previous reports
from the past, we have analyzed the chemical
compounds included in ZF as rutin, ursolic acid,
scopoletin, jujuboside A, B, betulinic acid [28e30]
and AR as (Z )-butilidenephatalide, bergapten,
umbelliferon, xanthotoxin, p-cymene, b-sitosterol,
sensyunolide H, senkyunolide A, falcarindol, levis-
tolide A [31e35] and ZR as of [6]-gingerol, [8]-gin-
gerol, [10]-gingerol, zingerone, [6]-shogaol, [8]-

shogaol, [6]-paradol [36,37]. As shown in Fig 8, 2
chemicals (rutin, ursolic acid) in ZF, 3 chemicals
((Z )-butilidenephatalide, p-cymene, senkyunolide
A) in AR and 2 chemicals ([6]-shogaol, [8]-shogaol)
in ZR showed increase in [Ca2þ]i levels upon its
application, indicating combination of these chem-
icals may contribute to the effects of KKT on Oxt
neurons. However, we failed to measure [Ca2þ]i
under application of scopoletin and umbelliferone
due to toxicity induced by interaction of excitation
light.

3.8. The change of plasma quercetin and carvacrol
after KKT administration

In order to examine the bioactivity of metabolites
of rutin and p-cymene [38,39], plasma concentra-
tions of quercetin and carvacrol were measured at
20, 60 and 120 min after oral administration of KKT
(500 mg/kg). Carvacrol was not detected in plasma
at any time points in all rats. However, quercetin
was detected in all time points. As shown in Fig. 9a,
plasma concentration of quercetin reached approx-
imately 15 nM at 60 min after oral KKT adminis-
tration. In addition, the of activation of OTR by
quercetin was confirmed using OTR-expressing
HEK 293 cells. As expected, both 10�5 M and 10�8 M
quercetin increased [Ca2þ]i in OTR-expressing cells,
with no effect on non-OTR-expressing cells (Fig. 9c-
h). 10�8 M quercetin, which corresponded to plasma
quercetin levels at 20 min after oral KKT adminis-
tration, showed ability to increase [Ca2þ]i by 30%
OTR expressing cells compared to increase [Ca2þ]i
observed by the application of 10�7 M Oxt (Fig. 9i).

4. Discussion

The current study demonstrated for the first time
that traditional Japanese medicine, KKT, has a po-
tential to activate Oxt neuron through OTR.
Compared with the activation effect of Oxt itself, the
activation of OTR by KKT was moderate (Fig. 4).
However, we have found that KKT have certain
potential to activate OTR.
Because approximately half of Oxt neurons in the

PVN express OTR, Oxt neurons with OTR may be
specifically activated by KKT and secrete Oxt. In
support of this idea, all Oxt neurons were not acti-
vated by KKT in vivo or in vitro. Oral or ip admin-
istration of KKT induced c-Fos in approximately
15% of Oxt neurons, and 37.5% of KKT-responsive
neurons were Oxt neurons.
KKT is clinically used in Japan, and is known to be

effective in treating psychological stress disorders.
Recently, KKT’s effectiveness in the treatment of
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memory impairment and Alzheimer’s disease was
also reported [19,20,39,40]. These reports indicate
that KKT has a therapeutic effect by modulating
CNS functions.
Several studies have investigated the pharmaco-

logical mechanisms induced by KKT on the CNS.
Watari et al. reported that KKT may improve tau
phosphorylation and axonal atrophy accompanied
by increased protein phosphatase 2A activity in a
mouse model of Alzheimer's disease [20]. Several
other reports have indicated that KKT may alter the
binding properties of neurotransmitters to receptors
[41e43]. However, all these suggested mechanisms
are based on the chronic effect of KKT.
Oxt neurons are distributed in the PVN and SON.

However, in the present study, c-Fos expressions
were found after both oral and ip administration of
KKT in the PVN. Oxt neurons in the PVN are
considered to be involved in the regulation of psy-
chological stress and mood. This is because PVN
Oxt neurons project to areas such as the amygdala,
hippocampus, and lateral septum, which are
considered to be involved in mood control and
stress adaptation [44]. In addition, abundant ex-
pressions of OTR were found in these brain areas
[45,46]. The activation of OTR induced by KKT
shown in the present study raises the possibility
that, aside from effects reported by others, the novel
effect mediated by OTR shown in this study may
also underlie the clinical effect of KKT.
Recently, evidence is being gathered for the clin-

ical use of Oxt. Among the suggested clinical uses,
Oxt for the treatment of autism has been gaining
most attention. Autism is a neurodevelopmental
disorder characterized by restricted interest and
impaired social communication. A number of
human studies were performed to evaluate the ef-
fect of Oxt for the treatment of autism, and most of
these studies revealed a positive outcome [13,15]. In
addition, Oxt may also be effective in treating
obesity due to overeating [14]. These studies suggest
that manipulation of the Oxt system in the CNS may
be clinically beneficial. However, such treatment is
limited to the application of Oxt itself (mainly nasal
application), and there have been no reports of
pharmaceutical drugs that can reach and activate
OTR, thereby inducing the release of endogenous
Oxt in the brain. Development of an Oxt analogue
or drug that can stimulate Oxt release is still
controversial, but such a drug may have strong
clinical potential for Oxt-related disorders like
autism or obesity. Our study suggests that KKT can
directly activate Oxt neurons by acting on the OTR

and stimulate Oxt release in the brain. Therefore,
KKT may have potential as a new pharmacological
agent in targeting Oxt neurons and OTR in the CNS.
Another advantage of KKT as an Oxt neuron acti-
vator is that it can be orally administered. Because
Oxt is neuropeptide, it can only be administered
peripherally by injection or nasal administration.
The present study showed that oral administration
of KKT induced c-Fos expression on PVN Oxt neu-
rons in a similar way to that of ip injection. There-
fore, orally administered KKT (at least its critical
ingredient that activates Oxt neurons) can overcome
the bloodebrain barrier (BBB) and reach the CNS to
show its effect. Supporting this hypothesis, it was
reported that the metabolites of Glycyrrhizae and
Atractylodes, which are both components of KKT, can
overcome the BBB [47,48].
In the present study, we have also clarified that a

combination of the three crude drugs (ZF, AR and
ZR) composing KKT is the key factors in activating
PVN Oxt neurons. Of these crude drugs, ZR may be
the one that specifically contributes to the activation
of the Oxt neurons, since 89% of ZR-responsive
neurons were Oxt neurons. The chemical compo-
nents of these crude drugs that were capable of
activating OTR were rutin, ursolic acid for ZF and
(Z )-butilidenephatalide, p-cymene, senkyunolide A
for AR and [6]-shogaol [8],-shogaol for ZR. Because
there are 54 compounds identified in only ZF [49],
we concentrated in testing part of the components
in these crude drugs. Thus, it is possible that other
compounds in KKT may also activate OTR.
In order to evaluate from tested compounds as

potentials of being agonists of OTR, we calculated
response of each components to that of control
(Supplemental Fig. 1). Although, the response of
KKT to control was approximately 5 times in each
experiment of testing each crude drug (red arrows),
the response of AR was only with high response
with approximately 18 times to that of control. The
crude drugs, which responses was over 2.5 times
(half response to KKT) were only 3 chemical com-
ponents, rutin (2.8 times), (Z )-butylidenephtalide
(3.2 times) and senkynolide A (3.9 times). These data
suggested that AR is the strongest OTR agonist
among 3 crude drugs, and a potential OTR agonists
were rutin, (Z )-butylidenephtalide and senkyuno-
lide A. Supporting this, only 5 mg/mL AR was able to
significantly increase the response of [Ca2þ]i as
shown in Fig. 7.
On the other hand, although the response to ZR

were 3.5 times to control, there were no chemical
component, which responded with more than 2.5
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times to control in ZR. The data suggested ZR as
crude drug with the strongest synergistic effects.
The contribution of synergistic effect is reported in
the mechanism of Kampo medicine. For example, in
the Kampo medicine Daikenchuto, its chemical
component [6]-shogaol and [6]-gingerol are unable
to activate voltage-activated cation channels, but
become able to activate these voltage-activated
cation channels after other chemical component,
hydroxy-a-sanshool, block two-pore-domain potas-
sium leak channels (KCNK3 and KCNK9) [50].
Similar to synergistic mechanism reported in com-
ponents of Daikenchuto, it is possible to consider
that such mechanisms are present in chemical
components of ZR.
Although further study is required to clarify the

underlying mechanism of these three crude drugs,
and seven chemical components to induce Oxt
neuron activation, our present data indicate the
clinical possibility of these crude drugs or chemical
components for treating Oxt-related disorders. It is
possible that these seven chemical components may
fulfill the criteria of bioactive chemical markers,
defined as a group of chemo-markers with phar-
macological activities comparable to whole KKT.
Detail study to determine the bioactive chemical
markers for KKT is required for the quality control,
correct safety use of KKT in the future [51,52].
Common crude drugs, Astragali Radix and Bupleuri

Radix, which are contained in KKT and Hochuekkito
are not examined in the present study. It remains
the possibility that these two crude drugs are also
related to OTR activation. Further study about
Astragali Radix and Bupleuri Radix are needed in the
future.
Although our present data is mainly based on ex

vivo condition and further functional studies are
required, this is the first study to show clearly in
cellular level that KKT has potential to activate Oxt
neurons through OTR. Considering the effects of
Oxt to treat so many disorders, the effects of KKT
shown in this study has strong potential for future
clinical use.
Although the present study focused on the effect

of KKT on the CNS, OTR is expressed in various
peripheral tissues, such as muscle [12,53], osteo-
blasts [54] and the pancreas [55]. Oxt contributes to
the maintenance and regeneration of muscle cells
[12], increases trabecular bone volume [11], and
promotes insulin secretion from pancreatic b-cells
[23]. Taking our present findings, that KKT can
activate the OTR, into consideration, KKT may have

a positive effect in peripheral tissues, as well as the
CNS. These are important issues that should be
investigated in the future.

5. Conclusion

In conclusion, we have identified a novel effect of
KKT on the activation of PVN Oxt neurons via the
OTR. We suggest that this acute effect of KKT on
Oxt neurons and OTR may contribute to the treat-
ment of psychological and neurological disorders.
As manipulation of the Oxt system in the CNS may
be a therapeutic target for various diseases such as
autism, KKT could be introduced as a new potential
pharmacological agent.
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