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Abstract

Robust policy decisions regarding the protection and management of terrestrial mammals

require knowledge of where species are and in what numbers. The last comprehensive

review, presenting absolute estimates at a national scale, was published nearly 20 years

ago and was largely based on expert opinion. We investigated and propose a systematic

data driven approach combing publically available occurrence data with published density

estimates to predict species distribution maps and derive total abundance figures for all ter-

restrial mammals inhabiting Britain. Our findings suggest that the methodology has poten-

tial; generally producing plausible predictions consistent with existing information. However,

inconsistencies in the availability and recording of data impact the certainty of this output

limiting its current application for policy. Restrictions on access and use of occurrence data

at a local level produces “data deserts” for which models cannot compensate. This leads to

gaps in spatial distribution of species and consequently underestimates abundance. For

many species the limited number of geo-referenced densities hampered the extrapolation

from habitat suitability to absolute abundance. Even for well-studied species, further density

estimates are required. Many density estimates used were pre-1995 and therefore the

derived abundance should not be considered a current estimate. To maximise a systematic

approach in the future we make the following recommendations:

1. To mitigate the attitudes of a minority of local data providers occurrence records must be

submitted to national surveys such as the Mammal Society’s Mammal Tracker.

2. Studies are required to estimate density for common species and in areas of low or no

abundance.

3. To ensure such studies can be collated and used efficiently we propose a standardised

approach reporting density estimates based on the 1km resolution British National Grid, or

habitat representative of the 1km square, with digital maps to accompany publications.

PLOS ONE | https://doi.org/10.1371/journal.pone.0176339 June 28, 2017 1 / 21

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPENACCESS

Citation: Croft S, Chauvenet ALM, Smith GC

(2017) A systematic approach to estimate the

distribution and total abundance of British

mammals. PLoS ONE 12(6): e0176339. https://doi.

org/10.1371/journal.pone.0176339

Editor: Govindhaswamy Umapathy, Centre for

Cellular and Molecular Biology, INDIA

Received: September 7, 2016

Accepted: February 23, 2017

Published: June 28, 2017

Copyright: © 2017 Croft et al. This is an open

access article distributed under the terms of the

Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: All data underlying

this work are held in publicly accessible

repositories and can be obtained under license. Full

details of these data sources are given in the

Supporting Information (S1 File). All maps

produced as part of this publication, including

supporting material, contain data (GB coastline)

obtained from the OS Strategi® dataset 2016. This

data is freely available under an open government

license (@ Crown copyright 2016 100051110).

Funding: This work was funded by the Department

for Environment, Food & Rural Affairs (https://

https://doi.org/10.1371/journal.pone.0176339
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0176339&domain=pdf&date_stamp=2017-06-28
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0176339&domain=pdf&date_stamp=2017-06-28
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0176339&domain=pdf&date_stamp=2017-06-28
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0176339&domain=pdf&date_stamp=2017-06-28
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0176339&domain=pdf&date_stamp=2017-06-28
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0176339&domain=pdf&date_stamp=2017-06-28
https://doi.org/10.1371/journal.pone.0176339
https://doi.org/10.1371/journal.pone.0176339
http://creativecommons.org/licenses/by/4.0/
https://www.gov.uk/government/organisations/department-for-environment-food-rural-affairs


Introduction

Great Britain (GB) is home to many mammal species that are of conservation or management

concern. Some need to be protected from threats such as diseases [1] or invasive species [2].

Others need to be managed to protect other native species from diseases, or prevent damage to

the economy [3–5]. In order to inform such management decisions it is important to know

where species are and in what abundance.

To date, the most widely used reference for species distribution and abundance in Great

Britain is a report that was published by Harris et al. [6]. Whilst laudable, these results are now

20 years out of date. Moreover, they were obtained in large parts through expert solicitation,

instead of a systematic and transparent process. Though often accepted practice throughout sci-

ence this method of quantitative estimation can be subject to significant uncertainty and is par-

ticularly difficult to reproduce in a reliable and consistent manner. More recent studies have

instead used data driven approaches to assess relative changes in abundance. However, due to

the availability of suitable data this has been limited to a handful of species [7, 8]. As yet no stud-

ies have proposed a method by which absolute abundance estimates can be determined.

The emergence of large scale citizen science projects and data collation services, such as the

National Biodiversity Network (NBN), has made this type of data driven process viable [9].

Previously, the identification and collation of data from such a wide range of sources would

have been impossible particularly on a national scale. This coupled with the development and

accessibility of species distribution modelling tools in computational platforms such as R [10]

provides an avenue by which associations of observed occurrence with habitat can be quanti-

fied and related to known density estimates to provide an estimate of abundance. Species dis-

tribution models have become a popular tool in ecology allowing researchers to predict the

spatial distribution of species where available data is lacking. There are many variations of

model each applying a distinct set of assumptions. The merits of each model has been the sub-

ject of much conjecture in recent years [11, 12] and currently there is no definitive consensus

as to the best single approach. Instead, a combined approach considering multiple models is

often advocated to mitigate any undesirable effects which may be exhibited by individual mod-

els in particular scenarios [13, 14].

In this paper we outline a systematic modelling approach to predict species distributions

and derive total abundance, using publically available data for 63 terrestrial mammal species

across Great Britain. The purpose of this explorative study is to provide a transparent and

reproducible method by which abundance can be assessed on a regular basis. The results of the

study are used to discuss the feasibility of such an approach in the context of data availability

and its potential use to inform policy decisions for species conservation and management:

from directing conservation effort, through assessing disease risk and mitigation strategies, to

addressing human-wildlife conflict. Additionally, we identify areas (occurrence records or

density estimates) where improved data recording would most benefit any repeat of this

approach and make recommendations for further work.

Method

Data

All maps produced as part of this publication, including supporting material, contain data (GB

coastline) obtained from the OS Strategi1 dataset 2016. This data is freely available under an

open government license (@ Crown copyright 2016 100051110).

Occurrence data. Occurrence records were sourced via the NBN Gateway (https://data.

nbn.org.uk/); the largest repository for UK biodiversity information collating datasets from a

Systematic estimation of British mammal abundance

PLOS ONE | https://doi.org/10.1371/journal.pone.0176339 June 28, 2017 2 / 21

www.gov.uk/government/organisations/

department-for-environment-food-rural-affairs)

under project SE0430. The funders had no role in

study design, data collection and analysis, decision

to publish, or preparation of the manuscript.

Competing interests: The authors have declared

that no competing interests exist.

https://data.nbn.org.uk/
https://data.nbn.org.uk/
https://doi.org/10.1371/journal.pone.0176339
https://www.gov.uk/government/organisations/department-for-environment-food-rural-affairs
https://www.gov.uk/government/organisations/department-for-environment-food-rural-affairs


wide range of providers such as local records centres, national enthusiast groups, wildlife char-

ities, government and environmental consultants. Whilst other similar repositories are avail-

able, for example the Global Biodiversity Information Facility (GBIF), the NBN was selected

on the basis that it could potentially provide access to a greater volume of records and is

updated more frequently (currently GBIF can only offers access to publicly available NBN rec-

ords prior to 2013). Furthermore, records were spatially referenced using the British National

Grid (BNG) and as a consequence inherently contain the information required to access

recording accuracy. However, in order to use any of the datasets supplied by the NBN for sci-

entific research purposes, even that which is freely accessible at a public level, written permis-

sion must be received from each data provider.

Across all 63 terrestrial mammal species, 62 whose abundance was estimated by Harris

et al. [6] with the addition of wild boar (Sus scrofa), we identified and applied for access to

264 datasets from 87 providers containing 1.21 million records (non-sensitive records only)

between 1960 and 2015 (this temporal period was necessary to ensure sufficient records were

available for each species and reflects a similar period to that of Harris et al. [6] who also con-

sidered data post-1960). Of these, written permission was received to use 221 datasets from

65 providers, representing approximately 75% engagement, with a total 1.09 million records

downloaded between 27/02/2015 and 30/06/2015. Datasets from two providers which granted

permission after this date were not included in the analysis. In addition to the data down-

loaded via the NBN, three datasets were supplied directly through correspondence with pro-

viders. Overall, the reporting resolution of records obtained varied considerably with 38%

given at 100m, 38% at 1km, 1% at 2km and 23% at 10km. A significant proportion of this vari-

ation was due to access restrictions imposed by providers who for a variety of reasons limited

the resolution of available records. Further details of all datasets are provided in the supporting

information accompanying this publication (S1 File: Section A).

Using the collected records point maps for all species were generated in ArcGIS v10.2. For

quality control, each point was checked for geographical plausibility against the reported

recording resolution. In order to achieve this buffered outlines of the land boundary for

Great Britain, one for each resolution (100m, 1km, 2km and 10km), were used with any points

falling outside of the corresponding boundary discarded. The remaining point locations were

then used to generate various raster maps based on the BNG coordinate system describing:

recording effort, the total number of records per cell; occurrence, whether a species had been

recorded in a cell within the period of interest; and the decade of last sighting in cells where

occurrence had been recorded. Initially, we assumed a raster cell size of 10km in which all rec-

ords could be considered with equivalent uncertainty. However, at this resolution it would

only be possible to describe the habitat of each cell at a broad scale and it was our concern that

this may not fully capture sufficient variation to infer realistic associations. To examine the

impact of cell size we also produced maps based on a 1km raster grid, closer to the home range

of most species. Similar to the 10km case, to maintain equivalent uncertainty in recording

accuracy, we only considered point locations recorded at a resolution of 1km or higher (i.e.

100m).

Fig 1 presents the resulting raster maps for recording effort and occurrence across all spe-

cies to give total recording effort and species richness (decade of last record is not shown as for

both cases the majority of cells contain at least one recent record). The maps generated using

the 1km raster have been aggregated to a 10km for direct comparison. Whilst generally there

was a good agreement between the maps at each resolution it was noticeable that there were

localised differences both in recording effort and richness. This was largely due to restrictions

on the resolution of records imposed by providers creating regional data “deserts” at a 1km

resolution. This was particularly evident in Cumbria and Cornwall where both the number of
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Fig 1. Summary of available occurrence records across all species. Maps displaying available occurrence records based on: (a) a 10 km raster grid

considering all records; (b) a 1km raster using only records with resolution of 1km or higher (aggregated to 10km for comparison); combined across all

species to give: (i) total recording effort; (ii) species richness. (c) maps the loss of information incurred by considering a higher precision model. This

highlights the emergence of regional data “deserts” where the resolution of records has been limited by local providers.

https://doi.org/10.1371/journal.pone.0176339.g001
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records and importantly the number of species recorded was significantly reduced. The impli-

cations of this with regards to the model prediction at the 1km scale are discussed later.

Environmental data. In order to perform Species Distribution Modelling, and map the

suitability of habitat throughout Great Britain for terrestrial mammals, we downloaded spatial

data on environmental factors from free online resources (hereafter spatial dataset). With the

aim to design a systematic method, we chose layers that we believed a priori to be influential

for the distribution of all terrestrial mammal species in Great Britain. Our spatial dataset thus

included climatic variables in the form 19 temperature and precipitation related variables

(average 1950–2000; worldclim.org, Hijmans et al. [15]), altitude (worldclim.org, Hijmans

et al. [15]), human density (in 2011; UK census data, Office for National Statistics [16] and

National Records of Scotland [17], and dominant target land cover class 2007 (CEH, Morton

[18]). The spatial layers were processed to the resolution of the corresponding species occur-

rence data, both 1km and 10km, in ArcGIS v10.2. Full details of this process are included in

the supporting information (S1 File: Section C). In this analysis we did not explicitly consider

interactions between species, where presence data from associated species may inform the

model, although this may be informative [19].

Density estimates. We searched the published literature for geo-referenced estimates of

density for all species of interest. This was done by performing a systematic search through

Web of Knowledge using the following search term: ‘density’ AND ‘Britain’ AND species

name (common and scientific); the same search terms were also entered into Google Scholar.

Only densities estimated for wild populations in Great Britain after 1960 were recorded and

subsequently considered. Using the site description in each publication a representative poly-

gon was estimated and mapped in ArcGIS v10.2 according to a standard extraction protocol

(for details see S1 File: Section B). In a significant proportion of publications we found that the

description provided insufficient detail to allow a site map to be estimated and in several cases

even basic geo-referencing information was lacking. No publications were accompanied by

electronic resources containing geographic representations of the study site or raw data. Fur-

thermore, we also noted that it was often unclear how density estimates had been calculated

and to what geographical extent they applied. In general there was also a lack of consideration

for habitat specific variation within study sites with most reporting an overall estimate for the

entire survey area. This may have important implications particularly for small mammals due

to their relative size and movements.

In total we only identified density estimates in 95 publications spanning 53 species which

could be geo-referenced and mapped. A full breakdown of these estimates by species is in-

cluded in the supporting information (S2 File: Section B). In particular, this shows a substan-

tial lack of recording for common species, such as rabbit (Oryctolagus cuniculus), and in areas

of low or no density particularly for larger mammal species. Raster maps outlining the geo-

graphic location of these sites are present in Fig 2 detailing the surveying effort, species rich-

ness and recording recentness of studies within each cell. This highlights extensive gaps in

surveying effort across Great Britain, predominantly in northern part of England.

Modelling framework

The modelling approach consisted of a two stage process. Firstly, occurrence was coupled with

environmental data using species distribution models to produce habitat suitability maps, rep-

resenting the likelihood of observing occurrence, for each species. Then, these habitat suitabil-

ity scores were matched with reported density estimates using linear regression to predict

abundance. A graphical illustration of this process is shown in Fig 3. This method was applied

to each species where sufficient data was available based on a 10km and 1km raster grid.
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Species distribution modelling. Species distribution modelling (SDM) was performed

using the R packages “dismo” [20], “randomForest” [21] and “kernlab” [22]. We implemented

and compared seven habitat suitability algorithms using the Area Under the Curve (AUC).

The AUC is a commonly-used method for comparing SDMs. It yields a value between 0 and 1,

with 1 representing perfect model predictions, and a value� 0.5 indicating a model that does

not perform better than random.

The SDM methods compared here were both presence-(pseudo-)absence and presence-only

algorithms: GLM (regression approach, pseudo-absence), Random Forest (Machine Learning

method, pseudo-absence), Support Vector Machines (Machine Learning method, pseudo-

absence), MaxEnt (Machine Learning method, used as presence-only with a default routine pro-

ducing pseudo-absences as part of the method), Mahalanobis distance (profile method, pres-

ence-only), Domain (profile method, presence-only) and Bioclim (profile method, presence-

only). Because our original species datasets were presence-only, we generated pseudo-absences

for each species by selecting a fixed number of random cells from the GB outline and recording

absence where there was no occurrence. The number of cells selected varied depending on the

raster resolution to account for the difference in sample size. At 10km we selected 500 cells and

at 1km we selected 5000, 10 times more which corresponded to the average increase in occur-

rence records across all species. Moreover, we divided each species presence-(pseudo-)absence

datasets into training and testing sets by randomly setting aside 25% of the data for testing

Fig 2. Summary of available density estimates across all species. Maps displaying extracted density estimates combined across all species to give: (a)

total surveying effort (the number of density estimates in each square, with some species contributing more than a single estimate); (b) species richness (the

number of species for which a usable density estimate exists); and (c) recording recentness (decade of last survey). Values derived from original polygon

representations by converting to 25m raster grids and then aggregating cells to a display resolution of 10km.

https://doi.org/10.1371/journal.pone.0176339.g002
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purposes (i.e. estimating the AUC). We adjusted for any spatial sorting bias in the test data,

which has been shown to skew the evaluation of AUC, according to the method outlined in Hij-

mans [23]. All layers in the spatial dataset were initially used with each SDM. For GLM, how-

ever, we performed model selection using the “glmulti” function in the “glmulti” R package

[24]; we then used only the best predictor variables for predictions using that SDM.

The comparison of all seven algorithms using the AUC yielded the best SDM given the

selected testing data. This SDM was then used to map habitat suitability with occurrence pre-

dicted using the suitability threshold that maximised the sum of sensitivity and specificity [25].

This threshold has been shown to perform better than arbitrary thresholds by Liu et al. [25]

Fig 3. Diagram of the model framework. Outline of modelling process for each species (maps show output for the hedgehog: Erinaceus europaeus; for

detailed discussion of these results refer to the species specific report in S6 File). Initially, occurrence is coupled with environmental data comparing 7 SDMs

to identify the “best” habitat suitability map based on AUC. This is repeated 100 times with the best maps combined to produce an overall mean habitat

suitability; the mid value indicates the threshold above which occurrence is assumed. For these cells, habitat suitability scores are then matched with

extracted density estimates and linear regression performed to predict abundance.

https://doi.org/10.1371/journal.pone.0176339.g003
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whose findings demonstrated that it isn’t sensitive to the selection of pseudo-absence, it opti-

mises discrimination between presence and absence and performed well for all algorithms

tested. Due to the stochastic subsetting of the data for training and testing we found that the

process did not necessarily produce the same result each time. To ensure a stable output we

performed 100 repetitions combining the standardised output (habitat suitability and thresh-

old scaled to values between 0 and 1) from each to produce the mean habitat suitability score

in each cell and suitability threshold (whilst chosen arbitrarily testing showed that 100 repeti-

tions was sufficient, producing a mean result with maximum relative standard error across all

cells of<10%; typically a value of<25% is considered acceptable).

Species abundance. For each species where geo-referenced density estimates were avail-

able, we converted our mapped polygon layer to a raster grid based on a 25m cell size. Where

polygons overlapped the most recent estimate was taken. We then aggregated these base maps

to each of our chosen resolutions operating under two different assumptions designed to cap-

ture the potential uncertainty relating to partial coverage within cells. Firstly, we assumed that

unsurveyed areas contributed a value of zero towards the mean density within each cell. This

formed our lower or minimum density estimate. This would tend to occur where species are

habitat specialists and all suitable habitat was surveyed in the study. Secondly, we assumed that

unsurveyed cells were representative of those where estimates had been recorded with a value

equal to the mean density of the surveyed cells. This formed our upper or maximum density

estimate. This would tend to occur where species are generalists and have limited difference in

density in the habitats within each grid square. We then identified the exact cells in which esti-

mates were located, and extracted the corresponding suitability score from the map created

using the best SDM. Any cells in which occurrence was not predicted based on our threshold

value were discarded from this part of the analysis.

Linear regression was then used to model each species density as a function of suitability

score. As a first step, we checked that the density data was normally distributed using a Shapiro

test [26] from the core R package “stats”; this criteria is required to fit linear models. If the raw

data was not considered normal (p value < 0.1) then an optimal power transformation was

identified using the “box-cox” function from the R package “MASS” [27]. This was applied

and the transformed data retested. If the newly transformed data was considered normal then

we proceeded with the analysis. If however it was again rejected by the Shapiro test then we

performed a further assessment on the original data by fitting a generalised linear model

(“glm”) with various distributions (Gaussian; gamma; and Poisson) using the standard AIC

statistic for comparison.

If the data could be considered normally distributed then we looked for spatial correlation

in our dataset by running a simple model with different spatial autocorrelation structure (i.e.

Gaussian, Exponential, and Spherical) and compare its AICc [28, 29] to a model without spa-

tial autocorrelation. This is done by using a linear mixed model (“lme”) [30] with a dummy

variable for random effect (i.e. all values set to 1). When autocorrelation was found, “lme” was

used with the best autocorrelation structure; when it wasn’t we used the core “lm” function.

Where the density estimates could not be considered normally distributed we used “glm”

instead with the fitted distribution.

Once the correct modelling procedure was identified, we used the model to predict species

density in cells without published estimates. If the data used for regression had been trans-

formed to satisfy the normality criteria then the inverse was applied to this output. The result-

ing maps were finally converted from density to abundance by multiplying by the area of land

mass contained within each cell; derived using a fine scale (25m) raster representation of the

GB land boundary. The total abundance was calculated as the sum of the predicted abundance

across all cells.
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In some instances at the 1km level the density dataset was too large to perform the process

outlined above. In such cases we generated random subsets containing 2000 density data

points to perform analysis. This was repeated 10 times and the mean result computed (similar

to the habitat suitability modelling, testing showed that 10 repetitions produced a mean with

relative standard error<10%; it is likely that fewer repetitions were required here as the pro-

cess contained fewer layers of stochastic sampling).

Results and analysis

Due to the number of species considered in this study it is not be feasible to present all of the

output here. A full breakdown of the available data (S1 File) and model results (S2 File) is pro-

vided in the supporting information. This includes an individual analysis and interpretation

for each of the 63 species considered (S3 File). In this section we outline an example analysis of

the available data and model predictions, based on a 10km raster grid, for a nominal species

(red fox: Vulpes vulpes) and discuss the model performance. Top level metrics are then pre-

sented for all species.

The maps shown in Fig 4 present example analysis for the red fox. Fig 4(A)(i) shows that

this species is highly recorded throughout GB (sightings cover approximately 84% of the area)

with most cells containing at least one sighting from the last decade (median year of reporting

is 2011). Fig 4(A)(ii)-(iii) also show that the species is well surveyed; red fox is amongst the

most surveyed in terms of the number of estimates identified here with a total of 26 (S1 File:

Table C). This is perhaps unsurprising given recent meta-analysis of scientific publications

which showed that the red fox has the fourth highest H-index of all recognised terrestrial

mammals in GB [31]. A total of 4 publications were identified during the literature search pro-

viding 26 geo-referenced estimates of density (12 unique sites). Compared with many other

species these estimates spanned a large proportion of the occurrence extent (approximately

10%) and geographically provided a reasonable sample of locations across the distribution.

However, when stratified by dominant land cover, which we argue is an important factor in

species distribution, estimates were not available for several classes in which occurrence had

been recorded (Table 1). It is also important to note that the temporal range of the estimates

was more limited (1995–2006). The implications of this in terms of interpreting model output

is that whilst the predicted extent of the species represents an average distribution from 1960

to 2015 (for the red fox this is likely to have been relatively stable) predictions of abundance

only reflect an average across a period equivalent to that of the available density estimates.

Consequently, the reader should note that all the abundance figures presented in this publica-

tion are not considered current estimates but may be regarded as an approximate estimate for

the mean year of the studies used to estimate density.

Encouragingly, the habitat suitability map shown in Fig 4(B)(i) appears to reflect the under-

lying data well, predicting a similar distribution of occurrence (although the default threshold

for presence results in a contraction in Scotland and Cumbria where the species is known to

be present–compare Fig 4(B)(ii) with Fig 4(A)(i)). The map also suggests, shown by the lack of

variability in suitability score across most of the range, that the red fox is a generalist species

which is consistent with ecological evidence. This is reflected in the analysis of the mean habi-

tat suitability scores by land cover which highlights many different classes where observation is

highly likely including woodland, arable farmland and urban landscapes (Table 1). In addition,

the breakdown also confirms that, consistent with recorded sightings, the highest number of

foxes is in arable and improved grassland; although this is perhaps understandable for such a

ubiquitous species given these are the most common dominant land covers at a 10km scale.

Even for such a well reported species, it can be noted that many of the occurrence records in
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Fig 4. Example maps for the red fox. Plot (a) presents the available data showing: (i) species occurrence; and (ii) density; by the decade of last sighting;

(iii) mean density (estimates are assumed to be representative of entire cell, considered the upper limit of observed density). Plot (b) presents the

corresponding model predictions based on a 10 km grid showing: (i) habitat suitability; (ii) the lower bound (Minimum); and (iii) the upper bound (Maximum);

for abundance. Maps show the fox is a highly reported and surveyed species. Habitat suitability modelling reflects this predicting widespread occurrence

across a variety of landscapes. Maps of abundance show similar spatial distributions suggesting a negative correlation between habitat suitability and

density. Uncoloured areas indicate absence (i.e. zero abundance) which is assumed where habitat suitability scores are lower than a threshold value; in this

case 0.9.

https://doi.org/10.1371/journal.pone.0176339.g004
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areas of low human population density are a few decades old. This implies that, assuming a

species is actually present, we require more occurrence records in areas of low human density,

and further records here may adjust the threshold and thus the population distribution. In

terms of the total population size, the areas below the threshold will be at a lower density and

thus for many species would not substantially increase the predicted population size.

In this case, linear regression suggested both minimum and maximum density estimates

were best fitted to models using a second order polynomial of habitat suitability accounting

for spherical spatial autocorrelation. Interestingly, these models predicted a negative correla-

tion in which squares with a higher likelihood of observation contain a lower density of in-

dividuals. Whilst this may seem counterintuitive the prediction matches other published

estimates confirming the observation [32]. The areas which our model places below the thresh-

old for presence are almost identical to the areas predicted to have the lowest density by Web-

bon et al. [32]. The resulting abundance range does contain the estimate from Harris et al. [6]

with a mid-point of approximately 230,000. This figure, slightly lower than the Harris et al. [6]

estimate, is in agreement with the most recent trend analysis [6], indicating that the population

Table 1. Summary of observed data and model predictions by land cover for the red fox.

Observed Predicted

Occurrence Density

LCM2007 class Records Year Estimates Year Range Habitat suitability Density Abundance

1 (Broadleaved woodland) 717 (11) 2013 0 (0) - - 0.95 (11) 0.4–2.2 436–2,387

2 (Coniferous woodland) 1,213 (144) 2006 9 (10) 1998 0.9–3.8 0.9 (75) 0.4–2.2 2,969–16,389

3 (Arable and Horticultural) 25,478 (934) 2013 157 (151) 2006 0.4–2.3 0.95 (938) 0.4–1.9 33,024–177,346

4 (Improved grassland) 15,559 (687) 2012 125 (118) 2006 0.5–2.5 0.9 (619) 0.4–2.2 24,059–134,884

5 (Rough grassland) 141 (21) 2003 0 (0) - - 0.42 (0) - -

6 (Neutral grassland) 0 (0) - 0 (0) - - 0 (0) - -

7 (Calcareous grassland) 66 (2) 2008 0 (0) - - 0.97 (2) 0.3–1.5 63–303

8 (Acid grassland) 1,129 (170) 2002 12 (11) 2006 0.1–1.5 0.86 (69) 0.5–3.1 3,507–21,176

9 (Fen, Marsh, and Swamp) 0 (0) - 0 (0) - - - - -

10 (Heather) 188 (45) 2007 0 (0) - - 0.84 (22) 0.5–3.3 1,185–7,344

11 (Heather grassland) 760 (83) 2006 0 (0) - - 0.66 (15) 0.6–3.5 836–5,195

12 (Bog) 331 (72) 2003 2 (2) 2006 0.1–2.5 0.56 (9) 0.5–2.8 429–2,536

13 (Montane habitat) 140 (39) 1998 0 (0) - - 0.84 (2) 0.6–3.9 123–783

14 (Inland rock) 4 (1) 2002 0 (0) - - 0.65 (0) - -

15 (Saltwater) 75 (8) 2011 0 (0) - - 0.84 (1) 0.3–1.8 28–183

16 (Freshwater) 4 (2) 1994 0 (0) - - 0.69 (0) - -

17 (Supra-littoral rock) 0 (0) - 0 (0) - - 0.08 (0) - -

18 (Supra-littoral sediment) 30 (3) 2011 1 (1) 2006 2.7–3.6 0.64 (0) - -

19 (Littoral rock) 2 (1) 2006 0 (0) - - 0.43 (0) - -

20 (Littoral sediment) 453 (27) 2012 2 (2) 2006 0.1–1.0 0.84 (4) 0.5–2.8 183–1,122

21 (Saltmarsh) 0 (0) - 0 (0) - - - - -

22 (Urban) 830 (8) 2014 0 (0) - - 0.93 (7) 0.3–1.7 213–1,198

23 (Suburban) 9,431 (76) 2014 2 (2) 2004 0.8–16.0 0.93 (67) 0.4–2.2 2,570–14,863

Total 56,551 (2,334) 2011 310 (297) 2006 0.4–2.5 0.86 (1,841) 0.4–2.1 69,626–385,710

Values shown in brackets denote the spatial coverage based on a 10km resolution raster map (number of grid cells). Years represent the median of records

within each land class. Ranges for density and abundance are derived using the respective minimum and maximum raster maps (lower bound is mean of

values across minimum raster map with upper across the maximum) which capture the spatial uncertainty generate by projecting irregular polygons

describing survey sites onto a raster grid.

https://doi.org/10.1371/journal.pone.0176339.t001
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may have decreased slightly since 1995 (up until 2006 which is median of the published esti-

mates). The full results for each species and a brief comment are available in the supplementary

material. Since this is an investigation of the methods, detailed analysis of each individual spe-

cies is not the objective of this paper.

Table 2 presents summary statistics relating to the analysis described above for 36 of the

most surveyed species, i.e. those for which the full modelling process could be applied. This

shows that a majority (61%) of predicted abundance ranges contain the 1995 estimate. How-

ever, for most species, the range is very large. This is a reflection of the uncertainty produced

by a mismatch between the scales of occurrence and density reporting. It is particularly notice-

able for riverine species such as American mink (Neovison vison) and water voles (Arvicola ter-
restris) whose density is typically reported using linear features which are not well represented

by environmental descriptors on a two dimensional grid with our chosen resolutions. Perhaps

unsurprisingly when modelling was performed based on a finer scale grid abundance ranges

were substantially smaller offering a more accurate prediction of abundance; the size of range

was on average 50% less for predictions based on a 1km raster grid (S2 File: Table A). This

demonstrates the need for modelling on finer, ecologically relevant, scales but issues relating

to data access prevented this here.

Of the ranges which do not match the 1995 estimate there appears to be a tendency to over-

estimate (64%; 75% taking into account all modelled species). This may be due to an expansion

of some populations (which could explain the increases predicted for the Artiodactyla), the

lack of ability to account for spatial contraction (e.g. the red squirrel: Sciurus vulgaris) and a

bias within density reporting towards higher estimates, are likely the main causes. Statistics

relating to the available data are also shown (Table 2). The aim of this work is to highlight any

deficiencies in reporting so that efforts can be targeted where they are most needed. For exam-

ple, almost all species lack density estimates in a majority of recognised land classes.

The recording rate describes the mean annual frequency that each species is recorded on

the occurrence database, for its estimated (1995) population size (Table 2 and S1 File: Table B).

This shows clear differences across taxa with the most recorded species per capita, either wei-

ghing approximately 10kg or are bats. Small mammals are typically the least recorded despite

large populations; likely reflect the relative effort required to identify the species. In particular,

this analysis also suggests that there is a recording bias favouring “rare” or “at risk” species

(e.g. horseshoe bats: Rhinolophus ferrumequinum & R. hipposideros, pine marten: Martes
martes, red squirrel). In contrast rates for smaller common species tend to be low (in particular

rabbits and moles: Talpa europaea) (S1 File: Table B). These same trends are not necessarily

reflected in density reporting. However, it is notable that the number of estimates for some

common species such as rabbit and brown rats (Rattus norvegicus) remain low (Table 2 and S1

File: Table C). There also appears a tendency in a number of cases, particularly for rarer spe-

cies, to focus on high density populations; this is most likely driven by interest lead research to

address a specific ecological question where guaranteed observation is necessary (particularly

apparent for hedgehog, mole and some deer species).

Assessing the results of the habitat suitability modelling across all species we found that at

both resolutions (1km and 10km) MaxEnt was the optimal individual modelling approach

selected as the best predictor for 66% and 45% of species based on the 10km and 1km raster

grids respectively. However, based on the mean AUC across all species it does not perform sta-

tistically better than Random Forest, or at the 1km resolution SVM. The strictly presence-only

profile methods (Bioclim, Domain and Mahalanobis distance) were the worst performers;

never selected as the best predictor at the 10km resolution and only for 3% of species at 1km.

There were no identifiable patterns at either resolution between species, status or origin and

optimal modelling approach; only 43% of methods were retained over both resolutions.
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Table 2. Summary of model predictions and analysis of observed data for the 36 “most” surveyed species.

Common name

(grouped by species

order)

1995

abundance

(reliability

score)

Predicted abundance

range (10km model

analysis)

Recording

rate

(% 1995 est.

yr-1)

Published

densities

(sites;

median yr)

LCM2007 dominant target land classes requiring

density estimates

(* denotes 10km only & ** 1km only)

Hedgehog 1,555,000 (4) 731,546–11,979,363 0.091 (-) 21–179

(10;2002)

1–2*,5*,6,7*,9**,10,11*,12–13,14*,15,16*,18–

20,21**,22*

Mole 31,000,000

(3)

126,065–109,231,019 0.003 (-) 420–850

(7;1987)

1,2*,4*,5,6**,7–8,9**,10–13,14**,15–

16,17**,18,20,21**,22–23

Common shrew 41,700,000

(3)

1,838,490–223,651,088 0.001 (-) 0–9718

(38;2003)

2*,5*,6**,7,9**,10,12*,13–16,17**,18,20*,21**,22

Pygmy shrew 8,600,000 (4) 11,566–36,213,441 0.001 (-) 0–2852

(8;1996)

2,5,6**,7–8,9**,10–16,18,19**,20,21**,22–23

Water shrew 1,900,000 (4) 22,166–406,189 0.004 (-) 2.9–3.1

(2;1995)

1,2,4*,5,7–8,9**,10,13,14**,15–

16,18,19**,20,21**,22–23

Natterer’s bat 100,000 (4) 76,593–1,709,679 0.248 (+) 1.8–24

(2;1990)

1*,2*,5,6**,7–8,9**,10–11*,12–13,15–

16,18**,20,21**,22,23*

Daubenton’s bat 150,000 (4) 39,292–245,200 0.238 (+) 1–2.4

(2;1990)

1*,5*,6–7**,8*,9**,12,13*,14**,15–

16,18,20,21**,22–23*

Serotine 15,000 (4) 5,419–20,733 0.574 (+) 0.16–0.59

(4;1991)

1,2,4*,5,6**,7–8,9–

11**,12*,15,16**,18**,20,21**,22,23*

Leisler’s bat 10,000 (4) 30,319–356,068 0.095 (-) 4.4–6.7

(2;1994)

1*,2,5**,8*,9**,10*,11,12*,16**,20*,22

Pipistrelle 2,000,000 (3) 454,098–1,849,199 0.027 (-) 1.6–18.2

(3;1987)

1*,5*,6**,7,8*,9**,12–13*,14–15,16*,18–

20,21**,22*

Brown long-eared bat 200,000 (4) 133,497–374,147 0.244 (+) 1.4–14.9

(3;1990)

1*,5*,7,8*,9**,12–13*,14**,15–

16,18**,20,21**,22–23*

Rabbit 37,500,000

(3)

2,069,527–255,508,540 0.005 (-) 19.8–5000

(4;1989)

1*,5–7,8–9**,10–14,16,17**,18*,19,20*,22–23

Brown hare 817,500 (2) 118,829–3,393,442 0.122 (+) 0–77.3

(62;2006)

1*,5*,6**,9**,10–11*,13,16*,22*

Mountain hare 350,000 (3) 2,633–1,186,763 0.023 (-) 3.7–89

(7;1971)

1**,3–4,5*,8*,12,14,15*,16,23

Red squirrel 160,000 (3) 305,073–11,237,141 1.216 (+) 3.2–422

(14;1996)

1*,5–7**,8*,9**,10–12*,13,14**,16,19–21**,22,23*

Grey squirrel 2,520,000 (3) 1,545,851–14,511,831 0.108 (-) 8–169

(7;1997)

1*,6**,7,8*,9**,10–12*,13,14**,15–16,18**,19–

20,21**,22,23*

Bank vole 23,000,000

(3)

189,622–204,426,956 0.001 (-) 0–15309

(38;1995)

1*,6**,7–8,9**,10–13,14**,15,18,19**,20,22

Field vole 75,000,000

(4)

4,875,844–463,671,721 <0.001 (-) 1.4–30923

(15;1997)

1*,5*,6**,7,8*,9**,10–12*,13–15,16*,17**,18–

20,22,23*

Water vole 1,169,000 (3) 544,441–7,995,892,846 0.075 (-) 0–293450

(18;1999)

1*,3**,5*,6**,7,8*,9**,10*,15,18,20,22*,23**

Wood mouse 38,000,000

(3)

809,118–218,026,188 0.001 (-) 0–11975

(38;1995)

1*,6–8,9**,10–16,17**,18,19**,20,22

Yellow-necked mouse 750,000 (4) 55,873–592,033 0.003 (-) 0–88.7

(6;1996)

1*,2,5**,8,11**,16**,22*,23

Harvest mouse 1,425,000 (5) 12,941–279,861 0.005 (-) 0–3.49

(5;1996)

1–2,5,6**,7,9–11**,12,14**,15,16**,18,20,21**,22–

23

House mouse 5,192,000 (5) 1,449–500,536 0.001 (-) 0–3750

(5;1996)

1–2,4**,7–8,9**,10–12,13*,15,18**,19*,20,21–

22**,23

Common rat 6,790,000 (4) 1,724,587–31,562,005 0.007 (-) 6.6–238

(2;2003)

1*,2,3*,5,6**,7–8,9**,10–13,14**,15–16,17**,18–

20,22

Red fox 240,000 (4) 69,625–385,710 0.429 (+) 0.14–27.6

(12;2006)

1*,5*,6**,7,9**,10–11*,12,14–

16*,17**,19*,21**,22*

(Continued)
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Overall, the mean AUC of the best habitat suitability models was 0.73 and 0.68 for 10km and

1km respectively suggesting a good agreement between observed and predicted data. The

reduction in AUC for models at the higher resolution is likely due to the increased variability

of environmental factors.

Spatially, the maps shown in Fig 5(A)(i) and 5(B)(i) present the species richness based on

predicted occurrence for each species. As indicated by the AUC these demonstrate a good

comparison with that of the observed data presented in Fig 1. However, whilst this suggests

that models can successfully reproduce observed data the extent to which they can compensate

for gaps in data availability at a regional scale is clearly limited. Despite a mean increase in cov-

erage of approximately 136 time (136km2 per observation) at 1km, compared to 1.8 times

(180km2 per observation) at 10km, Fig 5(B)(i) highlights this with poor species richness pre-

dicted in regions where the resolution of records was restricted. This factor means that whilst

models based on a finer spatial scale produce more accurate estimates the relative magnitude

will likely be artificially reduced due to gaps in predicted distributions confounding the results

and limiting their usefulness.

To visualise the predictions of abundance across all species we computed the total biomass

in each cell by multiplying the abundance for each species by the standard weight outlined in

Harris et al. [6] and summing the result (shown in Fig 5: plots marked (ii)-(iii)). For models

based on 10km we observe a degree of inconsistency in the predicted maps for minimum and

maximum biomass, largely driven by an overestimation in the minimum abundance of Artio-

dactyla species. Whereas when using a finer resolution there is better agreement; again, mak-

ing a case for modelling based on a finer scale grid. However, this agreement may be due to a

Table 2. (Continued)

Common name

(grouped by species

order)

1995

abundance

(reliability

score)

Predicted abundance

range (10km model

analysis)

Recording

rate

(% 1995 est.

yr-1)

Published

densities

(sites;

median yr)

LCM2007 dominant target land classes requiring

density estimates

(* denotes 10km only & ** 1km only)

Pine marten 3650 (2) 2,019–25,177 1.499 (+) 0.12–0.82

(12;1998)

1*,5*,9**,12*16*18**,20,22**,23*

Weasel 450,000 (4) 1,056,431–24,999,091 0.054 (-) 13–275

(3;2000)

1*,4*,5,6**,7,8*,9**,10–

12*,13,14**,15,16*,18,19,20*,21**,22–23

Polecat 15,000 (3) 52,011–53,475 0.582 (+) 0–1.86

(10;1996)

7*,22*

American mink 110,000 (3) 13,714–2,724,393 0.223 (+) 1.6–70

(10;2003)

1–2*,7,8*,10*,13,14–15*,20*,21**,22,23*

Badger 250,000 (1) 79,544–968,740 0.327 (+) 1.2–43

(20;2006)

1*,5*,6**,7,9**,10–11*,13,15–

16*,17**,19*,21**,22*

Wildcat 3,500 (3) 1,740–16,255 0.436 (+) 0.3–0.68

(2;1978)

3–5*,7**,8*,12*,15**,16,19–20**,22**,23

Red deer 360,000 (2) 379,297–780,812 0.065 (-) 0.1–29.8

(40;2009)

1*,6**,7*,15*,20*,22–23*

Sika deer 11,500 (2) 21,477–357,800 0.312 (+) 0–25.6

(44;1997)

1*,5*,7*,12–13*,15*,18**,23*

Fallow deer 100,000 (4) 303,314–4,635,453 0.154 (+) 38–46

(3;1994)

1–2*,5,6–7**,8,9**,10–11,12–13*,14–

15**,16,18**,20,21**,22,23*

Roe deer 500,000 (3) 563,932–4,500,284 0.154 (+) 16–76

(5;2002)

6**,7,8*,9**,10–11*,12–16,17**,18–20,21**,22,23*

Chinese muntjac 40,000 (3) 1,962,152–5,046,501 0.757 (+) 20–120

(3;2002)

1*,4*6**,7–8,9**,10–

12,14**,15*,16**,18**,20*,21**,22,23*

Omission from this list indicates too few geo-referenced density estimates (�1) could be identified from the literature to perform a full model analysis.

https://doi.org/10.1371/journal.pone.0176339.t002
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Fig 5. Summary of model predictions across all species. Maps displaying model outputs based on: (a) a 10 km raster grid considering all records; (b) a

1km raster using only records with resolution of 1km or higher (aggregated to 10km for comparison); combined across all species to give: (i) predicted

species richness; (ii) Minimum predicted biomass; (iii) Maximum predicted biomass. There is good agreement between predicted richness and that

observed in Fig 1. However, there is a degree of inconsistency, particularly based on a 10km raster, between the spatial distributions of minimum and

maximum biomass.

https://doi.org/10.1371/journal.pone.0176339.g005
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reduced dependence on habitat suitability with most predictions based on a constant applica-

tion of density in all cells where occurrence is predicted; probably driven by a lack of variation

in reported density within study sites over a wide geographic area and should therefore be

treated with caution.

Discussion and conclusions

In order to develop informed policy decisions regarding the management of wild mammals in

Great Britain it is important to establish the location and abundance of species. In this paper

we proposed a systematic and reproducible method by which this information could be deter-

mined. Our findings suggest that at present data driven modelling approaches of this type are

unable to compensate for serious deficiencies in data availability within specific regions and

for certain species both of occurrence and density estimation. This increases the uncertainty

surrounding our predictions of distribution and total abundance and thus decreases their use-

fulness for making decisions. Nonetheless, in the majority of cases a plausible population esti-

mate is generated with 61% of estimates including the 1995 estimate. Additionally, all deer

estimates are greater than the 1995 estimates and all are known to be expanding in range, with

a prediction that roe deer (Capreolus capreolus) would occupy 79% of all 10km squares by

2015 [33]. From this work we predict that roe occupy 74% of all 10km squares (S2 File:

Table A).

At a national scale it is often impractical to gather data directly. Instead, projects such as

this rely upon the provision of data from several different sources. We have argued that the

NBN Gateway provides a valuable resource for this type of modelling where suitable data can

be identified and collated into a standard format for processing. However, the currently data

use requires written permission from each provider and our experiences have highlighted that

the response of providers to data requests is varied and in some cases there is a lack of engage-

ment with this process. The NBN recognises that this process is a major barrier in the use of

biological records in research and are launching their new NBN Atlas platform (for England

and Wales; the Atlas for Scotland is already live and can be accessed at http://www.als.scot/)

on the 1st April 2017 which will require all datasets to be assigned a standard Open Govern-

ment License (OGLs), thereby reducing the need to contact providers for permission [34].

Whilst this change in policy will improve the situation with regard to access and usage it is

unclear whether there will be an impact on the volume or quality (resolution) of available data

compared with that currently held on the Gateway.

Local Environmental Record Centres (LERCS) form a significant proportion of the poten-

tial data providers and are a key source of records. ALERC, the accreditation body for these

organisations (setup in collaboration with Natural England), encourages members to share

data at a national level primarily through the NBN [35]. Nevertheless, our understanding is

that there are no recommendations for the standard of data provision and as a result both the

quality and quantity of data provided to the NBN is variable. Through communications with

providers there is also an acknowledgment from many that records on the NBN are either out-

dated or incomplete and to obtain better data applications should be submitted directly. This

compromises the utility of the NBN and as a result the viability of national projects which

would benefit from a unified data source.

In addition to the issues affecting the availability of occurrence records there we also high-

light deficiencies in the collection and reporting of density estimates. In particular, Fig 2 shows

that there are substantial geographic areas where no density surveys have been conducted and

across all species only 5% of the area covered by predicted species distributions contained a

viable estimate. To compound this issue, many of the publications which we identified through
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our systematic literature search contained insufficient information to accurately map study

sites and none were accompanied by electronic resources outlining the survey boundaries or

raw data which would allow for reanalysis or interpretation at a later date. Consequently, it

was often unclear as to how density estimates had been calculated and to what area or extent

they applied. This was particularly evident for larger mammal species which are typically

recorded over a broad geographic range comprising a varied habitat but with only a single esti-

mate reported. It is likely that this lack of spatial variation is a significant factor contributing to

the low levels of correlation between habitat suitability and density of model predictions based

on a 1km raster. Amongst the estimates which could be mapped we note that there was a sur-

prising lack of reporting on common species, such as rabbit, with a bias towards specialist less

well known species which could perhaps be considered academically more interesting. Simi-

larly, there was also a lack of low density estimates with studies tending to concentrate on high

density populations where observation is easier and more rewarding in terms of scientific

impact. However, for modelling purposes at a national scale such estimates are required to bal-

ance predictions and prevent overestimation of populations.

Despite these constraints on data quantity and quality the modelling approach outlined

demonstrates an ability to accurately reproduce occurrence and through association with pre-

dicted habitat suitability scores infer total abundance comparable to that of Harris et al. [6]. It

is clear however that there are limitations to the extent that the proposed modelling approach

can account for deficiencies in the data, particularly regional gaps in occurrence records at the

1km level. There is also evidence to suggest for a few species that the lack of a representative

set of density estimates may lead to overestimation of population sizes. Naturally, there are

improvements which could be made to the modelling process. Some of which are dependent

on data availability, for example, using a smaller temporal scale to determine more recent

trends or using a higher resolution to bridge the gap between scales of density and occurrence

recording. A reduced temporal data set should improve the estimates for species declining in

range (e.g. red squirrel, which was over-estimated and hedgehog which is becoming more het-

erogeneous in range [36]). However, others could be implemented irrespective of improve-

ments in data, for example consideration for percentage land class rather than solely relying

on dominant classifications to better describe habitat types for specialists such as American

mink or basing grid cell sizes on reported home range. There is also scope to increase the pool

of species distribution models to consider more recent developments [37]. It may also be possi-

ble to explore rationalising the difference between density survey techniques and occurrence

recording by instead computing the mean habitat suitability score for each density polygon,

considering all cell values regardless of whether the score lie below the computed occurrence

threshold as has been applied in this publication, and relating this to recorded density esti-

mates (although this may simply average any variation in habitat suitability masking any clear

dependence with density). If this is not successful then the development of species distribution

models which allow for an uncertainty weighting, distinguishing between records of various

resolutions, may provide a new avenue by which higher resolution grids could be implemented

without the need to discard unsuitable records.

By utilising only presence data this approach could be used more widely across Europe to

predict the range of many mammalian species, even where data may be sparse (e.g. Savi’s pipis-

trelle: Hypsugo savii [38]) and where estimates of abundance exist [39], absolute population

size.

However, the issues relating to data remain the most significant constraint on this process.

In order to maximise the predictive power and therefore the impact of a systematic approach

in the future we propose several recommendations aimed at improving data collation and

collection.
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1. To mitigate the attitudes of a minority of local data providers occurrence records must be

submitted directly to national surveys such as the Mammal Society’s Mammal Tracker

(this should not prohibit the submission of duplicate records to local organisations). This

would significantly reduce the overhead time associated with negotiating access to data and

facilitate a more standardised level of access to data at an appropriate resolution corre-

sponding to habitat variability and species movement.

2. We encourage all data holders (Record Centres and academics) to submit full species

presence data to the NBN. We are aware that many additional records exist within the

organisations that are already listed on the NBN and that many people hold additional rec-

ords collected during surveys that could help contribute to the national database.

3. More focus is required to provide density estimates for common species, such as rab-

bits, and for species in areas of low or no abundance. We encourage the publication of

small-scale local studies of species density, although we admit that with current trends these

may be hard to publish.

4. To ensure that such studies can be collated and used efficiently, where possible, we suggest

a standardised approach reporting density estimates based on the 1km resolution British

National Grid, or areas representative of that 1km square, with digital maps to accom-

pany publications. This would directly complement the existing method of recording for

occurrence and would reduce the uncertainty produced by converting irregular study sites

to a standard raster grid for processing. For most species this cell size would adequately cap-

ture any associations with the dominant land class and therefore we anticipate would pro-

duce a better correlation with habitat suitability.

Supporting information

S1 File. Data descriptions (.pdf). A full description of the data identified and used in the

modelling process including: a breakdown of the datasets available via the NBN, the permis-

sion received and a full list of acknowledgments; a breakdown of occurrence records by spe-

cies; a breakdown of density estimates by species and a full list of references from which

estimates were extract; full details of the environment data used for the habitat suitability

modelling and a methodology for standardising this information to correspond with this pro-

cess.

(PDF)

S2 File. Additional model results (.pdf). A summary breakdown of the model output for

each species and additional maps showing predicted species richness and total biomass for a

variety of species subsets, specifically, by origin (native or non-native), by status (common,

local and rare) and by species order (Marsupialia, Insectivora, Carnivora, Artiodactyla, Chir-

optera, Rodentia and Lagomorpha).

(PDF)

S3 File. Species reports: Artiodactyla (.zip). Individual reports for each of the Artiodactyla

species presenting analysis of the available data and subsequent model predictions based on a

10km raster grid. Reports also include expert comment assessing the reliability (and plausibil-

ity) of results in the context of existing evidence and popular opinion.

(ZIP)

S4 File. Species reports: Carnivora (.zip). Individual reports for each of the Carnivora species

presenting analysis of the available data and subsequent model predictions based on a 10km
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raster grid. Reports also include expert comment assessing the reliability (and plausibility) of

results in the context of existing evidence and popular opinion.

(ZIP)

S5 File. Species reports: Chiroptera (.zip). Individual reports for each of the Chiroptera spe-

cies presenting analysis of the available data and subsequent model predictions based on a

10km raster grid. Reports also include expert comment assessing the reliability (and plausibil-

ity) of results in the context of existing evidence and popular opinion.

(ZIP)

S6 File. Species reports: Insectivora (.zip). Individual reports for each of the Insectivora spe-

cies presenting analysis of the available data and subsequent model predictions based on a

10km raster grid. Reports also include expert comment assessing the reliability (and plausibil-

ity) of results in the context of existing evidence and popular opinion.

(ZIP)

S7 File. Species reports: Lagomorpha (.zip). Individual reports for each of the Lagomorpha

species presenting analysis of the available data and subsequent model predictions based on a

10km raster grid. Reports also include expert comment assessing the reliability (and plausibil-

ity) of results in the context of existing evidence and popular opinion.

(ZIP)

S8 File. Species reports: Marsupialia (.zip). Individual reports for each of the Marsupialia

species presenting analysis of the available data and subsequent model predictions based on a

10km raster grid. Reports also include expert comment assessing the reliability (and plausibil-

ity) of results in the context of existing evidence and popular opinion.

(ZIP)

S9 File. Species reports: Rodentia (.zip). Individual reports for each of the Rodentia species

presenting analysis of the available data and subsequent model predictions based on a 10km

raster grid. Reports also include expert comment assessing the reliability (and plausibility) of

results in the context of existing evidence and popular opinion.

(ZIP)

S1 Table. Excel version of S1 File: Table D (.xlsx). Excel spreadsheet containing Table S1

File: Table D for enhance readability.

(XLSX)
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