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Abstract

Purpose

To determine whether tidal volume/predicted body weight (TV/PBW) or driving pressure

(DP) are associated with mortality in a heterogeneous population of hypoxic mechanically

ventilated patients.

Methods

A retrospective cohort study involving 18 intensive care units included consecutive patients

�18 years old, receiving mechanical ventilation for�3 days, with a PaO2/FiO2 ratio�300

mmHg, whether or not they met full criteria for ARDS. The main outcome was hospital mor-

tality. Multiple logistic regression (MLR) incorporated TV/PBW, DP, and potential confound-

ers including age, APACHE IVa® predicted hospital mortality, respiratory system

compliance (CRS), and PaO2/FiO2. Predetermined strata of TV/PBW were compared using

MLR.

Results

Our cohort comprised 5,167 patients with mean age 61.9 years, APACHE IVa® score 79.3,

PaO2/FiO2 166 mmHg and CRS 40.5 ml/cm H2O. Regression analysis revealed that patients

receiving DP one standard deviation above the mean or higher (�19 cmH20) had an

adjusted odds ratio for mortality (ORmort) = 1.10 (95% CI: 1.06–1.13, p = 0.009). Regression

analysis showed a U-shaped relationship between strata of TV/PBW and adjusted mortality.

Using TV/PBW 4–6 ml/kg as the referent group, patients receiving >10 ml/kg had similar

adjusted ORmort, but those receiving 6–7, 7–8 and 8–10 ml/kg had lower adjusted ORmort
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(95%CI) of 0.81 (0.65–1.00), 0.78 (0.63–0.97) and 0.80 0.67–1.01) respectively. The

adjusted ORmort in patients receiving 4–6 ml/kg was 1.26 (95%CI: 1.04–1.52) compared to

patients receiving 6–10 ml/kg.

Conclusions

Driving pressures�19 cmH2O were associated with increased adjusted mortality. TV/PBW

4-6ml/kg were used in less than 15% of patients and associated with increased adjusted

mortality compared to TV/PBW 6–10 ml/kg used in 82% of patients. Prospective clinical tri-

als are needed to prove whether limiting DP or the use of TV/PBW 6–10 ml/kg versus 4–6

ml/kg benefits mortality.

Introduction

Previous literature suggests that modifying the ventilator parameters, tidal volume/predicted

body weight (TV/PBW) and/or driving pressure (DP), improves survival from acute respira-

tory distress syndrome (ARDS). However, methodological shortcomings of that literature and

limitations of the diagnostic criteria for ARDS described below prevent straightforward trans-

lation of these results into population-based quality improvement.

The optimal specific approach to titrating ventilator parameters remains unclear. The most

widely-recommended approach, low tidal volume ventilation (LTVV) specifically targets TV/

PBW 4–6 ml/kg if tolerated by the patient, but may range up to 8 ml/kg [1, 2]. Clinical trials

that support the use of LTVV largely focused on patients with ARDS and compared LTVV

with high control tidal volumes ranging 10–15 ml/kg [1–8]. Tidal volumes this high are rarely

clinically employed [9], and few data are available to compare LTVV with intermediate tidal

volumes (ITVV) such as in the range of 8–10 ml/kg commonly used in current practice.

A meta-analysis of LTVV clinical trials suggested that driving pressure (DP), rather than

TV/PBW, is the modifiable ventilator parameter independently associated with mortality in

patients with ARDS [10], but prospective trials of DP-limiting ventilator management have

not been performed. A clinical practice guideline endorsed by multiple international profes-

sional societies recommends LTVV for patients with ARDS [2]. Some have recommend LTVV

for virtually all mechanically ventilated patients [11–13]. Others recommend a DP-limiting

ventilator strategy [14, 15].

Much of the previous literature on modifiable ventilator parameters focused on patients

with ARDS. However, the diagnosis of ARDS may be difficult to operationalize in clinical

practice. ARDS is conceptually a clinical-pathological entity [16] diagnosed using clinical-

radiological criteria [17] for which clinicians and researchers have demonstrated limited inter-

rater reliability and accuracy [18–22]. Furthermore, current data suggest that limiting TV/

PBW or DP may also benefit patients without ARDS [11–13, 15, 23–25], suggesting that mak-

ing the diagnosis of ARDS is not essential to deciding whether to limit TV/PBW or DP. In fact,

an observational study including 459 ICUs in 50 countries showed that after adjusting for

potentially confounding variables, clinical recognition of ARDS did not significantly influence

the choice of TV/PBW, or whether DP was measured [9]. Population-based quality improve-

ment efforts would be greatly simplified if the necessity to distinguish patients with ARDS

from others with similar hypoxic ventilatory failure could be circumvented.

Our goal has been to implement evidence-based ventilator practice in a large healthcare sys-

tem to improve survival of mechanically ventilated patients. But in order to do so, we needed
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to better understand the relationship between modifiable ventilator parameters and mortality

in a heterogeneous population of hypoxic mechanically ventilated patients. The specific aims

of our study were: 1) To determine whether DP, TV/PBW, or subcategories of TV/PBW (4–6,

6–7, 7–8, 8–10, and >10 ml/kg) were independently associated with adjusted hospital mortal-

ity in hypoxic adult patients receiving�3 days of mechanical ventilation, regardless of whether

they met ARDS diagnostic criteria, and 2) to establish discrete thresholds for optimal TV/

PBW and/or DP.

Methods

Study design

This retrospective cohort study was performed as part of a quality improvement project, and

was determined by our institution’s Research Determination Committee to not require Insti-

tutional Review Board review. The study setting included the medical/surgical, cardiovascular,

neurological, transplant and trauma intensive care units (ICUs) of 18 acute care hospitals

within a large healthcare system in the southwestern United States between February 1, 2017

and January 31, 2019.

Participants

Consecutive patients were included based on the inclusion criteria:�18 years of age, received

volume control mechanical ventilation for at least three days, had a PaO2/FiO2 ratio�300

mmHg while receiving PEEP�5 cmH2O during the first 24 hours of mechanical ventilation,

met criteria for calculation of an APACHE IVa score, had height recorded (with which to cal-

culate PBW). Patients with less than three ventilator days were excluded in order to focus the

analysis on patients more likely to accrue lung injury from prolonged mechanical ventilation.

All patients were followed-up until hospital discharge or death.

Variables

The main outcome variable was hospital mortality. The two predictor variables of interest

were the modifiable ventilator parameters: TV/PBW and DP. Potential confounding variables

included age, PaO2/FiO2 ratio, PaCO2, respiratory system compliance (CRS), APACHE IVa1

predicted hospital mortality, hospital site, and the annual quarter in which the patient was

admitted.

Data sources

We used previously described bioinformatics [26, 27] embedded within a Cerner Millenium1

electronic medical record (EMR) and an honest broker system to collect de-identified clinical

and ventilator parameters on all patients receiving mechanical ventilation. These data

included: age, gender, height (cm), PaO2 (mmHg), PaCO2 (mmHg), FiO2, positive end-expira-

tory pressure (PEEP cmH20), set tidal volume (ml), and plateau pressure (cmH20). The first

complete set of data for each patient obtained within 24 hours of intubation was used in the

analysis described below. We used the APACHE IVa1 severity scoring system (Cerner Corp,

Kansas City MO) to enumerate hospital mortality, predicted hospital mortality and ventilator

days.
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Study size

We calculated that 1248 patients were needed per TV/PBW stratum (for instance comparing

patients receiving 4-6ml/kg to those receiving 8-10ml/kg) to provide 80% power to discern a

5% difference in mortality, assuming baseline mortality of approximately 25%.

Statistical analysis

The following values were calculated for each patient: PaO2/FiO2, PBWmen = 50 + 0.91(cm of
height—152.4); PBWwomen = 45.5 + 0.91(cm of height—152.4), TV/PBW, CRS = TV/ (PPLAT

-PEEP) (ml/cmH2O) and DP = TV/CRS (cmH2O).
The APACHE IVa1 severity scoring system (Cerner Corp, Kansas City MO) incorporated

chronic health conditions, 115 discrete admission diagnostic categories, and 27 clinical vari-

ables, including age, vital signs, Glasgow Coma Scale score, FiO2, PaO2, PaCO2, arterial pH,

urine output, creatinine, bilirubin, albumin, glucose, white blood cell count and hematocrit,

with a reported a discriminant accuracy of 88% for predicting hospital mortality [28].

We performed three step-wise forward multiple logistic regression (MLR) analyses to inves-

tigate the association between TV/PBW, DP and hospital mortality with adjustment for con-

founders. The first MLR incorporated TV/PBW and all potential confounders listed above; the

second included DP, TV/PBW and all confounders. Next we segregated patients into five strata

of TV/PBW: (4–6, 6–7, 7–8, 8–10, and >10 mL/kg), chosen a-priori based on their relation to

the design of multiple previous clinical trials [1–5, 11–13, 23, 29], and performed the third

MLR forcing the five TV/PBW strata into the model as nominal variables, including DP and

all potential confounders. We used this MLR to calculate the adjusted odds ratio for mortality

(ORmort) with 95% confidence intervals for each TV/PBW strata. We used the TV/PBW 4–6

ml/kg strata as the referent, based on the proposition that this strata (strict LTVV) theoretically

represents best practice. In a post-hoc analysis, we combined three strata that had similar

ORmort including tidal volumes in the 6–10 ml/kg range and used it as the referent to calculate

the adjusted ORmort in the 4–6 ml/kg stratum.

We used the significant ORmort for a 1 standard deviation (SD) increase in DP to calculate a

threshold DP (mean DP + 1 SD) above which adjusted mortality was significantly increased.

Post-hoc MARS and sensitivity analysis

When the relationship between TV/PBW and mortality was observed to be non-linear based

on the first MLR analysis described above, we performed post-hoc multivariate adaptive regres-

sion splines (MARS) analysis of the relationship between TV/PBW and adjusted mortality.

We used STATA1 Version 15 (Statacorp, College Station, TX) for all statistical analyses.

Results

Our CDS system identified 21,851 discrete episodes of mechanical ventilation received by

20,703 patients during the 2-year study period. 20,057 (96.9%) of these patients received vol-

ume control mechanical ventilation, and 14,320 (72.4%) had a PaO2/FiO2 ratio�300 mmHg

during the first 24 hours of mechanical ventilation. 5,658 (39.5%) of patients with a PaO2/FiO2

�300 mmHg accrued�3 ventilator days. Three hundred and forty-seven (6.2%) of these did

not have a height recorded, and 144 (2.6%) failed to satisfy criteria for APACHE IVa1mortal-

ity prediction and were excluded (Fig 1).

Clinical characteristics of the 5,167 study patients are shown in Table 1. The mean age was

61.9 years, and 42.4% were women. The most common admission diagnoses were pneumonia

(30.0%), non-pulmonary sepsis (10.8%), cardiopulmonary arrest (10.2%), respiratory failure
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not due to pneumonia (8.8%), and non-cardiovascular surgery (8.7%). The mean APACHE

IVa1 score was 79.3, and mean PaO2/FiO2 ratio was 166 mmHg. The mean applied TV/PBW

was 7.25 ml/kg. PPLAT was recorded in 4,490/5,167 (86.9%) patients, from which CRS and DP

were calculated, yielding means of 20.7 cmH2O, 40.5 ml/cmH2O, and 13.7 cmH2O, respec-

tively. The median ventilator length of stay was five days (IQR: 4–9 days), and overall hospital

mortality was 28.4% (95%CI: 27.1–29.6%). The distribution of TV/PBW received is shown in

Fig 2.

Table 2 shows the model resulting from the first MLR analysis of the relationship between

TV/PBW and hospital mortality. Age, APACHE predicted hospital mortality, PaO2/FiO2, and

admission to two particular hospitals out of the 18 participating in the study were significantly

associated with mortality, but TV/PBW taken as a continuous variable, was not.

Post-hoc MARS analysis confirmed a significant U-shaped relationship between TV/PBW

and adjusted mortality, which was down-sloping (slope -0.17, p = 0.001) as TV/PBW increased

from 4 to 7.1 ml/kg, and up-sloping (slope 0.20, P = 0.001) as TV/PBW increased above 7.1

ml/kg.

Fig 1. Flow diagram of cohort inclusion/exclusion criteria. [Abbreviations: APACHE: Acute physiology and chronic

health evaluation, APRV: Airway pressure release ventilation, MLR: Multiple logistic regression, PC: Pressure control,

PPLAT: Plateau pressure, PS: Pressure support, DP: Driving pressure].

https://doi.org/10.1371/journal.pone.0255812.g001
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Table 3 shows the results of second MLR analysis, of the relationship between DP, TV/

PBW and hospital mortality. DP was found to be significantly associated with mortality after

adjustment for significant confounders with an ORmort of 1.10 (95% CI: 1.06–1.13; p = 0.009)

for each one standard deviation (SD) increase in DP. Seven hundred twenty-six patients

received DP one standard deviation or greater above the mean (�19 cmH2O), with an ORmort

of 1.15 (95%CI: 1.01–1.30), representing an estimated 33 deaths attributable to excessive DP.

Age, APACHE predicted hospital mortality, PaO2/FiO2, and admission to two individual hos-

pitals were also significant in this MLR model, which had Nagelkerke’s pseudo-R2 of 0.143.

Table 4 shows the results of third MLR analysis of the relationship between five strata of

TV/PBW, DP and all significant confounders. Patients receiving 4–6 ml/kg were used as a ref-

erent for comparison with the other groups–ie. the OR for each of the other strata were com-

pared to the 4–6 ml/kg strata. Patients receiving 6–7 ml/kg and 7–8 ml/kg had significantly

lower adjusted ORmort (0.81 p = 0.05, and 0.78 p = 0.03 respectively. Patient’s receiving 8–10

ml/kg had adjusted ORmort of 0.80 with p = 0.06. The stratified analysis results from Table 4

Table 1. Characteristics of 5,167 study patients.

Mean SD

(unless otherwise noted) (unless otherwise noted)

Female gender 42.4%

Age (years) 61.9 16.9

PBW (kg) 64.3 10.9

APACHE IVa1 score 79.3 28.0

ICU admission diagnosis categories: N

Pneumonia with or without sepsis 1548 (30.0%)

Sepsis (non-pulmonary) 559 (10.8%)

Cardiorespiratory arrest 526 (10.2%)

Pulmonary (not pneumonia) 453 (8.8%)

Surgery (non-cardiovascular) 448 (8.7%)

Cardiology 345 (6.7%)

Neurology 343 (6.6%)

Surgery (cardiovascular) 321 (6.2%)

Trauma 238 (4.6%)

Toxic/metabolic 176 (3.4)

Gastrointestinal 137 (2.7%)

All other 73 (1.4%)

Pulmonary parameters:

PaO2/FiO2 (mmHg) 165.6 70.0

CRS (ml/cmH2O) 40.5 32.1

Ventilator settings/parameters

Tidal volume (ml) 457.4 74.9

TV/PBW (ml/kg) 7.25 1.34

PEEP (cmH2O) 7.0 3.0

5.0 (median) IQR: 5–10

PPLAT (cmH2O) 20.7 6.3

DP (cmH2O) 13.7 5.4

Outcomes

Hospital mortality 28.4%

APACHE IVa1 Obs/Exp mortality 0.980

Ventilator days 5 (median) IQR: 4–9

https://doi.org/10.1371/journal.pone.0255812.t001
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are illustrated in Fig 3. Since the adjusted ORmort for TV 6–7, 7–8 and 8–10 ml/kg were all sim-

ilar, we combined them together in post-hoc analysis, and using them as the referent group, the

comparative adjusted ORmort for patients receiving 4–6 ml/kg was 1.26 (95% CI: 1.04–1.52;

p = 0.02).

Discussion

We report a large observational cohort study designed to examine the relationship between

modifiable ventilator parameters and hospital mortality in hypoxic patients receiving mechan-

ical ventilation. Our study cohort comprised about 25% of all patients receiving mechanical

ventilation in our healthcare system, with a crude mortality of 28%, comparable to that of mild

ARDS [17, 30]. Our patients were also similar to patients with ARDS in terms of age, PaO2/

FiO2, CRS, TV and PPLAT [9, 30]. A recent epidemiologic study suggests that more than 50%

receiving mechanical ventilation with hypoxic respiratory failure, such as those included in

our study, meet Berlin criteria for ARDS [30].

Fig 2. Distribution of TV/PBV received by 5,167 cohort patients.

https://doi.org/10.1371/journal.pone.0255812.g002

Table 2.

Significant independent variables in the first MLR model: Odds ratio� (95% CI) P value

Age 1.16 (1.09–1.24) <0.001

APACHE predicted mortality 1.99 (1.86–2.14) <0.001

PaO2/FiO2 0.87 (0.81–0.94) <0.001

Admission to hospital X 1.64 (1.32–2.04) <0.001

Admission to hospital Y 0.56 (0.36–0.86) 0.008

�Odds ratios are associated with a one standard deviation (SD) increment in the given variable, except in the case of

admission to hospitals X or Y. Values used for SD: Age, 16.9 years; risk of death 26%; PaO2/FiO2, 70.

https://doi.org/10.1371/journal.pone.0255812.t002
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We adopted a pragmatic approach to patient selection, breaking with the convention of

using ARDS as a selection criteria. ARDS is conceptually a clinical-pathological entity [16], but

is currently diagnosed using imperfect clinical-radiological criteria [17] for which clinicians

have demonstrated poor accuracy and low inter-rater reliability [18, 19]. Previous studies have

shown that even researchers with expertise in ARDS have only moderate agreement when

applying the clinical diagnosis of ARDS [20–22]. In contrast, the PaO2/FiO2 ratio criteria we

used to select our study patients was easy to accurately extract from the EMR and represents

the only ARDS criteria independently associated with mortality [17]. This approach to patient

selection makes our study unique in the context of related literature and eases translation of

our results into population-based quality improvement.

In our first two multivariate analyses, we found that DP rather than TV/PBW was the mod-

ifiable ventilator parameter independently associated with survival. But our stratified analysis

and multivariate adaptive regression splines analysis showed a significant U-shaped relation-

ship between TV/PBW and adjusted mortality. Patient receiving 4–6 ml/kg had similar mor-

tality to those receiving >10 ml/kg. But patients receiving 6–7, 7–8 and 8–10 ml/kg all had

comparative adjusted ORmort about 0.80. These findings raise two provocative hypotheses. The

current range of LTVV (4–8 ml/kg) might be composed of substrata with distinctly different

mortality effects: TV in the range of 6-8ml/kg may be safer than 4–6 ml/kg. Intermediate tidal

volume ventilation (ITVV) might not be inferior to LTVV. Disregarding previous convention,

we might hypothesize the optimal TV/PBW range to be 6–10 ml/kg based on these observa-

tional findings. Using TV 6–10 ml/kg as the referent group, the comparative adjusted ORmort

for patients receiving 4–6 ml/kg, such as targeted in the ARMA study, is 1.26 (95% CI: 1.04–

1.52; p = 0.02).

A U-shaped relationship between TV/PBW and mortality was first posited by Eichacker

and colleagues in their 2002 meta-analysis of ARDS trials testing LTVV [31], and was later

described in a cohort of 5,183 mechanically ventilated patients that found that those receiving

�6 ml/kg and those receiving >10 ml/kg had increased mortality (OR 1.23 and 1.14 respec-

tively) compared to patients receiving 6–10 ml/kg (p = 0.09) [32]. A U-shaped relationship was

not demonstrated in a much smaller cohort study (N = 485) that was not specifically powered

to do so [33].

A U-shaped relationship between TV/PBW and mortality has sound physiological explana-

tion [31]. Tidal volumes that are too high lead to alveolar overdistention, ventilator-induced

lung injury, systemic inflammation, ventilator non-triggering, and eccentric respiratory mus-

cle injury [1, 34–37]. Tidal volumes that are too low can cause hypercarbic acidosis, increased

work of breathing, and patient-ventilator dyssynchrony [38–40]. The later can manifest as

Table 3.

Significant independent variables in the second MLR model: Odds ratio� (95% CI) P value

Driving pressure 1.10 (1.06–1.13) 0.009

Age 1.17 (1.09–1.26) <0.001

APACHE predicted mortality 1.98 (1.90–2.05) <0.001

PaO2/FiO2 0.87 (0.80–0.94) 0.002

Admission to hospital X 1.74 (1.54–1.95) <0.001

Admission to hospital Y 0.53 (0.44–0.68) 0.006

�Odds ratios are associated with a one standard deviation (SD) increment in the given variable, except in the case of

admission to hospitals X or Y. Values used for SD: Age, 16.9 years; risk of death 26%; PaO2/FiO2, 70; DP, 5.42

cmH2O.

https://doi.org/10.1371/journal.pone.0255812.t003
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strenuous inspiratory efforts and double-triggering, either of which can paradoxically lead to

alveolar overdistention [40–43]. Insufficient TV/PBW can also cause atelectrauma, increased

respiratory rate (stress frequency) and increased sedation requirements [44]. The use of LTVV

in the subset of ARDS patients with relatively preserved CRS has been shown to be associated

with increased mortality [45].

Current evidence supporting LTVV has several important limitations. Clinical trials used to

support LTVV [1, 3–8] did not perform comparative analysis of TV/PBW substrata compris-

ing LTVV, and used tidal volumes (10–15 ml/kg PBW) in their control groups that were signif-

icantly higher than the intermediate tidal volumes commonly used in clinical practice at the

time [31, 32, 46, 47]. Several authors have posited that the apparent benefit of LTVV in these

trials might be solely attributable to the injuriously high tidal volumes and PPLAT received by

control patients rather than to any specific benefit of LTVV [31, 48]. Deans and colleagues

analyzed 2,587 patients who met enrollment criteria for the landmark ARMA trial [1], but

Table 4. Adjusted odds ratio for mortality in five strata of TV/PBW.

Strata of TV/PBW (ml/kg)

4–6 6–7 7–8 8–10 >10

N 760 1672 1554 1026 155

Median TV/PBW 5.8 6.5 7.5 8.6 11.0

Multivariate ORmort mortality (95% CI) 1.00� 0.81 0.78 0.80 1.03

(0.65–1.00) (0.63–0.97) (0.63–1.01) (0.67–1.59)

P-value from MLR (comparing adjusted ORmort to that of the 4–6 ml/kg) 0.05�� 0.03�� 0.06 0.90

Abbreviations. TV/PBW: Tidal volume/predicted body weight, ORmort: Odds ratio for mortality, CI.: Confidence interval

�TV/PBW 4-6ml/kg is the referent group for the OR analysis.

�� Patients receiving 6–7 and 7–8 ml/kg had significantly lower adjusted mortality than those receiving 4–6 ml/kg TV/PBW.

https://doi.org/10.1371/journal.pone.0255812.t004

Fig 3. Adjusted odds ratio for mortality for five strata of TV/PBW (4–6, 6–7, 7–8, 8–10 and>10 ml/kg). The

median TV/PBW for each strata is plotted on the X-axis. Adjusted ORmort with 95% CI error bars plotted on the Y-axis

for the second through fifth strata. [The first stratum (4–6 ml/kg) is the referent for the calculation of OR for each of

the other strata].

https://doi.org/10.1371/journal.pone.0255812.g003
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were excluded for technical reasons such as lack of consent; these patients went on to receive

conventional tidal volume management, yet achieved mortality of 31.7%—comparable to the

31.0% mortality of study patients that received LTVV and significantly lower than the 39.8%

mortality experienced by study patients randomized to the control group [45]. In 2017, an

international consensus of critical care societies published the results of a meta-analysis of

nine randomized controlled trials comparing LTVV (4–8 ml/kg PBW) to “traditional” tidal

volumes (10–15 ml/kg PBW) in patients with ARDS. They found no difference in mortality

(risk ratio: 0.87–95% CI: 0.70–1.08) in their primary analysis [2] and provided no data com-

paring LTVV to ITVV, yet “strongly recommended” LTVV. Less than 5% of patients in a large

epidemiological study of ARDS [9] and less than 3% of patients in our cohort received tidal

volumes in the range>10 ml/kg used in the control groups of the studies included in this

meta-analysis, so it’s relevance to current practice would be questionable even if it’s findings

had been significant.

As early as 2002, Eichacker posited that ITVV (with limited PPLAT) was not inferior, and

might be superior to LTVV, based on a patient data-level meta-analysis of ARDS clinical trials

[31]. The only previous randomized controlled trial we are aware of that specifically compared

LTVV to ITVV included 961 patients without ARDS, and showed no difference in mortality,

ventilator days, length of stay, or pulmonary complications [29].

Although we cannot calculate the proportion of our cohort with ARDS, it is noteworthy

that 20 years after the ARMA trial supporting LTVV 4-6ml/kg [1], only 14.7% of our patients

received it, compared to the majority 82% receiving 6–10 ml/kg. Several previous reports simi-

larly show that although most clinicians agree that LTVV should be used in patients with

ARDS, only 7–19% of their ARDS patients receive it [49, 50]. An observational study including

459 ICUs in 50 countries showed that tidal volumes of 6–10 ml/kg were used in approximately

75% of ARDS patients, four times more often than 4-6ml/kg was used, and that clinical recog-

nition of ARDS did not significantly influence the TV/PBW administered [9]. Our study sup-

ports this practical approach to ventilator management, even though it sometimes

incorporates non-recommended ITVV. It is possible that clinicians are correctly choosing

higher range LTVV and ITVV ventilation to avoid complications of strict 4–6 mg/kg LTVV.

Our observation that DP is related to mortality supports and extends the findings of a prior

clinical trial meta-analysis [10], by showing that the relationship between DP and mortality

holds in a heterogenous group of hypoxic patients, regardless of whether they have ARDS,

even though clinical measurement of CRS by respiratory care practitioners in the presence of

spontaneous inspiratory efforts could introduce significant error into the measurement or cal-

culation of PPLAT, CRS and DP [14]. The later concern has previously been posited as an unre-

solved barrier to clinical implementation of DP-limited mechanical ventilation [42]. It is

worth noting that DP equals TV/CRS−therefore titration of DP can be seen as a form of preci-

sion medicine in which TV is matched to an individual patient’s respiratory system

compliance.

Several studies provide context for our finding of a relationship between DP and mortality

in hypoxic ventilated patients. A meta-analysis of clinical trials and observational studies [51]

and three subsequent cohort studies [15, 30, 52] showed a significant relationship between DP

and mortality in patients with ARDS. In patients without ARDS, a quasi-experimental trial

[25], and two cohort studies [15, 24] showed that DP was associated with mortality. Of note,

the latter study showed a significant relationship only in non-ARDS patients with PaO2/FiO2

<300 mmHg. One recent observational study that did not require hypoxia as an inclusion cri-

terion showed no relationship between DP and mortality in non-ARDS patients [52]. Reported

threshold values for DP associated with increased mortality are in a relatively narrow range of

14–19 cmH2O [10, 30, 53], consistent with our results. Taken together, considerable data
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support the contention that reducing DP<19 cmH2O would make a reasonable target to

reduce mortality in mechanically ventilated patients.

Limitations

Residual bias/confounding remains a major threat to the validity of our observational study.

The heterogeneity of our cohort and the real-world shortcomings of clinical data used in our

study reduce internal validity, but increase the translational utility of our findings. Our exclu-

sion of patients with less than three ventilator days could have introduced bias if such patients

are especially prone to ventilator induced lung injury. We used only a single set of ventilator

parameters per patient to describe ventilator management–a practical decision based on the

large amount of clinical data we accessed. Our simplified calculation of CRS did not take into

account spontaneous patient effort. Elevated DP could be a marker of more severe underlying

lung injury rather than a cause of increased mortality, notwithstanding our statistical adjust-

ment for CRS, PaO2/FiO2 and other confounders. We used APACHE IVa1 predicted hospital

mortality as an independent variable in our MLR, which has reduced discriminant accuracy in

mechanically ventilated patients [54]. Although our MLR model was superior to APACHE

IVa1, it had only a modest pseudo-R2 for predicting mortality. We therefore suspect that low-

ering DP may have only a modest effect on mortality of mechanically ventilated patients, in

whom myriad other factors likely influence survival. Prospective clinical trials are needed to

further investigate whether ITVV is superior to strict LTVV, and to demonstrate clinical effi-

cacy of DP-limiting ventilator strategies.

Conclusions

Driving pressures�19 cmH2O were associated with increased adjusted hospital mortality in

our retrospective cohort. We intend to use this finding to inform development of clinical deci-

sion support focused on limiting DP rather than achieving strict LTVV in our healthcare sys-

tem. Tidal volumes of 4–6 ml/kg were used in less than 15% of patients and were associated

with increased adjusted mortality. Tidal volumes of 6–10 ml/kg were used in 82% of patients

and had significantly reduced adjusted mortality compared to that associated with tidal vol-

umes 4–6 ml/kg. We hypothesize that ITVV may not be inferior to strict LTVV in patients

with hypoxic respiratory failure.
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