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f an autophagy-based
signature in colorectal cancer
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Abstract
Background:The heterogeneity of colorectal cancer (CRC) poses a significant challenge to the precise treatment of patients. CRC
has been divided into 4 consensusmolecular subtypes (CMSs) with distinct biological and clinical characteristics, of which CMS4 has
the mesenchymal identity and the highest relapse rate. Autophagy plays a vital role in CRC development and therapeutic response.

Methods: The gene expression profiles collected from 6 datasets were applied to this study. Network analysis was applied to
integrate the subtype-specific molecular modalities and autophagy signature to establish an autophagy-based prognostic signature
for CRC (APSCRC).

Results: Network analysis revealed that 6 prognostic autophagy genes (VAMP7, DLC1, FKBP1B, PEA15, PEX14, and DNAJB1)
predominantly regulated the mesenchymal modalities of CRC. The APSCRC was constructed by these 6 core genes and applied for
risk calculation. Patients were divided into high- and low-risk groups based on APSCRC score in all cohorts. Patients within the high-
risk group showed an unfavorable prognosis. In multivariate analysis, the APSCRC remained an independent predictor of prognosis.
Moreover, the APSCRC achieved higher prognostic power than commercialized multigene signatures.

Conclusions: We proposed and validated an autophagy-based signature, which is a promising prognostic biomarker of CRC
patients. Further prospective studies are warranted to test and validate its efficiency for clinical application.

Abbreviations: ATGs = autophagy-related genes, CMSs = consensus molecular subtypes, CRC = colorectal cancer, EMT =
epithelial-to-mesenchymal transition, GEP = gene expression profiles, MRA =master regulator analysis, OS= overall survival, RFS =
relapse-free survival.
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1. Introduction

Colorectal cancer (CRC) is one of the most common malignan-
cies in the world and a leading cause of cancer-related death.[1] In
2017, the prevalence rate of CRC in China ranked the third
among all malignant tumors, about 37.6 per 100,000, and the
mortality rate ranked the fourth, about 19.1 per 100,000.[1]

Although great progress has been made in CRC treatment
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including surgery and adjuvant chemotherapy, the 5-year
survival of CRC patients is still not optimistic due to the high
recurrence rate.[2,3] At present, tumor staging remains the gold
standard for estimating the prognosis of CRC. However, the
clinical prognosis of many CRC patients with the same stage or
treatment strategy varies.[4] The genetic heterogeneity of patients
greatly affects intrinsic clinical diversity.[5] Therefore, there is a
need to integrate tumor heterogeneity to identify novel prognostic
predictors for CRC.
Over the past 20years, researchers have identified a number of

CRC prognostic marker genes and built multigene-based
prognostic signatures that can assess the prognostic risk of
CRC.[6–9] Due to the inherent genetic heterogeneity of CRC, the
robustness of most markers is less than expected. In 2015, CRC
was classified into 4 consensus molecular subtypes (CMS) with
distinct molecular and clinical characteristics, among which
CMS4 has mesenchymal characteristics.[10] CMS2 subtype
responded well to anti-EGFR and HER2 inhibitors, while
CMS1 and CMS4 showed higher response rates to HSP-like
inhibitors. The CMS4 subtype showed significant chemoresist-
ance to the combination of 5-Fu and Luminespib.[11] Important-
ly, the CMS4 shows the highest recurrence rate and the worst
relapse-free survival (RFS) indicating the need to integrate the
intrinsic modalities of this malignant subtype for risk manage-
ment in CMS4.
Autophagy is an important mechanism to degrade cytoplasmic

components and maintain intracellular stability[12] in many
diseases, especially cancer.[13] Autophagy is thought to suppress
early-stage tumor development and promote late-stage tumor
development.[14] Many studies have explored the mechanism of
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autophagy-related genes (ATGs) in the development and drug-
resistance of CRC.[15,16] Therefore, ATGs is expected to be a new
prognostic indicator for CRC.
Considering the highly heterogeneous nature of CRC, we

integrate molecular modalities and ATGs underlying CMS4. We
pooled and analyzed 6 public cohorts containing 1428 CRC
patients to develop and validate an autophagy gene-based
prognostic signature for CRC (APSCRC). Although autophagy
prognostic markers for CRC have already been mentioned
before,[17,18] risk assessment incorporating molecular subtypes
has not been investigated. Our signature incorporates the
autophagy system and tumor heterogeneity and would be useful
for selecting patients with CRC to give more precise treatment.
2. Materials and methods

2.1. Ethics statement

The researchers were authorized to conduct the study by the
Ethics Committee of the Beilun People’s Hospital, Ningbo,
China. All procedures were implemented in accordance with the
Declaration of Helsinki and relevant policies in China.
2.2. Patient datasets

In this study, we collected gene expression profiles (GEPs) from 6
independent datasets (Supplemental Table 1, http://links.lww.
com/MD/F958), including 1428 cases. These datasets involved
Table 1

Patients’ characteristics in public data sets.

Training cohort

GSE14333 (n=290) GSE17538 (n=232) GSE39582 (n=5

Age (y) 66 (26–92) 65 (23–94) 67 (22–97)
Gender
Female 126 (43%) 110 (47%) 256 (45%)
Male 164 (57%) 122 (53%) 309 (55%)

Location
Left 161 (56%) 342 (61%)
Right 128 (44%) 223 (39%)

Unknown
Stage
I 44 (15%) 28 (12%) 32 (6%)
II 94 (32%) 72 (31%) 264 (47%)
III 91 (31%) 76 (33%) 205 (36%)
IV 61 (21%) 56 (24%) 60 (11%)

Unknown 4 (1%)
MSI status
msi 75 (13%)
mss 443 (78%)

Unknown 47 (8%)
BRAF
Wild 460 (81%)
Mut 51 (9%)

Unknown 54 (10%)
Subtype
CMS1 63 (22%) 43 (19%) 91 (16%)
CMS2 119 (41%) 72 (31%) 232 (41%)
CMS3 50 (17%) 36 (16%) 69 (12%)
CMS4 58 (20%) 47 (20%) 126 (22%)

Unknown 34 (15%) 47 (8%)

CMSs = consensus molecular subtypes.

2

patients fromtheGSE14333 (n=290),[19]GSE17538 (n=232),[20]

the GSE39582 (n=564),[21] the GSE33113 (n=90),[22] the
GSE38832 (n=122),[23] and the GSE37892 (n=130).[24] Expres-
sion data and corresponding clinical information for all datasets
were downloaded from Gene Expression Omnibus. Molecular
subtyping information was retrieved from Guinney’s study.[10]

Detailed clinical characteristics of these 6 datasets were described
in Table 1. The design and workflow of this study were shown in
Figure 1A. For each cohort, the GEPs probe IDs were transformed
to genes symbols, if multiple probe IDs correspond to the same
genes symbol, the one with the highest mean value was kept as the
representative of the corresponding gene.[25]

2.3. Integrated network analysis

ATGs were downloaded from the HADb database.[26] ATGs
measured by all datasets were screened. Regulatory network
inference was applied to investigate the relationship between
ATGs and potential target genes underlying CMS4. Together, we
used the GSE14333 dataset as the training cohort. Forty-six
ATGs (|log2FC| > 0.25, P< .05) and 1407 target genes (|log2FC|
> 0.5, P< .05) were determined differentially expressed in CMS4
compared with the other 3 subtypes (CMS1, CMS2, and CMS3).
Integrated analysis was performed by the “RTN” (R package,
version 2.10.0).[27] Master regulator analysis (MRA) was
performed to examine the overrepresentation of epithelial–
mesenchymal transition (EMT) signature[28] within each autoph-
agy gene’s regulon.
Validation cohorts

64) GSE33113 (n=90) GSE37892 (n=130) GSE38832 (n=122)

70 (34–95) 68 (22–97)

48 (53%) 61 (47%)
42 (47%) 69 (53%)

72 (55%)
57 (44%)
1 (1%)

18 (15%)
90 (100%) 73 (56%) 35 (29%)

57 (44%) 39 (32%)
30 (25%)

25 (28%)
65 (72%)

73 (81%)
17 (19%)

20 (22%) 11 (8%) 20 (16%)
34 (38%) 49 (38%) 29 (24%)
10 (11%) 19 (15%) 19 (16%)
21 (23%) 39 (30%) 33 (27%)
5 (6%) 12 (9%) 21 (17%)
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Figure 1. Network inference identifies 6 autophagy genes as key regulators of the CMS4 subtype of CRC. Study design of the current work (A). Integrated network
displays the relationships between the 6 autophagy genes (VAMP7, DLC1, FKBP1B, PEA15, PEX14, and DNAJB1) and target genes expression data (B). CMSs =
consensus molecular subtypes, CRC = colorectal cancer.

Figure 2. Forest plots show the prognosis association of these 6 autophagy genes in GSE14333 (A), GSE39582 (B), GSE17538 (C), and GSE33113 (D). (
∗
P< .05,

∗∗
P< .01,

∗∗∗
P< .001).
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2.4. Development of the autophagy-based prognostic
signature for CRC (APSCRC)

Six autophagy genes were the master regulatory factors and
differentially expressed in CMS4 which is the worst survival
molecular subtype in CRC. Based on these 6 autophagy genes, the
multivariable cox proportional-hazards model was used to
construct the APSCRC in the training cohort. The risk-score
formula was constructed as follows: risk score = (0.1991x
DLC1) + (0.2351xFKBP1B) + (0.0973xPEA15) + (0.5989x
DNAJB1) +(�0.1977xVAMP7) +(�0.1584xPEX14).
2.5. Validation of the APSCRC

The prognostic relevance of APSCRC was further evaluated in 5
independent validation cohorts by Kaplan–Meier analysis,
respectively. To test whether the APSCRC can be considered
as an independent prognostic predictor of CRC patients,
Figure 3. ROC curves show the detection efficiency of the CMS4 subtype for AP
CMSs = consensus molecular subtypes, ROC = receiver operating characteristi

4

univariate and multivariate cox analyses were performed with
other clinical factors. In the multivariable cox regression, gender,
tumor locations, microsatellite instability (MSI) status, and
BRAF mutation status were included as covariates.
2.6. Gene set enrichment analysis (GSEA)

GSEA[29] was conducted using the “fgsea” package (Bioconduc-
tor package, version 1.12.0) with 1000 permutations. Gene sets
were retrieved from the Molecular Signature Database (MSigDB
hallmark and kegg, version 7).[29] A P value below .05 was used
to choose significant gene sets.
2.7. Statistical analysis

Differential analysis of autophagy genes and target genes
between CMS4 subtype and non-CMS4 subtypes was done by
package “limma.”[30] For each cohort, the upper quantile risk
SCRC in GSE39582 (A), GSE17538 (B), GSE33113 (C), and GSE37892 (D).
c.
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valuewas used to stratify patients into high- and low-risk groups.
Kaplan–Meier analysis was performed using the log-rank test
using “survival” (R package, version 2.41.3). Univariate cox
regression analysis was conducted to show the prognostic value
for the selected autophagy signature. Uni- and multivariable
analyses were conducted by the Cox proportional hazards
model. The subtype prediction power of APSCRC was deter-
minedby receiver operating characteristic curves. For all tests, aP
value below.05 was used to choose significant gene sets.
Statistical significance is presented as following

∗
P< .05,
Figure 4. Prognostic value of the APSCRC in CRC. Kaplan–Meier survival analys
GSE17538 (B), GSE39582 (C), GSE33113 (D), GSE37892 (E), GSE38832 (F), and
APSCRC = autophagy-based prognostic signature for CRC, CRC = colorectal c
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∗∗
P< .01,

∗∗∗
P< .001. All the statistical tests were conducted

using R (version 3.6.1).

3. Results

3.1. Integrative analysis reveals 6 autophagy genes as key
regulators in the CMS4 subtype of CRC

CRC is a heterogeneous disease. In recent studies,[10] 4 CMSs
have been identified, among which CMS4 has the worst RFS and
overall survival (OS) (Supplemental Fig. 1A, B, http://links.lww.
is showed that the high-risk group has an unfavorable RFS in GSE14333 (A),
the pooled validation cohorts (G). P values are calculated by the log-rank tests.
ancer.

http://links.lww.com/MD/F956
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com/MD/F956). Therefore, we intended to integrate the
molecular modalities under this subtype to improve risk
assessment of CRC hereafter. Focusing on the CMS4 subtype
of CRC, we applied a network-based approach to investigate the
regulatory role of the autophagy system underlying this
particular subtype. A total of 1428 CRC patients from 6
independent public cohorts were included (Table 1). Two
hundred thirty-two autophagy-related genes (ATGs) were
downloaded from the HADb database.[26] Based on the
GSE14333 dataset, we performed differential analysis. As a
result, 46 ATGs (|log2FC|> 0.25, P< .05) and 1407 target genes
(|log2FC| > 0.5, P< .05) were differentially expressed in the
CMS4 subtype compared with non-CMS4 subtypes (Fig. 1A).
Under the expression profiles of these prioritized autophagy
genes and target genes, a regulatory network was constructed
by calculating the mutual information between an autophagy
signature and its potential targets[31] (Fig. 1B). MRA identified
6 autophagy genes (VAMP7, DLC1, FKBP1B, PEA15, PEX14,
andDNAJB1) as the key factors of CMS4 (Supplemental Table 2,
http://links.lww.com/MD/F959). Univariable Cox regression
analysis demonstrated prognostic association of the 6 autophagy
genes with RFS in more than 1 set of cohorts (Fig. 2A–D).
Therefore, the network-based approach identified 6 subtype-
specific autophagy genes, with prognostic value in CRC, as key
regulators of the CMS4 subtype of CRC and can be potentially
applied for risk assessment of CRC patients.
Figure 5. Prognostic value of the APSCRC for stage II CRCwithin GSE14333 (A), G
calculated by the log-rank tests. APSCRC = autophagy-based prognostic signa
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3.2. Development of an autophagy-based prognostic
signature for CRC (APSCRC)

Using the GSE14333 cohort as the training set, a risk model
designated APSCRC was constructed with these 6 autophagy
genes as following formula: risk score = (0.1991xDLC1) +
(0.2351xFKBP1B) + (0.0973xPEA15) + (0.5989xDNAJB1)
+(�0.1977xVAMP7) +(�0.1584xPEX14). Subsequently, risk
scores were calculated for all the training and validation cohorts
(Supplemental Table 3, http://links.lww.com/MD/F960). The
risk scores showed high efficiency in detecting the CMS4 subtype,
suggesting that the APSCRC correlated with mesenchymal
phenotype (Fig. 3A–D). The upper quartile risk value was set
as the cutoff to separate patients into high- and low-risk groups
across all datasets. In the training set, the high-risk group patients
displayed significantly poorer RFS than patients in the low-risk
group (HR: 2.71, 95% CI: 1.55 -4.77; P = 2.91x10-4) (Fig. 4A).
When considering patients with stage II CRC only, the APSCRC
remained prognostic in terms of RFS for the training set (HR:
3.77, 95% CI: 1.31-10.9; P = 8.44x10-3) (Fig. 5A).

3.3. Validation of the APSCRC for survival prediction

To verify the prognostic power of the APSCRC, we calculated the
survival difference within the 2 risk groups in 5 validation
cohorts. As expected, the high-risk group showed significantly
reduced RFS (P =.03 to P = 5.04x10�5) (Fig. 4, B–F) and OS (P
SE17538 (B), GSE33113 (C), and the pooled validation cohorts (D).P values are
ture for CRC, CRC = colorectal cancer.

http://links.lww.com/MD/F956
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Figure 6. Kaplan–Meier plots showing differences in overall survival among different risk groups within GSE17538 (A), GSE39582 (B), GSE38832 (C), and the
pooled validation cohorts (D). P values are calculated by the log-rank tests.
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=.003 to P=7.62x10�6) (Fig. 6A–C) comparedwith the low-risk
group in 5validation cohorts. When considering patients within
stage II CRC only, the APSCRC remained prognostic in terms of
RFS for validation cohorts (P= .04 to P= .006) (Fig. 5, B and C).
When pooled all validation datasets together, a more obvious
RFS (HR: 1.96, 95% CI: 1.58-2.42; P<3.07x10�10) (Fig. 4G),
stage II RFS (HR: 2.12, 95% CI: 1.44-3.12; P=1.02x10�4)
(Fig. 5D) and OS (HR: 1.94, 95%CI: 1.54-2.45; P=1.52x10�8)
(Fig. 6D) differences were observed between the high- and low-
risk groups. Moreover, the APSCRC also showed prognostic
value for stage I, III, and IV CRC patients, in addition to stage II
CRC (Supplemental Fig. 2A–C, http://links.lww.com/MD/F957).
Table 2

Univariate and multivariate analysis of autophagy signature and clini

Univariate

HR (95% CI)

Gender (male vs female) 1.12 (0.89–1.42)
Location (left vs right) 1.22 (0.92–1.61)
MSI (msi vs mss) 2.48 (1.44–4.28)
BRAF (mut and wild) 1.01 (0.62–1.65)
APSCRC (high vs low risk) 1.79 (1.40–2.86)

APSCRC = autophagy-based prognostic signature for CRC.
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To testify whether the APSCRC was an independent prognostic
predictor, uni- and multivariate Cox regression analyses were
conducted. After adjusting for gender, tumor locations, MSI
status, and BRAF mutation status, the APSCRC remains an
independent predictor of prognosis (Table 2).

3.4. Biological annotation of the APSCRC

To gain insight into the biological differences between risk
groups, we performed GSEA analysis. Enrichment analysis
between high- and low-risk groups identified that many
mesenchymal phenotype-related pathways, including the TGF-
copathological factors.

Pooled validation cohorts

Multivariate

P HR (95% CI) P

.33 1.07 (0.76–1.51) .68

.16 1.36 (0.94–1.97) .11
1.00E-03 4.54 (2.08–9.90) 1.0E-04
.97 1.98 (0.99–3.99) .05
3.50E-06 2.00 (1.35–2.97) 5.0E-04

http://links.lww.com/MD/F957
http://www.md-journal.com


Figure 7. The enrichment of dysregulated pathways between the high- and low-risk groups.
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beta signaling, epithelial–mesenchymal transition, and focal
adhesion, were positively enriched in the high-risk group
(Fig. 7A–D and Supplemental Table 4, http://links.lww.com/
MD/F961). When compared with a clinically applicable and
commercialized biomarker Oncotype Dx Colon Cancer,[32] the
APSCRC achieved a higher C-index in training and validation
cohorts (Fig. 8A and B).

4. Discussion

CRC is one of the most common types of cancer worldwide and
the fourth leading cause of cancer-related deaths.[33,34] In recent
years, researchers have constructed numerous multigene-based
Figure 8. The comparison of C-index between APSCRC andOncotype DX Colon C
prognostic signature for CRC.

8

prognostic biomarkers that can divide CRC patients into
different risk groups.[6–9] However, due to the genetic heteroge-
neity of CRC, the robustness of most markers is less than
expected. A deeper understanding of the molecular character-
istics of CRC may lead to better risk stratification of CRC
patients. In 2015, CRC was classified into 4 CMS with distinct
molecular and clinical characteristics.[10] Patients within CMS4
had the highest recurrence rate and the worst RFS. Autophagy is
thought to suppress early-stage tumor development and promote
late-stage tumor development.[14] Autophagy can be classified
into 3 major types; macro-autophagy, micro-autophagy, and
chaperone-mediated autophagy.[35] Inhibition of macro-autoph-
ancer (A). C-index values in different cohorts (B). APSCRC= autophagy-based

http://links.lww.com/MD/F961
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agy promotes CMA-dependent degradation of mutant p53.[36]

Higher expression of LAMP-2A indicated activated CMA in
CRC.[37] However, these processes have not been well studied in
CRC. Micro-autophagy is a direct engulfment of cellular
components through late indentation of the late endosome.
There is evidence in lung cancer that amino acid starvation, an
important factor in cancer growth, causes microautophagy.[38]

However, the role of micro-autophagy in CRC has not been
studied in detail. Many studies have explored the mechanism of
ATGs in the development and drug resistance of CRC.[15,16]

Meanwhile, autophagy-based prognostic markers for CRC have
also been reported.[17,18] However, most studies only focus on
autophagy without considering the heterogeneity of CRC. To our
knowledge, no research has been done for risk stratification by
integrating the autophagy system and the mesenchymal modali-
ties of CMS4 in CRC.
In this study, we identified 6 autophagy genes as the key factors

of CMS4 and constructed an APSCRC.Within these 6 autophagy
genes, FKBP1B is involved in an autophagy-based prognostic
panel for multiple myeloma.[39] PEA15 shows a critical role in
chemoresistance and metastasis in CRC. Meanwhile, the PEA15
expression level is significantly associated with the prognosis of
CRC patients.[40] DNAJB1 actively regulates the EGFR signaling
pathway by destabilizing MIG6.[41] DLC1 is a direct target gene
for miR-106b and correlates with prolonged survival in CRC.[42]

Each patient was assigned a risk score by the APSCRC in all
cohorts. Patients within each cohort could be separated into high-
and low-risk groups based on the upper quartile risk value. The
APSCRC was proved as a stable prognostic biomarker of CRC,
and patients with high risk scores were correlated with poor RFS
and OS in 5 independent validation cohorts. Cox regression
analyses indicated that the APSCRC was an independent
prognostic predictor after adjusting several clinical risk factors.
Moreover, somemesenchymal phenotype-related pathways, such
as EMT, TGF-beta, and focal adhesion, were positively enriched
in the high-risk group. When compared with a clinically
applicable and commercialized biomarker Oncotype Dx Colon
Cancer,[32] the APSCRC achieved a higher C-index. Our
autophagy gene-based signature can effectively predict patient
survival of CRC patients.
This study still has some limitations. First, the prognostic

signature was screened from gene expression profiles generated
from microarray platforms, which are expensive, difficult to
operate, and involve professional bioinformatics expertise, so it is
difficult to be popularized in daily clinical application. Second,
the training and validation data sets were all from retrospective
studies in the study. In the following improvement process, more
datasets containing more clinical characteristics need to be
included for more extensive screening and validation. Finally, a
uniform risk threshold needs to be established to facilitate
potential clinical applications.
Taken together, we applied a network-based approach to

construct an autophagy-based prognostic signature for CRC.
Our study is the first attempt to integrate colorectal cancer
heterogeneity and the autophagy system to develop the
prognostic signature for CRC.
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