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Beamforming has been widely adopted as a source reconstruction technique in the analysis of magnetoenceph-
alography data. Most beamforming implementations incorporate a spatially-varying rescaling (which we term
weights normalisation) to correct for the inherent depth bias in rawbeamformer estimates. Here,we demonstrate
that such rescaling can cause critical problems whenever analyses are performed over multiple sessions
of separately beamformed data, for example when comparing effect sizes between different populations.
Importantly, we show that the weights-normalised beamformer estimates of neural activity can even lead to a
reversal in the inferred sign of the effect beingmeasured.We instead recommend that noweights normalisation
be carried out; any depth bias is instead accounted for in the calculation of multi-session (e.g. group) statistics.
We demonstrate the severity of the weights normalisation confound with a 2-D simulation, and in real MEG
data by performing a group statistical analysis to detect differences in alpha power in eyes-closed rest compared
with continuous visual stimulation.

© 2014 The Authors. Published by Elsevier Inc. Open access under CC BY-NC-ND license.
Introduction

Magnetoencephalography (MEG) is a neuroimaging modality that
provides an electrophysiological assessment of neural activity across
the whole brain, sampled at millisecond temporal resolution. However,
to fully leverage the rich spatio-temporal information contained within
MEG data, it is necessary to infer the source-level neural activity
from the sensor-level fields. A wide range of source reconstruction
techniques have been developed to estimate the source space activity
including, but not limited to, beamforming (Robinson and Vrba, 1998;
Van Veen et al., 1997), minimum norm estimates (Hämäläinen and
Ilmoniemi, 1984), and multiple sparse priors (Friston et al., 2008).

Beamformers are spatialfilters designed to have a unit pass band at a
specific spatial location of interest whilst minimising the overall
variance passed by the spatial filter (Robinson and Vrba, 1998; Van
Veen et al., 1997). However, it is well known that the raw estimates
of the variance of beamformed data contain a spatial bias that leads
to the variance increasing with depth (Hall et al., 2013). As we will
show, this increase in variance is due to the contribution of projected
sensor noise to the beamformed time series. This projection is greater
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for deep regions of the brain because they are further from the sensors.
In order to correct for this depth bias, beamformer implementations
typically contain a spatial correction to remove it. This equates to
dividing the raw variance estimate by some estimate of the variance
of the projected sensor noise. Examples include the neural activity index
(Van Veen et al., 1997) and the pseudo-Z-statistic (Vrba and Robinson,
2001). In this paper, we consider one type of rescaling, which we refer
to as weights normalisation. However, our findings are applicable to any
rescaling correction to remove the beamformer depth bias.

It is important to note thatweights normalisation is, bydefinition, spe-
cific to an individual session of beamformed data. In this paper, we show
that this hasmajor implicationswhen performing any analyses overmul-
tiple, separately beamformed sessions. One approach is to estimate a
common set of beamformer weights for all sessions being analysed. This
can be achieved by concatenating all sessions prior to estimating a single
covariancematrix. However, this has two key limitations. Firstly it cannot
be applied to group analyses with multiple subjects as the forward
models will differ. Secondly, even in multi-session analyses that use the
same subject, movement of the participant's head across the concatenat-
ed sessions will limit the accuracy of the source reconstruction.

Instead of using common spatialfilters, session-specific spatialfilters
can be used, but then a common normalisation is applied. This method
has been previously alluded to in Vrba et al.'s pseudo-T-statistics for
comparing active versus control blocks within a single session of data
(Vrba and Robinson, 2001). In that analysis, active and control states
from a single session of data are beamformed separately, but then a
common correction for the projected sensor noise is applied to the
ense.
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1 Notation: in the following section and subsequently through this technical note, the
following notation will be adopted: The true underlying value of a variable has no accent:
e.g. x. The raw beamformer estimate of a variable is denoted with a circumflex: e.g. x̂. The
weights-normalised beamformer estimate of a variable is denoted with a tilde: e.g. ex.
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two states. Whilst Vrba et al.'s approach is valid, it has the potential to
scale poorly to large numbers of sessions. As more sessions of data
are compared in a given group-level analysis, applying a single group
average correction will become increasingly inaccurate.

In this technical note, we consider the confound that weights nor-
malisation introduces into group analyses performed on separately
beamformed multiple sessions data. This includes analyses that infer
group-level differences, for example between different populations
(e.g. between clinical and normal populations), or between different con-
ditions in resting-state or task-positive paradigms. To avoid this confound,
we instead recommend that no weights normalisation is carried out. Any
depth bias is instead accounted for in the calculation of multi-session
(e.g. group) statistics, as these naturally contain variance normalisations
which include the increased variance due to reconstructing activity in
deeper brain regions.

To demonstrate the weights normalisation confound, we start by
reviewing its theoretical justification. We show mathematically that
weights normalisation provides an unbiased estimate of the noise con-
tribution for a voxel at the cost of providing a biased estimate of the true
dipole variance. We go on to show that this leads to an inaccurate esti-
mate of the difference between variances of two sessions. We use a sim-
ple 3 dipole/2 sensor simulation to show an example case of how, under
certain conditions, using the weights-normalised variance estimates to
compare two sessions can lead to a reversal in the inferred direction of
effect. Finally, we show that this issue can cause severe problems in the
analysis of real MEG data. We compare the oscillatory alpha power in
eyes-closed rest with a visual active-state (watching a movie). In this
paradigm we expect increased alpha power in the eyes-closed condition
compared with the active-state (Berger, 1929; Buzsáki, 2006). We show
that the weights normalisation confound actually leads to an inferred
decrease in alpha power during the eyes-closed condition compared
with the active-state. However, with no weights normalisation the
alpha power is correctly inferred as increasing in occipital areas.

Theory

The MEG forward problem

MEG data at the sensor-level can be modelled by using the quasi-
static approximation to Maxwell's equations (Hämäläinen et al.,
1993). The sensor data, Y (which is an N × P matrix, where N is the
number of sensors and P is the number of samples), can be modelled
as follows:

Y ¼
XQ
q¼1

hqxq þ ε ð1Þ

where hq is theN by 1 lead-field vector that describes the fluxmeasured
at the sensor array due to a unit dipole of specific orientation at location
qwhose time course of activity is described by xq. ε is the N sensors by P
samples matrix of uncorrelated sensor noise and Q is the total number
of dipoles that model the activity across the brain. For the purpose of
this technical note, we shall assume that the dipole orientation is
known a priori. We can then reduce our source reconstruction problem
from vectors to scalars without loss of generality when considering the
issue of weights normalisation.

Using beamforming to infer underlying neural activity

Under the assumption of stationarity, beamformers estimate the un-
derlying neural activity that drives each MEG recording by designing a
spatial filter specific to each location. These spatial filters estimate the
underlying activity as a weighted sum of the sensor-level MEG data, as
shown below:

x̂q ¼ wqY ð2Þ
where wq is the vector of beamformer weights for the qth voxel and x̂q

is the raw beamformer estimate of the time course of the current dipole
at q.1 The beamformer weights, wq, at the qth voxel are estimated by
imposing a minimisation of the overall projected power, subject to
unit gain at the location of interest. The set of weights that satisfies
these two constraints can be found by using Lagrange multipliers (Van
Veen et al., 1997).

Beamformer weights normalisation
In this sectionwe revisit themotivation for applying a spatial correc-

tion (weights normalisation) to each voxel. This has been previously de-
scribed elsewhere (Van Veen et al., 1997; Vrba and Robinson, 2001).
Consider the time course of activity of a dipole at the q′th voxel. The var-
iance, σ̂2

q′ , of our beamformer estimate of the neural activity (i.e. the
average source power over time) can be evaluated as:

σ̂2
q′ ¼

1
P
x̂q′ x̂

T
q′ ð3Þ

We estimate the neural activity at q′ as a weighted sum of the sensor
data (Eq. (2)), which in turn is a function of the true neural activity
and the lead-fields (Eq. (1)). Substituting Eqs. (1) and (2) into Eq. (3),
and separating out the terms corresponding to the q′th dipole from
terms corresponding to the q ≠ q′ dipoles, we get:

σ̂2
q′ ¼

1
P
wq′

�
hq′xq′ þ

X
q≠q′

hqxq þ ε
��

hq′xq′ þ
X
q≠q′

hqxq þ ε
�
TwT

q′ ð4Þ

If we substitute the unity pass band beamformer constraint (wq′hq′ ¼ 1)
and make the following assumptions:

1. All the dipoles are uncorrelated with each other. This is an implicit
requirement for beamforming (Brookes et al., 2007; Van Veen et al.,
1997).

2. All the dipoles are uncorrelated with the sensor-level noise, ε.

we can then express the expected value of the variance of the
beamformer estimate as:

σ̂2
q′ ¼

1
P

h
xq′x

T
q′ þwq′

�X
q≠q′

hqxqx
T
qh

T
q

�
wT

q′ þwq′εε
TwT

q′

i

¼ σ2
q′

z}|{true variance

þwq′

�X
q≠q′

hqσ
2
q′h

T
q

�zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{signal leakage variance

wT
q′ þ σ2

εwq′w
T
q′

zfflfflfflfflfflffl}|fflfflfflfflfflffl{noise variance ð5Þ

where we assume that the sensor-level noise covariance matrix can
be approximated as the estimated noise variance, σε

2, averaged across
sensors multiplied by an N by N identity matrix.

The sensor noise term in Eq. (5) has a spatially-varying bias (wq′wT
q′)

which leads to an overestimation of the variance in the centre of the
brain (Hall et al., 2013). Commonly, beamforming implementations
rescale the estimate of the dipole's time course by dividing it by some
quantity D (Huang et al., 2004) in order to down-weight deeper voxels.
We term this weights normalisation.

Different types of weights normalisation have been proposed. The
one we use here is D ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
wq′wT

q′

q
(Borgiotti and Kaplan, 1979; Huang

et al., 2004; Sekihara et al., 2001). This will give an unbiased estimate
of thenoise variance across all voxels. An alternativeweights normalisa-
tion is to incorporate an estimate of the actual noise covariance matrix

(i.e. D ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
wq′ΣwT

q′

q
, where Σ ¼ 1

Pεε
T is the noise covariance matrix)

(Hall et al., 2013; Robinson and Vrba, 1998). However, it should be



2 The Matlab script for performing this simulation can be downloaded from www.

fmrib.ox.ac.uk/~woolrich/weights_normalisation_paper_simulations.m.
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noted that any normalisation approach, where the normalisation
depends on the weights, will result in a bias in the estimate of the true
variance.

Without weights normalisation, we observe an increase in the
variance of the estimated neural activity with depth even if the true
neural activity has homogeneous variance (Van Veen et al., 1997).
Whilst weights normalisation corrects for this, it also creates a biased
estimate of the true variance. This means that the weights-normalised
beamformer estimate of a dipole's variance, eσq′

2 , is no longer equal
to the true variance, σ2

q′ , plus some error contributions due to signal
leakage and sensor noise. Instead, the beamformer estimate is equal to
the true variance scaled by the weights normalisation. This is shown
below for the case of D ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
wq′wT

q′

q
:

eσ2
q′ ¼

σ̂2
q′

wq′w
T
q′

ð6Þ

¼ σ2
q′

wq′w
T
q′
þ wq′

�X
q≠q′

hqσ
2
qh

T
qÞwT

q′

wq′w
T
q′

þ σ2
ε

ð7Þ

Deriving the weights normalisation confound

In the previous section we derived an expression for the raw (non-
weights-normalised) beamformer estimate of the variance, σ̂2

q′ , at a
voxel, q′, using weightswq′ , in terms of the true variance,σq′

2, plus con-
tributions due to signal leakage and the projection of sensor noise
(Eq. (5)). We derived an equivalent expression for the weights-
normalised estimate of the variance, eσq′

2 (Eq. (6)). If we consider any
analysis that attempts to compare variances, or any quantities that
scale with variance, across multiple beamformer sessions, we can dem-
onstrate that we should use the non-weights-normalised estimates of
the variance, σ̂q′

2, to get an unbiased estimate of the difference in vari-
ances. Consider two sessions of separately beamformed data, 1 and 2,
between which we intend to test for differences in variance (e.g. to see
if we can detect a change in oscillatory power in a particular frequency
band). At the q′th voxel, we have non-weights-normalised estimates σ̂2

q′ ;1
and σ̂2

q′ ;2. The difference between these estimates is:

σ̂2
q′ ;1−σ̂2

q′ ;2 ¼ σq′ ;1
2−σq′ ;2

2 þ e ð8Þ

where e represents the additional error terms (i.e. the contributions to
our variance estimate due to signal leakage and projected sensor
noise, defined in Eq. (5)). We assume that these contributions are
approximately equal across sessions 1 and 2. This assumption requires
that the noise variance of the scanner is constant across the two
sessions. If we perform our statistics on the weights-normalised
variances, eσ2

q′ ;1 and eσ2
q′ ;2, Eq. (6) tells us that we get a biased estimate

of the difference in variance due to the differences between theweights
normalisation terms in the different sessions:

eσ2
q′ ;1−eσ2

q′ ;2 ¼ σq′ ;1
2

wq′ ;1w
T
q′ ;1

−
σq′ ;2

2

wq′ ;2w
T
q′ ;2

þ ee ð9Þ

whereee represents the additional error terms (due to signal leakage and
the projection of sensor noise) with their respective session-specific
weights normalisations applied. We term this bias in the estimate the
weights normalisation confound.

Simulating the weights normalisation confound

Critically, we can show that under certain conditions this confound
can actually cause the apparent direction of an effect to be reversed.
We demonstrated this with a very simple simulation involving three
dipoles (A, B and C)in a 2-sensor MEG system.2 Fig. 1A is a schematic
showing the approximate geometry of this simulation. Fig. 1B shows
the 2D lead-field vectors (constant across sessions 1 and 2) for the
three dipoles. For simplicity, wemade all the lead-field vectors unitmag-
nitude (although this does not affect the generality of our argument).We
generated three orthogonal, normally distributed time courses for the
three dipoles for each session. Fig. 1C shows the standard deviations of
the dipoles. In our simulation, dipole A shows a small reduction in stan-
darddeviation between sessions 1 and 2, dipole B shows a large reduction,
and dipole C remains unchanged. We projected both sessions of data
through our simulated lead-fields and then separately beamformed
each session. Fig. 1D shows the difference in standard deviation
between session 1 and 2 for dipole A for the ground truth, the non-
weights-normalised estimate, and the weights-normalised estimate.
Note that the weights-normalised estimate of the standard deviation
in session 2 is bigger not smaller than in session 1 (i.e. the apparent effect
direction has reversed).

We can see why by considering the weights vectors, wA,1 and wA,2,
from sessions 1 and 2 for dipole A, plotted as dashed cyan and magenta
vectors alongside the lead-field vectors in Fig. 1B. The unity pass band
constraint (shown in Fig. 1B as a grey dotted line) limits the weights
vectors to a specific subspace. In session 1, dipole B has the greatest
variance. The beamformer tries to minimise the projected variance
and so finds the optimum weights to be mostly orthogonal to the
lead-fields of dipole B. In session 2, dipole B's variance greatly reduces
and the beamformer adapts by finding a set of weights that are now
more orthogonal to the lead-fields of dipole C, whose projected variance
is relatively greater in session 2. This has the unintended consequence
of changing the Euclidean length of the weights vectors by a greater
proportion than the change in standard deviation of dipole A. As such,
the weights-normalised estimate of the change in standard deviation
for dipole A actually reverses sign.

A real data example

This change in the valence of the estimated difference in standard
deviation or variance between sessions is not limited to simulations
but can be observed in real MEG data. Here, we show such an
example. Specifically, we show that when attempting to detect the
well-documented increase in oscillatory alpha power in eyes-closed
rest compared with continuous visual stimulation, the weights normal-
isation confound actually leads to an inferred decrease in oscillatory
alpha power in the eyes-closed condition (Berger, 1929; Buzsáki, 2006).

Data

Participants
Ten healthy volunteers were recruited. The cohort comprised 7

males (all right-handed) and 3 females (2 right-handed) with a mean
age of 27 years and standard error of 0.48 years. The study was
approved by the University of Nottingham Medical School Research
Ethics Committee.

Data acquisition
Each participant underwent a scan which included a 10-min block

where the participant was scanned at rest with their eyes closed and
instructed not to fall asleep, and a 10-min block where the participant
watched a movie, which was projected through a waveguide in the
magnetically shielded room onto a screen placed 40 cm in front of the
subject. Each participant was scanned in a supine position.

MEG data were acquired by using a CTF 275 channel whole-head
system. The data were sampled at 600 Hz and synthetic third order

http://www.fmrib.ox.ac.uk/~woolrich/weights_normalisation_paper_simulations.m)
http://www.fmrib.ox.ac.uk/~woolrich/weights_normalisation_paper_simulations.m)
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Fig. 1.A simulation showing one example of howweights normalisation can reverse the apparent direction of an effect. In this simulation, the effect wemeasure is the standard deviation
of dipole A, σA, between two sessions (1 & 2) where σA,1 N σA,2. A. The schematic of our 2-dimensional simulation, consisting of 3 dipoles and 2 MEG sensors. The dipole time courses
are uncorrelated and normally distributed. B. The lead-field vectors for our three dipoles (solid black, red and green arrows) and the beamformerweights vectors for dipole A from session
1 and session 2 (dashed cyan andmagenta arrows). C. The standard deviations of the three dipoles in sessions 1 and 2. D. The ground truth and beamformer estimated differences (without
and with weights normalisation) between the standard deviation of dipole A in sessions 1 and 2.
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synthetic gradiometer correction was applied to reduce external inter-
ference. Head localisation within the MEG helmet was achieved by
using three electromagnetic head position indicator (HPI) coils. Prior
to data acquisition, the HPI coil locations and the subject's head shape
were digitised by using a Polhemus Isotrack system. Structural MR
images for each subject were acquired by using a Philips Achieva 3T
MRI system (MPRAGE; 1 mm isotropic resolution, 256 × 256 × 160
matrix, TR = 8.1 ms, TE = 3.7 ms, TI = 960 ms, shot interval = 3 s,
flip angle = 8° and SENSE factor 2). Two subjects were discarded due
to problems with co-registration.
Methods

Each session of datawas analysed in the followingway. Independent
component analysis (ICA) was used to decompose the data into 150
temporally independent time courses and associated sensor topogra-
phies. Artefact components corresponding to eye-blink, cardiac and
mains interference were manually identified by the combined inspec-
tion of the spatial topography, time course, kurtosis of the time course
and frequency spectrum for all components. Eye-blink artefacts typical-
ly exhibited high kurtosis (N20), a repeated blink structure in the time
course and very structured spatial topographies. Cardiac component
time courses strongly resembled the typical ECG signals, as well as hav-
ing high kurtosis (N20). Mains interference had extremely low kurtosis
(typically b−1) and a frequency spectrum dominated by 50 Hz line
noise. These artefact components were subtracted from the sensor
space data using the montage function in SPM8 (FIL, UCL) in order to
correct the lead fields at the same time as denoising the data. High
variance channels were then identified and discarded. Any periods of
corrupted data (for example by transient muscle activity) were visually
identified and flagged. These “bad epochs”were not discarded but were
excluded from specific stages of the analysis (such as the estimation of
the data covariance matrix). The “bad epochs” were included in stages
where data continuity was required (such as band-pass filtering).
The datawere then band-passfiltered into the alpha band (8–13 Hz).
The data covariance matrix for each session was then estimated by
using the band-limited data. A linearly-constrained minimum variance
beamformer was used to estimate the source space neural activity at
every vertex of 6 mm grid spanning the whole brain. Dipole orienta-
tions were estimated as those that projected the maximum power
(Sekihara et al., 2001). Raw beamformer time courses were estimated
at each voxel by multiplying the beamformer weights with the band-
limited data. At each voxel, the oscillatory amplitude envelope of the
band-limited neural activity was calculated by taking the absolute of
the analytic signal, computed via the Hilbert transform. The envelopes
were estimated both on the raw beamformer time courses and the
weights-normalised beamformer time courses. It should be noted that
the beamformer source reconstruction includes a dipole sign ambiguity.
However, as we analysed the amplitude envelopes of the beamformed
data, this ambiguity is inconsequential. For each envelope time course,
the mean and variance were computed as measures of the mean of
oscillatory alpha power and the variability of oscillatory alpha power
associated with that voxel.

We applied a paired t-test between eyes-closed and activate-state
sessions to the mean and variance of the envelope at each voxel over
all subjects. We did this test by using both the non-weights-normalised
and weights-normalised envelopes to demonstrate the confound that
weights normalisation introduces. Voxel-wise multiple comparisons
in the statistical maps were accounted for using threshold-free cluster
enhanced (TFCE) permutation testing in FSL (FMRIB, Oxford).

Results

The corrected t-statistical maps are shown in Fig. 2. All super-
threshold voxels survived TFCE correction.Without weights normalisa-
tion, we found a significant (pcorrected ≤ 0.05) increase in the mean and
variance of the alpha band envelope in the visual cortex. However,
when weights normalisation was applied, we observed the reverse:
a significant decrease in alpha power in eyes-closed sessions relative to



Fig. 2. Axial slices through the visual cortex showing results of a voxel-wise paired t-test performed on the mean and variance of the envelope of the alpha (8–13 Hz) oscillations of the
eyes-closed and active-state sessions before and after applying weights-normalisation. For each map, t-statistics were thresholded at ±4, with positive values shown in red/yellow and
negative values shown in blue. Without weights normalisation, we correctly infer an increase in the mean and variance of alpha power in the eyes-closed condition compared
with the active-state condition. With weights normalisation, we incorrectly infer a decrease in the mean and variance of alpha power in the eyes-closed condition compared with the
active-state condition, demonstrating that the weights normalisation confound can be so severe as to actually reverse the underlying effect direction. FSL's RANDOMISE was used to
perform threshold-free cluster enhanced (TFCE) permutation testing to account for multiple comparisons. All t-statistics shown are members of significant (Pcorrected b 0.05) clusters.
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the active-state sessions. In addition, the spatial location of this power
decrease was deeper and more medial.

Discussion

The criticalmessage of this technical note is that beamformerweights
normalisation can completely distort the estimate of variance, or any
metric that requires an unbiased estimate of variance. Conceptually,
the weights normalisation causes the estimated variance to be depen-
dent upon the beamformer weights, and the weights can be different
for different scanning sessions (for example, due to there being different
distributions and magnitudes of activity across the wider brain) even if
the power of the brain activity in the location of interest is the same.We
have demonstrated this effect in three ways: theoretically, with a simu-
lation, and with a practical demonstration of the effect in real data.

We have shown an extreme case of this confound, where the appar-
ent sign of the effect we are trying tomeasure can actually be reversed. A
key question is whether this sign reversal is always a consequence
of weights normalisation or whether our examples presented here
represent a worst case. When setting up our simulation, we found that
the reversal of inferred effect direction depended heavily on the specific
relative changes in variance of the dipoles and their lead-field orienta-
tions. As such, the reversal of effect direction is not an automatic conse-
quence of weights normalisation. In other circumstances, the weights
normalisation confound may simply introduce an additional source of
error that degrades the statistical significance of a given effect. Further-
more, in other cases it is possible that performing statistics on weights
normalised estimates will have little effect on the group-level statistics.

Considering our simulation in more detail, the beamformer tries to
minimise the projected variance and so finds the optimum weights to
be mostly orthogonal to the lead-fields of dipole B. In session 2, dipole B's
variance greatly reduces and the beamformer adapts by finding a set of
weights that are now more orthogonal to the lead-fields of dipole C,
whose projected variance is relatively greater in session 2. This has
the unintended consequence of changing the Euclidean length of the
weights vectors by a greater proportion than the change in standard
deviation of dipole A.

In this paper, we demonstrated the sign reversal in both simulations
and real data. However, we should ask whether both these results
represent the same underlying issue. The mechanism by which we
generated a change in effect valence in our simulations could plausibly
be occurring in our eyes-closed/active-state analysis. If we consider the
medial visual cortex where we observed a reversal in the direction of
alpha power change, it is possible that this region experienced a small
increase in alpha power during the eyes-closed rest compared with the
active-state. However, other visual areas may have experienced much
larger alpha power increases in the eyes-closed condition compared
with the active-state. Furthermore, it is likely that other brain areas
showed no difference in alpha power between the two conditions. As
such, the conditions that lead to a reversal in effect direction in our sim-
ulation could quite plausibly be occurring in our eyes-closed/active-state
analysis (be it in 275 dimensions rather than 2).

In our theoretical exposition, wemade the assumption that contribu-
tions to the beamformer estimate of variance due to signal leakage and
sensor noise were approximately constant across multiple sessions. In
our data set it is reasonable to expect that the noise is constant between
eyes-closed and active-state sessions as these sessions were acquired
during a single scan for each subject. However, the contributions
due to signal leakage depend on the activity of all the (neuronal and
artefactual) sources. As such, this contribution will vary between
different conditions. Whilst this is an important issue to note, it is not
relevant to the key point of this paper.

Finally, this technical note has exclusively considered the weights
normalisation confound in the context of beamforming. However, other
source reconstruction methods include data-dependant normalisation
terms, such as minimum norm estimates with corrections for super-
ficiality bias (Hauk et al., 2011). It will be very important to assess
whether these alternatives to beamforming are also exposed to equiva-
lent confounds and whether the effects can be as drastic as we have
demonstrated here.
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Conclusion

Beamforming is a powerful tool for performing source reconstruc-
tion inMEG.However,most beamformer implementations only consider
single session analyses and, as such, are not designed with group-level
analyses in mind. In this technical note, we have shown that weights
normalisation should not be usedwhen performingmulti-session statis-
tics. However, it is a necessary analysis stage for other analyses, such as
resting-state ICAs where the depth bias of raw data must be removed
(Brookes et al., 2011). Consequently, much caremust be taken to decide
whenweights normalisation should and should not be applied inmulti-
session MEG analyses.
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