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A B S T R A C T

The recent outbreak of the deadly COVID-19 disease, being caused by the novel coronavirus (SARS-CoV-2), has put
the world on red alert as it keeps spreading and recording more fatalities. Research efforts are being carried out to
curtail the disease from spreading as it has been declared as of global health emergency. Hence, there is an exigent
need to identify and design drugs that are capable of curing the infection and hinder its continual spread across the
globe. Herein, a computer-aided drug design tool known as the virtual screening method was used to screen a
database of 44 million compounds to find compounds that have the potential to inhibit the surface glycoprotein
responsible for virus entry and binding. The consensus scoring approach selected three compounds with promising
physicochemical properties and favorable molecular interactions with the target protein. These selected compounds
can undergo lead optimization to be further developed as drugs that can be used in treating the COVID-19 disease.

1. Introduction

The reemergence of the coronavirus has taken the world by storm
such that on the 30th of January 2020, the World Health Organization
(WHO) declared it a public health emergency and later in February 2020,
WHO officially named the novel coronavirus disease as COVID-19 (World
Health Organization, 2020). The SARS-CoV-2 is the fourth zoonotic cor-
onavirus to emerge in the last twenty years. The first two, the Severe
Acute Respiratory Syndrome (SARS-CoV) and the Middle East Respiratory
Syndrome (MERS-CoV), appeared in 2002 (Zhong et al., 2003) and 2012
(Sousou, 2015) respectively while in 2017, the Swine Acute Diarrhea
Syndrome (SADS-CoV) affected the swine livestock (Cui et al., 2019).
These diseases are known to be zoonotic and being transmitted by bats
(Drexler et al., 2014) and it is suggested that the novel coronavirus, that
was first identified in Wuhan, China, (SARS-CoV-2) is not an exception as
some researchers had earlier predicted that there might be another zoo-
notic coronavirus outbreak in early 2019 (Fan et al., 2019).
Like other similar virus, recent updates show that the SARS-CoV-2

now spread from man to man, although it is presumed to be zoonotic in
origin. While the genetic research confirmed SARS-CoV-2 is originated
in bats, there are other speculations that other wild animals could serve
as intermediary between bats and man, with pangolins leading as

primary suspects as the intermediary in the case of Wuhan coronavirus
(Liu et al., 2019). SARS-CoV-2 spread like other cold viruses and early
symptoms include, but not limited to, runny nose, severe cough, sore
throat, difficulty in breathing, etc. With several precautions and
awareness on the deadly virus and its spread, more cases of infection
are being anticipated globally. The known cases are being managed
with supplemental oxygen and conservative fluid administration as
there is currently no approved vaccine or antiviral agent to treat the
infection by SARS-CoV-2 and the concerned researchers are con-
tinuously working on developing a vaccine or drug for novel cor-
onavirus (Li et al., 2020; Liu et al., 2019).
With the continuous rise in number of confirmed cases since the

outbreak of the SARS-CoV-2, a fast and reliable tool such as computer-
aided drug design (CADD) is of the essence. CADD is a renowned tool in
the pharmaceutical industry and it does not only save time but also
helps to cut costs of designing drugs. Virtual screening (VS) is one of the
methods used in CADD and it enables screening of many compounds in
a relatively short time compared to the high throughput screening via
laboratory experiments (Kapetanovic, 2008; Leelananda and Lindert,
2016; Macalino et al., 2015; Manas and Green, 2017; Melo-Filho et al.,
2019). Moreover, molecular docking as well as machine learning, can
be used in virtual screening and these further enable effectiveness of VS
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(Mori et al., 2012; Pereira et al., 2020). For example, VS was employed
in the development of approved drugs such as Aggrastat, a fibrinogen
receptor, and Cevoglitazar, an effective PPAR-α/γ dual agonist for
diabetes treatment (Clark, 2008). Recently, the use of consensus scoring
has been acknowledged to also improve the enrichment of true posi-
tives and improve hit rates (Charifson et al., 1999; Clark et al., 2002;
Feher, 2006). Herein, we employed computer-aided drug design that
entails the use of consensus scoring to combine both molecular docking
and machine learning VS method to discover potential inhibitors of the
surface glycoprotein of the SARS-CoV-2 which is responsible for virus
binding and entry. Our results identify three compounds with pro-
mising physicochemical properties and favorable molecular interac-
tions with the target protein, and by extension, these identified com-
pounds can undergo lead optimization to be further developed as drugs
that can be used in treating the COVID-19.

2. Methodology

2.1. Target protein preparation

Due to the recent emergent of the coronavirus disease, there are not
many crystal structures of high resolution of the virus. As at the time
the bulk of this work was completed, there was no crystal structure of
the spike protein. Hence, homology modeling (Haddad et al., 2020;
Krieger et al., 2003; Xiang, 2006) was employed. However, as at the
end of March 2020, there are currently about 100 crystal structures of
the SARS-CoV-2 deposited in the protein databank (www.rscb.org,
Burley et al., 2018). It is intended that the best among these structures,
particularly the spike proteins (PDB ID: 6VSB, 6VYB, 6LZG, 6MOJ and
6VXX) (Lan et al., 2020; Walls et al., 2020; Wrapp et al., 2020), would
be used for future works. The surface spike glycoprotein functions as
the cell-attachment recognition site hence, the reason for its con-
sideration as the target protein as this is the critical part of the virus
responsible for virus entry and binding (Gralinski and Menachery,
2020). The target protein was prepared using homology modeling with
the aid of the Raptor program (Peng and Xu, 2011). The template
protein used for the homology model is PDB ID: 5×58 (Yuan et al.,
2017). The sequence of the glycoprotein utilized to build the homology
model was retrieved from the National Center for Biotechnology In-
formation (NCBI) GenBank database (Wu et al., 2020) with the acces-
sion number: MN908947. The modeled structure was validated using
the Ramachandran plot analysis with the aid of RAMPAGE webtool
(Lovell et al., 2003; Ramachandran and Sasisekharan, 1968) and
PrankWeb server (Jendele et al., 2019) to validate the amino residued
involved in the protein-ligand interactions. The ConSurf web program
(Ashkenazy et al., 2016) was used for the multiple sequence alignment
(MSA) analysis, conserved score and phylogentic analysis.

2.2. Virtual screening

The MCULE full database (Kiss et al., 2012) with exactly 44,704,142
compounds, as at that the time of this work, was used for the first
virtual screening experiment. A blind docking (Grosdidier et al., 2009)
was carried out, which covered the whole of the protein since no
binding pocket has been determined from experiments yet with the
following parameters -1.298, -7.617 and 191.965 for X, Y and Z axes
respectively. These coordinates represent the binding site area. The
MCULE database was filtered using drug-like properties as used in our
earlier works (Onawole et al., 2018, 2017; Sulaiman et al., 2019) which
include having a maximum of 5 halogen atoms, five chiral centers and
ten rotatable bonds; a minimum of 10 heavy (non-hydrogen) atoms and
a minimum of 1 aromatic ring; and lastly should not violate not more
than one of the Lipinski’s rule of five (RO5) (Lipinski, 2004; Lipinski
et al., 1997). After the filtration, 100,000 compounds were screened
randomly using Autodock VINA as the molecular docking tool (Trott
and Olson, 2010). The diversity selection of these 100,000 compounds

ensured that the maximum similarity (S) threshold was set to 0.85. This
assured that none of the resulted molecules was more similar than S,
based on the Tanimoto coefficient of similarity (Bajusz et al., 2015;
Cerqueira et al., 2015). The top-scored compounds were kept and used

Fig. 1. Flowchart depicting the methodology.
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for a second virtual screening with BindScope (Jiménez Luna et al.,
2018; Mysinger et al., 2012; Skalic et al., 2018). The second virtual
screening, BindScope, employed a machine learning technique (con-
voluted neural network). Recently, machine learning technique is
gaining considerable attention in the drug discovery process as it is
much faster than molecular docking. Moreover, having a different
method rather than another molecular docking program with a dif-
ferent scoring method helps to reduce the number of false positives
(Chen et al., 2018; Stevens, 2014). The latest iteration of DUD-E data-
base (Mysinger et al., 2012) was used in the training of BindScope. This
database was comprised of 22,886 active compounds and 50 similar
decoys for each active and docked against 102 different targets (Koes
et al., 2013). To ensure a fair benchmarking, the targets were clustered
by employing a 70 % sequence similarity cut-off which was provided by
blastclust in the RSCB PDB database (www.rscb.org, Burley et al.,

2018). To use BindScope, the target protein, the homology modeled
structure of the spike protein of SARS-CoV-2 in this case, was uploaded
in PDB to the web application alongside a set of docked ligands (in this
case the top 500 scored ligands from the first virtual screening) in
structure-data file (SDF) format. The results from the virtual screenings
were combined for consensus scoring using the rank voting method
(Feher, 2006) to select the compounds which appeared as top-scored in
both virtual screenings. The consensus scoring method is known to
improve HIT rates by reducing the chances of false positives (Charifson
et al., 1999; Huang et al., 2010; Stevens, 2014; Yang and Hsu, 2005)
and has been applied in finding potential inhibitors of protein kinase B
in anti-cancer drug discovery (Forino et al., 2005). The Discovery studio
program (BIOVIA, 2015) was used to visualize the molecular interac-
tions of the selected HITS with that target protein. Fig. 1 shows the
flowchart that depicts the entire process of selecting hit compounds.

Fig. 2. Sequence alignment of the surface glycoprotein for both SARS-CoV-2 and SARS-CoV corona viruses. Identical residues are denoted by an “.” beneath the
consensus position.
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3. Results and discussion

3.1. Sequence alignment analysis

From the whole genome of the SARS-CoV-2, only the genomic se-
quence of the surface glycoprotein was considered as this is the critical
part of the virus responsible for virus entry and binding (Gralinski and
Menachery, 2020), followed by a multiple sequence analysis using the
Needleman-Wunch pairwise alignment method (Altschul et al., 2005,
1997) to compare the surface glycoprotein of both the SARS-CoV-2 and
the SARS-CoV. The surface glycoprotein for SARS-CoV-2 is made up of
1273 amino acids while the SARS-CoV is 1255. The SARS-CoV-2 is 76 %
identical to the SARS-CoV (Fig. 2). That is, 970 amino acids present in
SAR-CoV-2 are equally present in SARS-CoV. The dots depicted in the
multiple sequence alignment (MSA) for SARS-CoV denote identical se-
quences with 2019-nCoV (i.e. SARS-CoV-2) while the differences are
denoted in red (Fig. 2). The percentage similarity suggests how closely
related these two viruses are and also gives insights into how successful
approach used in curtailing the SARS-CoV may also be effective for the
novel SARS-CoV-2.
Besides, further MSA was done to compare the spike protein of

SARS-CoV-2 with other related surface glycoproteins (SARS-CoV) with
the aid of the ConSurf server (Ashkenazy et al., 2016). The phylogenetic
tree which shows the evolutionary connection between the SARS-CoV-2
and other related species (Fig. 3) denote that the spike protein of SARS-
CoV-2 is closely related to other coronaviruses such as bat SARS and
middle east respiratory syndrome (MERS) corona virus (Table S1) but it
is closest to UniRef90 A0A2R3SUW7 (The UniProt Consortium, 2019)
which is a Bat SARS-like coronavirus. The phylogentic tree suggests that
SARS-CoV-2 may have originated from bats (Fan et al., 2019). The MSA
of SARS-CoV-2 was done with the other 29 species depicted in the
phylogentic tree (Table S8). The conservation score which is a score
allotted to each amino acid in a MSA is used to determine how con-
served the amino acid is. A score value of 9 (maroon color) means the
amino acid is well conserved while a value of 1 (cyan color) means it is
variable (Fig. 4). The conservation scores of SARS-CoV-2 (Table S2)
denote that about 60 % of the amino acids are conserved, that is, they
have a conservation score of at least 6.

3.2. Protein structure and validation

The tertiary structure of the surface glycoprotein shows a few α-
helices, many β-pleated sheets, and long random coils (Fig. 5a). The

Ramachandran plot analysis, which depicts the favored, allowed and
outlier values of ψ against φ angles for a particular amino acid
(Ramachandran and Sasisekharan, 1968), was used to validate the
structure of the protein. A good quality protein is expected to have an
outlier of less than 5 % (Kleywegt and Jones, 1996). For the SARS-CoV-
2 surface glycoprotein, the homology modeled structure showed 93.6
%, 5.5 % and 0.9 % in the favored, allowed and outlier regions re-
spectively. The outlier region which is less than 5% validates the choice
of protein structure for virtual screening analysis. The deeper and
lighter shade of blue and orange depicts the favored regions and al-
lowed regions respectively (Fig. 5b). The triangles and squares are the
general/Pre-Pro/Proline amino acids whereas the crossed-x denotes the
glycine amino acids. The eleven amino acids which make up the out-
liers are in red squares. They are all found in the General and Pre-Pro
areas, and none occurred in the Glycine area. Nevertheless, the protein
structure is good enough for further analysis.

3.3. Consensus scoring

The first virtual screening employed a molecular docking technique
with the aid of VINA (Trott and Olson, 2010) and the top 500 scored
compounds were used for a second virtual screening but this time, using
a machine learning technique (CNN) in the BindScope web tool
(Jiménez Luna et al., 2018). Only the top 500 compounds were con-
sidered as the rest of the 100, 000 compounds considered had negative
binding scores with the target protein. This is evident in the docking
scores of the last 100 compounds from the first virtual screening (Table
S2). The top 25 scored ligands from the first virtual screening using
VINA (Fig. 6) and the second virtual screening using BindScope (Fig. 7)
were considered. This approach is known as the vote rank method in
consensus scoring (Feher, 2006). The top scores in VINA correlate to the
ligands with the highest binding energies, while the more negative
values imply a stronger binding affinity to the target protein. Whereas,
in BindScope, the top-scored ligands are based on probability where
values close to 1 imply strong binding affinity and those close to 0
imply low binding affinity with the target protein. Three compounds
namely MCULE-2442351665-0-1, MCULE-6855995445-0-2 and
MCULE-4671321297-0-1 appear in the top 25 scored ligands for both
VINA and BINDSCOPE. MCULE-2442351665-0-1 is the 15th and 13th
top scored ligand in VINA and BINDSCOPE respectively while MCULE-
6855995445-0-2 appears as the 24th and 17th top scored ligand in
VINA and BINDSCOPE respectively. MCULE-4671321297-0-1 comes in
as the 25th and 9th top scored ligand in VINA and BINDSCOPE

Fig. 3. The phylogenetic tree for SARS-CoV-2 (input protein sequence).
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Fig. 4. The sequence the surface glycoprotein for SARS-CoV-2 showing the conservation score. The color scale represents the conservation scores where ‘9’ implies
highest conserved and ‘1’ means highest variable.

Fig. 5. The tertiary structure (A) and Ramachandran plot (B) of the surface glycoprotein of SARS-CoV-2.
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Fig. 6. The top 5% scored ligands from the first virtual screening (VINA).

Fig. 7. The top 5% scored ligands from the second virtual screening (BindScope).
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respectively. The selected ligands, MCULE-2442351665-0-1 (benzyl-
furan-2(5 H)-one), MCULE-6855995445-0-2 [((2,5-difluorophenyl)
thio)-2,2-difluoroacetic acid)] and MCULE-4671321297-0-1 [(2-me-
thylfuran-3-yl)methanesulfonyl fluoride] are henceforth referred to as
compounds A, B and C in the subsequent sections of this article.

3.4. Physicochemical and ADMET assessment of selected ligands

Fig. 8 presents the chemical structure of the three selected com-
pounds. While each of the three compounds has oxygen atoms, only
compound A has two rings and the other two have one ring each. All the
three compounds comply with the Lipinski’s RO5 (Lipinski, 2016;
Lipinski et al., 2001). The oral bioavailability radar (Fig. 9) shows that
the colored zone is the perfect space for the physicochemical space. The
LIPO (Lipophilicity) is derived from the XLOGP3 parameter (Table 1)
and is expected to be in the range of -0.7 to +5.0. The values for all the

selected compounds fall within this required range and so are in the
colored region. For the SIZE, it is expected not to exceed 500 gmol−1

according to Lipinski’s RO5, of which all the compounds obey. The
POLAR (polarity) is determined by the Total Polarity Surface Area
(TPSA) and the recommended range is between 20–130 Å2, within
which all the selected ligands fall. The INSOLU (insolubility) category
shows that all the selected ligands are soluble as they all fall between
the range of 0 and 6 for their log S (ESOL) values. Ditto for the FLEX
(flexibility) which is determined by the number of rotatable bonds and
is expected not to exceed nine. However, the INSATU (Insaturation)
requirement which is determined by the fraction of carbon sp3 (Csp3) is
expected to be in the range of 0.25 and 1, and this is met by compound
C only. Hence, compound C has the best oral bioavailability since all its
physicochemical parameters are in the colored zone.
Table 2 presents the results of the ADMET (absorption, distribution,

metabolism, excretion, and Toxicity) analysis that was done using the
AMDETSAR and SWISS ADME web tools (Cheng et al., 2012; Daina
et al., 2017; Yang et al., 2018). The green-colored cells indicate ex-
cellent ADMET properties; the blue means good while the yellow and
pink signify caution is needed and slightly dangerous respectively.
These color codes may help during lead optimization to know what
properties need to be modified. For all three selected ligands, they have
good absorption properties, particularly concerning their human oral
bioavailability which has been earlier suggested from the bioavail-
ability radar. For distribution, the selected ligands are all permeants of
the blood-brain barrier (BBB). Furthermore, the selected ligands are not
substrate for the P-gp or the multidrug resistance protein that is re-
sponsible for transporting substances across the cell membrane. Hence,
they can quickly move across the cell membrane. The metabolism of the
selected compounds was predicted for cytochrome P450 inhibitors
which catalyze many reactions involve in the metabolism of drugs.
Compounds A and B are predicted to be inhibitors of CYP1A2 inhibitor
while for the other cytochromes, all three selected ligands are non-in-
hibitors. The inhibition of Compounds A and B will increase plasma
concentration and may lead to adverse outcomes. However, for all
other cytochrome P450, the selected ligands are non-inhibitors which

Fig. 8. The selected ligands (compounds A B and C) from consensus scoring.

Fig. 9. The oral bioavailability radar of the selected ligands (((A) compound A, (B) compound B, and (C) compound C). The colored zone is the suitable physico-
chemical space for oral bioavailability.

Table 1
The physicochemical properties of the selected ligands.

Ligand Compound A Compound B Compound C

Formula C11H10O2 C8H4F4O2S C6H7FO3S
VINA −4.9 −4.6 −4.6
BINDSCOPE 0.9919 0.9896 0.9929
Mass 174.2 240.17 178.18
#Heavy atoms 13 15 11
#Rotatable bonds 2 3 2
#H-bond acceptors 2 6 4
#H-bond donors 0 1 0
TPSA 26.3 62.6 55.66
XLOGP3 1.69 2.97 1.1
WLOGP 1.71 4.42 2.74
ESOL Log S −2.19 −3.3 −1.84
ESOL Class Soluble Soluble Very soluble
Lipinski #violations 0 0 0
Bioavailability Score 0.55 0.56 0.55
PAINS #alerts 0 0 0
Synthetic Accessibility 2.23 2.29 2.87
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will aid their metabolism as potential drugs. The human ether a-go-go
(hERG) inhibition is related to ventricular arrhythmia, and it can be
fatal if a drug is an inhibitor (Sanguinetti and Tristani-firouzi, 2006).
The selected compounds are all non-inhibitors of hERG with compound
C having the highest probability of not being a hERG inhibitor. How-
ever, they all have acute oral toxicity of class three which implies that
they are predicted to be slightly toxic and irritating. This irritation is
further proposed as they are all eye irritants. Nevertheless, they are all
non-carcinogenic with compound A having the highest probability of
not being a carcinogen. Though, compound A is also the only one
among the selected compounds predicted to be mutagenic. Concerning
ecological toxicity, all the selected compounds are biodegradable.

3.5. Binding modes and molecular interactions

The binding mode and molecular interaction give insight into the
mode of action of the selected ligands to treating SARS-CoV-2.
Surprisingly, both the binding mode and the molecular interactions for
both VINA and BINDSCOPE are the same for the selected ligands. This is
evident in the PDB structures (supporting files attached). The binding
mode (Fig. 10) shows the orientation of the ligands in 3-D and the
amino residues in the binding pocket. However, the 2-D diagram of the

molecular interactions (Fig. 11) gives more details into the possible
mode of action. Compound A has four favorable interactions which
include a conventional hydrogen bond with THR 63, a π-alkyl bond
with PRO 85, a π-donor hydrogen bond with TRY 269, and a π-π T-
shaped interaction with PHE 592. Unlike compound A, compound B has
one unfavorable interaction with ARG 102 and four favorable interac-
tions. The four favorable interactions for compound B includes one π-σ
bond with ILE 119, and three π-alkyl bonds with ILE 203, VAL 227 and
ILE 1013. Compound C has six favorable interactions; the highest
amongst the three selected ligands. These interactions include: three π-
π T-shaped bonds with ILE 119, ILE 128, and ILE 203; two π-alkyl
bonds with VAL 227 and ILE 1013; and one π-sulfur bond with TRP
104. The ranking of the ligands according to BINDSCOPE (Fig. 7), may
be based on the number of favorable interactions as compound C which
has the highest number of favorable interactions, has the highest top-
scored, whereas compound B which has one unfavorable interaction is
the least scored amongst the three. However, compound A is the only
one that has the conventional hydrogen bond interaction which is also
the shortest bond length (3.34 Å) of favorable interaction. Hence, it
may be the reason it has the highest binding energy according to VINA
ranking (Fig. 6) amongst the three selected ligands.
The conservation scores (Table S2) of the amino acid residues

Table 2
The ADMET predictions of the selected ligands: compounds A, B, and C.

ADMET Compound A Compound B Compound C
Absorption Remark (Probablity) Remark (Probablity) Remark (Probablity)

Human Intestinal Absorption (HIA) Good (0.99) Good (0.91) Good (0.96)
Human oral bioavailability (HOB) Good (0.76) Safe (0.63) Safe (0.79)
Caco-2 permeability Good (0.91) Good (0.60) Good (0.65)
Distribution
Plasma protein binding Good (0.77) Good (0.97) Good (0.89)
BBB permeant Yes Yes Yes
P-glycoprotein (P-gp) substrate No No No
Metabolism
Cytochrome (CYP450)
CYP1A2 inhibitor Yes Yes No
CYP2C19 inhibitor No No No
CYP2C9 inhibitor No No No
CYP2D6 inhibitor No No No
CYP3A4 inhibitor No No No
Excretion
No info available – – –
Toxicity
Organ Toxicity
Human ether-a-go-go inhibition Safe (0.71) Safe (0.73) Safe (0.79)
Acute Oral Toxicity class III Slightly toxic (0.74) Slightly toxic (0.60) Slightly toxic (0.42)
Eye irritation Irritating (0.97) Irritating (0.86) Irritating (0.95)
Genomic Toxicity
Carcinogenicity Safe (0.80) Safe (0.70) Safe (0.61)
Ames mutagenesis Caution (0.51) Safe (0.73) Safe (0.64)
Eco-Toxicity
Biodegradation Safe (0.78) Safe (0.85) Safe (0.55)

Fig. 10. The 3-D binding modes of the selected ligands ((A) compound A, (B) compound B, and (C) compound C) respectively and their molecular interactions
(dashed lines) with the amino residues present in the binding pocket of the spike protein of SARS-CoV-2. The selected ligands are highlighted in yellow.
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involved in the ligand-protein interactions with the selected compounds
show that ILE 119, ILE 128, TRP 104 have conservation score of 7 and
ILE 1013 has a conservation score of 9. This implies that the amino
residues that make specific interactions with the selected compounds
are conserved. The PrankWeb tool (Jendele et al., 2019) for binding
pocket prediction was also used to validate the amino residue involved
in the ligand-protein interaction by comparing the amino residues in
the binding pocket of the crystal structure of the spike protein deposited
in the protein databank (PDB ID: 6VSB). The amino residues ARG 102
and ARG104 (Fig. 11) which are involved in the ligand-protein inter-
action are also predicted to be in the binding pockets of 6VSB.
Moreover, to show reliability of the homology model in this study,

Compound A was further docked using AutoDock VINA to a monomer
of the experimental crystal structure of the spike protein (PDB ID:
6VSB). The docked ligand of compound A with the experimental
structure was then compared to the homology modeled structure
(Fig.12). The binding sites are similar as they both occur amidst β-
pleated sheets and a few α-helix coil. The 2-D molecular interaction
reveals that in the experimental structure, compound A forms a π-π
interaction with PHE 592 which is similar to what is observed in the
homology modeled structure. However, the differences between the
experimental and homology modeled structure is the shorter distance of
the interaction with PHE 592 which occurs in the former. This is also
responsible for the slightly higher docking score of -5.4 kcal/mol

Fig. 11. The 2-D molecular interactions of the selected ligands ((A) compound A, (B) compound B, and (C) compound C) with the amino residues presnt in the in the
binding pocket of the spike protein of SARS-CoV-2. The bond distances are in Angstrom (Å).

Fig. 12. The binding site of compound A in (A) experimental structure (PDB ID: 6VSB) and (B) homology-modeled structure and 2-D molecular interaction of
compound A with the amino residues present in the binding site of (C) experimental structure (PDB ID: 6VSB) and (D) homology-modeled structure The bond
distances are in Angstrom (Å).
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observed in the experimental structure. This difference in their mole-
cular interactions is expected as the ligand would have different or-
ientations in both structures. However, the binding of compound A to
PHE 592 in both structures validates the homology-model.

3.6. Hit-to-Lead optimization

The optimization process often leads to an increase in the binding
energy with the target protein, and/or an improvement in the ADMET
properties. This process requires structural modifications which im-
prove the functionality of a molecule (Jorgensen, 2009; Maynard et al.,
2016; Qiao et al., 2018; Stevens, 2014). The ADMETopt webtool (Yang
et al., 2018) was used for the optimization of the three selected com-
pounds based on the ADMET properties to improve the drug-likeness.

Compound A has two scaffolds, 1 and 2, as highlighted in Fig. 13. Upon
optimization, the best replacement for scaffold one is a pyrol ring with a
bromine subsitutent attached to it (Fig. 13B)). This replacement has the
highest drug-likeness score of 0.80 (Table S4). For scaffold 2, the furan
ring was replaced with a pyrole-like ring attached to a hydroxyl group.
This scaffold has the highest drug-like score of 0.76 (Table S5). How-
ever, among the two scaffolds, changing scaffold 1 would led to the
better optimization because of its higher drug-likeness score. Com-
pound B only has one scaffold which is the di-fluoro benzene ring. Upon
undergoing optimization using ADMETopt, the best replacement to give
a highest drug-like score of 0.87 (Table S6) is replacing the scaffold
with a bromine substituted pyridine (Fig. 14). For compound C, the
pyrole ring with a subsititued methyl is the scaffold (Fig. 15). However,
this was replaced by a thiopene ring having both methyl and bromine

Fig. 13. The scaffold 1 (A) and scaffold 2 (C) of compound A, and the new structure after lead optimization of scaffold 1 (B) and scaffold 2 (D) respectively. The
values below the new structures (B and D) are the drug-likeness values.

Fig. 14. (a) The scaffold (highlighted) of compound B and (b) its new structure after lead optimization. The values below the new structure denotes the drug-likeness
value.

Fig. 15. (a) The scaffold (highlighted) of compound C and (b) its new structure after lead optimization. The values below the new structure denotes the drug-likeness
value.
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substituents attached to it has the best drug-like score of 0.78 (Table
S7). In Hit-to-lead optimization, it is important to note that most times,
there is usually a trade-off between improving the binding affinity or
improving the drug-likeness of a molecule. In the end, the medicinal
chemist needs to compromise on which area to focus on during opti-
mization.

4. Conclusions

The recent outbreak of the COVID-19 has put all the health systems
in the world on red alert as the virus spreads globally. As there are no
known drugs or vaccines to treat this outbreak, developing one is
paramount and computer-aided drug design is a useful tool in fast-
tracking the discovery and development of new drugs that can be used
to treat this disease. The consensus scoring approach has been used to
combine virtual screening results from both molecular docking and
machine learning to select three compounds. These compounds have
the potential to inhibit the SARS-CoV-2 glycoprotein which is re-
sponsible for virus entry and binding. The molecular docking (VINA)
scores of the selected compounds A, B and C are -4.9 kcal/mol, -4.6
kcal/mol and -4.6 kcal/mol, while their corresponding scores from
machine learning (BINDSCOPE) are 0.992, 0.989 and 0.993 respec-
tively. Both compounds B and C interact with amino acid residues
which are conserved with ILE 1013 which is well conserved in surface
glycoprotein. Compound C which has the highest score based on BIN-
DSCOPE also has the best oral bioavailability, has all its parameters are
within the recommended range. Whereas the ADMET prediction shows
that the selected compounds have good absorption and distribution
properties and are not carcinogenic. However, their toxicity has to be
improved particularly concerning acute oral toxicity and eye irritation.
These properties were considered during the Hit-to-Lead optimization
which looked at the various scaffolds that can be replaced to improve
the drug-likeness and non-toxicity. However, it is important to note that
there is usually a trade-off between improving the binding affinity or
improving the drug-likeness of a molecule. In the end, the medicinal
chemist needs to compromise on which area to focus on during opti-
mization. It is hoped that this work will help other researchers, parti-
cularly experimental medicinal scientists in developing a drug that can
be used to treat the COVID-19.
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