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Abstract

Identifying genes where a variant allele is preferentially expressed in tumors could lead to

a better understanding of cancer biology and optimization of targeted therapy. However,
tumor sample heterogeneity complicates standard approaches for detecting preferential
allele expression. We therefore developed a novel approach combining genome and tran-
scriptome sequencing data from the same sample that corrects for sample heterogeneity
and identifies significant preferentially expressed alleles. We applied this analysis to epithe-
lial ovarian cancer samples consisting of matched primary ovary and peritoneum and lymph
node metastasis. We find that preferentially expressed variant alleles include germline and
somatic variants, are shared at a relatively high frequency between patients, and are in
gene networks known to be involved in cancer processes. Analysis at a patient level identi-
fies patient-specific preferentially expressed alleles in genes that are targets for known
drugs. Analysis at a site level identifies patterns of site specific preferential allele expression
with similar pathways being impacted in the primary and metastasis sites. We conclude that
genes with preferentially expressed variant alleles can act as cancer drivers and that target-
ing those genes could lead to new therapeutic strategies.

Author Summary

Identifying genes that contribute to cancer biology is complicated partly because cancers
can have dozens of somatic mutations and thousands of germline variants. Somatic muta-
tions are gene variants that arise after conception in an organism while germline variants
are gene variants present at conception in an organism. Most methods to identify cancer
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drivers have focused on determining somatic mutations. In this study we attempt to iden-
tify, from a tumor sample, important germline and somatic varijants by determining if a
variant is expressed (made into RNA) more than expected from the amount of the variant
in the genome. The preferred expression of a variant could benefit cancer cells. When
applying our analysis to ovarian cancer samples we found that despite the apparent hetero-
geneity, different patients frequently share the same genes with preferentially expressed
variants. These genes in many cases are known to affect cancer processes such as DNA
repair, cell adhesion and cell signaling and are targetable with known drugs. We therefore
conclude that our analysis can identify germline and somatic gene variants that contribute
to cancer biology and can potentially guide individualized therapies.

Introduction

Identifying genes contributing to tumor biology (driver genes) underlies the design of targeted
therapies. The advent of large-scale tumor sequencing in 2006 [1] followed by integrated
multi-dimensional TCGA studies [2] brought a wealth of molecular data in different cancers at
the somatic mutation, gene expression and copy number variation levels. One surprising result
has been the observation that in most studied cancers, there are large differences in somatic
mutations in patients. For example, in the case of the TCGA ovarian cancer study [3], there
were ~10,000 somatic mutations among 316 patients with only TP53 found mutated in the
majority (96%) of patients. Every other gene was found to be mutated at low frequencies. This
heterogeneity was also seen in more recent multi-site ovarian cancer studies [4, 5]. Contrary to
the heterogeneity observed at the somatic mutation level, gene expression profiles are more
homogeneous with distinct gene expression clusters observed both in the TCGA study and
other studies [5, 6].

While both somatic mutation and gene expression studies have yielded large insights into
tumor biology, they have several limitations in uncovering driver genes. Somatic mutations do
not identify germline variants that contribute to tumor biology, require large patient cohorts,
make assumptions about the background mutation rate and have turned out be very heteroge-
neous. Gene expression array studies, though they uncover sets of genes that correlate with
prognosis, do not inform about significant or causative genes and do not indicate whether a
mutated form of the gene is being expressed.

One approach to address some of these limitations is to identify preferentially expressed
variants of gene. If a specific variant is expressed and if that expression is at a significantly
greater or lower level than expected, then this could indicate selection for or against that variant
and imply that the gene is playing an important role in the tumor. This approach, called previ-
ously allelic expression bias analysis [7-9], typically determines significance if the expression
allele fraction deviates from 0.5 (the expected non-biased allele expression at heterozygous
positions). Allelic expression bias analysis however is difficult to apply to patient tumor sam-
ples because samples are often a mixture of normal and tumor cells with tumor cells themselves
being heterogeneous with large copy number changes. Therefore, assumptions that an allele
has biased expression if it differs significantly from a specific allele fraction are not justified.

However, combined genome and transcriptome sequencing (CGTS) as described here
makes it possible to directly assess the genomic content of the sample at all sites and therefore
determine if allelic expression is significantly different than expected from the genome content.
A resulting advantage of CGTS is also a large reduction of alignment bias [10].
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We applied CGTS to primary and metastatic epithelial ovarian cancer samples. Ovarian
cancer is the most aggressive gynecological malignancy in developed countries. Ovarian can-
cer had been thought to arise from ovarian epithelial cells but more recent studies [11-15]
have shown that at least 50% of ovarian tumors most likely arise from the fallopian tube.
Regardless of origin, the ovaries and abdominal cavity are mostly impacted with more than
70% of patients diagnosed with disease spread throughout the abdominal cavity. These
patients have a 30% five year survival rate [16]. Ovarian cancer dissemination most commonly
occurs through the intraperitoneal route, followed by lymphatic invasion [17-19]. While 80%
of patients with advanced epithelial ovarian cancer initially respond to primary treatment,
most recur with a drug resistant phenotype. A subset of patients with clinically and patholog-
ically indistinguishable disease develops a less aggressive disease and may survive much lon-
ger. Consequently, patients have biologically different diseases [20]. Furthermore, disease in
the same patient can be biologically different according to tumor location and according to
tumor temporal variations [21, 22]. Intratumor heterogeneity within the same patient is clini-
cally relevant because status of predictive biomarkers could be used to adapt treatment deci-
sions [23].

Given that patients mostly present with metastasis and that lethality is high at this stage, we
include in our study matched primary and metastasis samples from three ovarian cancer
patients. The primary sample is from the ovary and the metastasis samples are from the perito-
neum and lymph node, the two most frequent metastasis sites [24]. We identify a biologically
interesting set of shared significant preferentially expressed alleles, predict patient-specific
drug targets and identify site-specific genes that may contribute to specific biology. These
results suggest that preferentially expressed variant analysis can identify potential cancer
drivers.

Results
Identifying Significant Preferentially Expressed Alleles

Our approach to identify causative mutations using both RNA and exome sequencing data was
motivated by an observation made about the variants present in TP53 in three patients. In our
dataset, each patient had a different high or moderate impact variant in TP53. High and mod-
erate impact variants are those changing the protein sequence or that affect a splice site. When
comparing the RNA and exome sequencing data of those variants, we observed that while the
variant alleles were present in both the RNA and exome data, the TP53 variant allele was over-
represented in the RNA sequencing data when compared to the exome sequencing data (Fig 1).
Given the known centrality of TP53 variants in cancers (TP53 somatic mutations have been
observed in 96% of ovarian cancer samples [3]), this suggested to us that there could be a selec-
tion process occurring in these patients where variant TP53 is overexpressed or normal TP53 is
suppressed or both.

To understand if this preferential allele expression exists in other genes, we performed a sys-
tematic analysis at all sites where RNA or exome sequencing data exists as outlined in Fig 2.
We performed both an analysis for somatic mutation preferential expression and a combined
germline/somatic variant preferential expression. In both analysis, we identify variant positions
and calculate the reference allele fraction which is the number of reference allele reads divided
by the total number of reads. Using the RNA sequencing data of a sample that correspond to
the exome variant position, we also determine the RNA reference allele fraction. Then, we cal-
culate the significance of the difference as described more fully in the methods. Throughout
this study, we adopt a convention where the reference allele fraction is the standard and the
alternate allele is the variant or mutant allele. Differences between the RNA and exome allele
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Fig 1. TP53 significant preferential allele expression. We observed in three different patients (P1, P2, P3) alleles in TP53 where one allele is significantly
preferentially expressed. A) The allele positions are shown on a schematic view of the TP53 gene (red line) for all three patients. B) Alignment and coverage
plots of the reads spanning the preferentially expressed alleles for both exome (blue) and RNA (brown) sequencing data. The patient and site is indicated on
each plot. The histograms indicate coverage across the site with the coverage indicated by the y-axis number. The histogram central stacked bar plot shows
the number of reference allele reads in blue and the alternate allele reads in red. The alignment plot shows the individual reads spanning the preferentially
expressed alleles. For the RNA sequencing data, the dashed line indicate gaps corresponding to a spliced region.

doi:10.1371/journal.pgen.1005755.g001

fractions are calculated as RNA reference allele fraction—Exome reference allele fraction
(abbreviated as RAD). Therefore, if the RNA reference allele fraction is 0.5 and the exome allele
reference allele fraction is 0.9, this means that there is preferential expression of the variant
allele with an allele fraction difference (RAD) of -0.4.
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Fig 2. Schematic for global analysis of preferential allelic expression showing the steps followed for
alignment, filtration, quality control and analysis steps.

doi:10.1371/journal.pgen.1005755.g002

The analysis of all somatic mutations (in two patients where non-cancer tissue is available)
reveals mutated genes where the mutated allele is preferentially expressed (Fig 3). TP53 muta-
tion is found to be significantly preferentially expressed in patient 1 while TP53, PCCB and
CCD6 mutations are found to be significantly preferentially expressed in patient 2. In addition,
this analysis shows variants that are not expressed, variants that are expressed at equal levels as
in the genome and variants where the germline variant is preferentially expressed (Fig 3).
These results reveal that an analysis of somatic mutation is better complemented with allelic
expression studies which show whether a mutated allele is expressed and the degree and direc-
tion of that expression. Mutated alleles that are not expressed likely have no impact on tumor

progression.
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Fig 3. Somatic mutations preferential allele expression in patient 1 (P1) and patient 2 (P2). Clustering of the allele fraction differences for all somatic
genes shows somatic mutations with preferential allele expression for the mutant allele (orange), no preferential expression (white), reference allele
preferential expression (blue) and no expression of any allele (gray). Subplots for each patient show the exome (blue circles) and RNA (red circles) allele
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doi:10.1371/journal.pgen.1005755.9g003

In addition to analyzing somatic mutations, we analyzed all variant alleles that consist of
germline and somatic variants. For most variants, there is no significant difference in the
exome and RNA allele fractions (Fig 4A). However, for a relatively small number of variants,
there are significant allele fraction differences (Fig 4A and 4B). These variants are both germ-
line and as previously stated somatic with the vast majority (~96%) being germline. Further-
more, using the normal data for two patients we estimated how many reference/alternate
alleles would have been incorrectly assigned to be able to estimate the error for the third patient
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Fig 4. All variant preferential allele expression analysis. A) Scatter plots show the exome and RNA allele fraction for every patient and site in our study
and for cells lines (FB, GC, OE, SK). Grey circles are variants with non-significant allelic differences while significant differences are indicated in colored
circles as stated in the Legend. Note we imposed a cutoff of allelic difference of 0.2. B) The number of significant non-synonymous coding variants relative to
all variants for patients and cell lines. C) The shared variants in patients and cell lines are shown as bar plots. D) Analysis of the significance of shared
variants. The approximate p-value for the pair is shown in the heatmap with p-values of 0 being black and p-values of 1 being white. We analyzed the positive
RAD variants and the negative RAD variants and found large difference between the cell line data and the patient site.

doi:10.1371/journal.pgen.1005755.9004

and the cell line data. As S2 Fig shows, the error ranges from 4.5%-9.4%. This means that
patient 3 and cell line data likely have up to 10% of their alleles incorrectly called as alternate or
reference. This would affect the direction of preferential allele expression in our analysis. How-
ever, for our global analysis this error would not significantly affect our major conclusions.

We also performed exome and RNA sequencing on four different cell lines (SKOV3, GOC2,
fibroblasts and primary ovarian epithelial cells). As in the cell lines, we identify significant allele
fraction differences in a small subset of variants (Fig 4A and 4B). Interestingly, while the same
types of variants is observed in both cell lines and patient data, the cell lines show an enrich-
ment in STOP gained variants compared to patient data (S3 Fig).

PLOS Genetics | DOI:10.1371/journal.pgen.1005755 January 6,2016
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Shared Preferentially Expressed Alleles

To analyze the significance of the observed preferentially expressed variants, we compared the
cell lines and patient shared genes. We observe a striking difference between cell lines and
patient shared genes as the variant genes identified are very different between the two. The
patient shared variants are substantial with 28 shared genes while only few genes are shared
among the four different cell lines (Fig 4C). No gene is shared between cell lines and patients.

However, the number of significant variants is larger overall in patients which would lead to
higher number of shared variants. To determine if the relatively high number of shared vari-
ants in patient data is due to chance, we performed a significance analysis. We selected variants
randomly from the total pool of variants in the data and counted how many times these vari-
ants are shared between patients and cells. We then calculate a p-value corresponding to the
number of times the shared random replicates overlaps with the observed shared replicates. As
the p-value heatmap in Fig 4D shows, there is significant shared variants among patients and
cell lines for the reference variants while there is significant shared variants for the alternate
variants only among the patient data. This indicates that the set of shared alternate variants are
significant in the context of patient tumors while the set of reference variants are significant for
cell lines and patients. We therefore conclude that the set of preferentially expressed alternate
alleles are specifically relevant to patient cancer data and focusing on that set could yield to
insights into patient tumor biology.

To further understand if the alleles in our data are selected for we carried out a synonymous
to nonsynonymous analysis for every patient and site. In this analysis, for every gene with at
least 2 variants, we calculate the ratio of the number of non-synonymous to synonymous vari-
ants for the positive RAD, negative RAD and no-RAD variants. As shown in S4 Fig, in every
patient and site, variants with positive and negative RAD generally have a non-syn/syn ratio
greater or equal to the variants with no RAD. This is especially visible at the P1-LN site. This
suggests that there could be selection for some of the positive and negative RAD variants. How-
ever, this type of analysis is limited in that there were few genes with enough variants to calcu-
late synonymous and non-synonymous ratios as there is little variation within genes from the
same patient. For most of the genes, selection cannot be identified using this method.

We next looked into the biological significance of the shared patient’s alternate alleles.
There were 28 genes shared across three patients (Figs 4C and 5A). Among the 28 shared
genes, the majority are known to be involved in tumor biology based on IPA annotation of the
genes and manual inspection. These include TP53 (the highly mutated in epithelial ovarian
cancer tumor suppressor), MUCI6 (also known as CA125) [25-27], MKI67 [28-31], LAMC2
[32-34] and ERBB2 [35]. In addition, the corresponding proteins localize to the extracellular
space, plasma membrane, cytoplasm and nucleus.

Two genes, MUCI16 and MKI67, show a large number of variants (38 and 9 different vari-
ants respectively). The large number of variants in these genes could be due to the size of these
genes, alignment errors in repeat regions (though we filtered out multi-mapping reads and low
quality reads) or naturally polymorphic positions or may be due to heterogeneity in different
cells. We include them in the list of significant genes due to their known role in tumor biology
and because some of the variants we identified have also been reported as somatic mutations in
COSMIC for all two genes (Fig 5A). MUCI6 is known to be expressed in most serous ovarian
carcinomas and may function like MUCI and MUC4 in tumor cell growth, motility and tumor-
ogenicity [26]. MKI67 (Ki-67) is a well-known proliferation marker associating with prognosis
[29, 36] and has been used as a target in an ovarian cancer model system [30].

We then performed a topological network analysis using TopoGA [37] and Jepetto [38] on
the set of shared 28 genes with alternate allele preferential expression (negative RAD) and the

PLOS Genetics | DOI:10.1371/journal.pgen.1005755 January 6,2016 8/21
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doi:10.1371/journal.pgen.1005755.g005
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set of shared 26 genes with reference allele preferential expression (positive RAD). As Fig 5B
shows, there is a clear increase in connectedness among the alternate allele preferentially
expressed genes. Fig 5C also shows a plot of the known genetic interactions from the reactome
functional interaction database [39, 40] and there are many more direct interactions for

the alternate allele preferentially expressed genes than for the reference allele preferentially
expressed genes.

Opverall, our results strongly indicate that, in contrast to the set of preferentially expressed
reference alleles, the shared set of preferentially expressed alternate/variant alleles play a role in
ovarian cancer biology since the majority of the identified genes are involved in known cancer
processes.

Additionally, we find that the expression level for most of these 28 genes is remarkably con-
sistent across different patients and sites (S5 Fig). This indicates that these genes with signifi-
cant allelic bias cannot be identified from gene expression studies.

Patient and Site Specific Preferentially Expressed Alleles

We then analyzed the genes with preferentially expressed alleles for each patient individually
using Ingenuity pathway analysis. Each patient’s significant genes are associated with similar
cancer related diseases and processes (Fig 6A). For example for the Cancer category, for
patients 1, 2 and 3 at least half of the genes were in cancer associated genes. Note that the gas-
trointestinal disease reported by IPA include cancer diseases. Similarly there is enrichment for
functions such as DNA repair and cell growth for every patient. Our analysis therefore identi-
fies many genes that are known to be involved in tumor development. This is the case whether
looking at shared genes or whether looking at private genes.

The identification of a large number of cancer-related genes for each patient also allows us
to ask whether any of these genes are targetable with known drugs. We are able to identify for
each patient several drugs that directly target genes (Fig 6B). Many of these drugs are or have
been in clinical trials or are widely used for current cancer therapy as indicated in Fig 6B in
bold. Notably, preferential allele expression in aurora kinase genes (AURKA) is significant in
two patients. AURKA are targets of new drugs currently undergoing clinical trials [41].

Looking further at networks of drug targetable genes (Fig 6C) we observe that significant
genes in our analysis form an interconnected network and that drugs exist that can target dif-
ferent points in this network. Targeting these genes, which form central networks in cells, are
likely to result in measurable effects on cancer cells.

Finally, since our data includes primary and metastatic samples, we also analyzed the allele
fraction differences at a site-specific level to identify any site-specific patterns. While there was
little overlap between genes at the site level (Fig 7A), the disease pathways and biological func-
tions were found to be the same in the different sites (Fig 7B). We then performed a hierarchi-
cal clustering analysis on significant allele fraction differences for all patients and sites (Fig 7C).
As expected, patients clustered together but every sample and site clustered independently at
the variant level. We also identified shared patterns across all possible clusters of negative allele
fraction differences. These clusters represent sets of variants that show similar patterns of sig-
nificant differential allele expression (Fig 7D). These clusters are the OV, PE, LN, OVPE,
OVLN, PELN and OVPELN clusters. The PE, LN and PELN clusters are especially interesting
as they are metastatic clusters. Interestingly, TP53 appears in the PELN cluster indicating that
metastasis samples (PE and LN) are overexpressing the variant TP53 more than in the ovary
sample.
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Fig 6. Patient specific analysis of negative RAD genes. A) Top biological pathways molecular functions for every patient’s set of significant preferentially
expressed alleles. B) Druggable targets in every patient. The bar plots show the extent of preferential allele expression and the list is sorted by the average of
allelic expression from highest to lowest. Drugs in bold type are used in current anticancer treatment or undergoing clinical anticancer trials. C) Network plots
of a selected pathway in every patient showing a druggable target.

doi:10.1371/journal.pgen.1005755.9g006
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Discussion

The keys results of our analysis are the identification of a large number of shared genes show-
ing preferential variant allele expression among three different patients. We identify 28 shared
genes many of which are known to be involved in ovarian cancer or other cancers and occur in
cellular pathways that are relevant to tumor biology. These shared elements could form the
basis for the biological similarities among ovarian cancers and lead to new therapeutic targets
and better patient targeting of current therapies.

The observed preferential allele expression could indicate potential selection for that allele
due to providing growth or survival benefits to the tumor. Alternative causes for significant
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preferential allele expression include artifacts of library preparation, alignment or sequencing.
Preferential allele expression may also occur without biological or tumor significance. How-
ever, the evidence indicates that our analysis is capturing a biologically relevant set of genes.
First, the number of variants that we identify as being significant is a small proportion of the
total variants (Fig 4A and 4B) which indicates that there is no large systematic issue. Second,
we validated the exome read ratios with SNP6 array data (where possible) and find excellent
agreement between the array and exome data (S6 Fig). Third, we identify a large number of
shared genes between different patients. Within these shared genes there are many variant
types indicating that there is no bias for specific variant types. Some variants are the same in all
patients while some variants are different in two or three other patients. Fourth, many of the
genes we identify have very well known or plausible effects on tumor biology. Fifth, as dis-
cussed previously and below, many of the genes we identify with significant allele fraction dif-
ferences are known drug targets. Sixth, comparing cell line data to patient data reveals large
differences in the type of variants observed. There is also overall large similarity within patients
than within cell lines suggesting that the preferentially expressed variant alleles in patients are
specific. We therefore conclude that while there could be some biases due to low coverage or a
higher error rate in one dataset, the majority of genes we identify are relevant to tumor biology
and merit further investigation.

There are multiple mechanisms that can give rise to preferential allele expression. Copy
number changes, including loss of an allele (LOH, loss of heterozygosity), RNA editing and
allele specific methylation are three such mechanisms. However, our analysis methods that
consider both the genomic and transcriptomic content would likely not detect preferential
allele expression solely caused by copy number changes as we subtract the RNA read fraction
from the DNA read fraction. For RNA editing, while our analysis would detect novel RNA
only alleles, we restrict in this work our analysis to alleles that occur in both the exome and
RNA sequencing data. This is because additional evidence would be needed to be have confi-
dence in the novel RNA alleles. Allele specific methylation [42] could explain the preferential
allele expression in our data as one allele could be methylated therefore reducing the expression
of that allele relative to the unmethylated allele. Future experiments combining genome, tran-
scriptome and methylation sequencing could determine the number and identity of preferen-
tially expressed alleles modulated by methylation.

Our filtering procedure was stringent but it is possible that some of our data is due to differ-
ent types of technical errors. Improving this analysis further could involve excluding reads
from error-prone regions, applying more robust statistical methods and validating the expres-
sion data with site-specific gPCR. In addition, while we focused in this study on non-synony-
mous mutations or other high impact mutations, analyzing the synonymous mutations could
lead to additional insight into tumor biology as synonymous mutations have been shown
recently to act as drivers in tumors [43].

Another interesting subset of genes in our data are genes affecting cell adhesion and migra-
tion. The set of 28 shared and significant genes includes LAMC2 [33, 34], MMP?7 [44] and
TNC [45]. We have previously described a large enrichment in somatic mutations in adhesion
genes using the TCGA ovarian cancer data [46] while others have identified cell adhesion gene
enrichment in a multidimensional study of ovarian cancer data [47]. Cell adhesion and migra-
tion are essential processes in tumor development and metastasis and it would be interesting to
further investigate the functional significance of the variants we identify.

One notable advantage of applying CGTS to tumor samples is to be able to identify signifi-
cant preferentially expressed germline variants. Somatic mutation analysis and standard gene
expression studies cannot investigate germline variation. Germline variants are the vast major-
ity of variants in cells and understanding their role in tumor biology could be critical to
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designing effective therapies. Another advantage of CGTS is that there is no requirement for
large numbers of patients—it is possible to identify significant preferential allele expression in
one patient.

Aside from potentially uncovering cancer drivers and suggesting patient-specific therapies,
the observation that there is significant overlap between patients in the genes that have prefer-
entially expressed alleles suggests that there is less heterogeneity at this level than seen with
somatic mutation analysis. This increased homogeneity at the allelic expression level could
impact the clustering of patients and has therapeutic implications as more patients can be
treated with the same drug.

Overall, site analysis seems to indicate that different sites while having different genes utilize
similar pathways. Perhaps the differences between primary and metastasis sites are due to gene
expression changes or post-translation modifications. These results, while puzzling, are quite
interesting. Indeed, the previous two studies on multiple site sampling [4, 5] demonstrated a high
degree of mutational heterogeneity but most patients have a good initial response at all sites to
chemotherapy potentially indicating shared biological features despite mutational heterogeneity.

Understanding tumor biology to impact clinical care requires the integration of multiple
datasets in clinically meaningful ways. This work adds an additional novel dimension to the
large body of work in tumor biology by analyzing preferential allele expression using a com-
bined genome and transcriptome sequencing approach. The striking result of finding a set of
shared biologically relevant genes with preferentially expressed variant alleles suggests that
these genes may be driver genes. Future work characterizing these genetic variants individually
and determining mechanisms of preferential allele expression would lead to greater under-
standing of the functional significance of these variants in tumor biology.

Methods
Ethics Statement

All samples were collected at the department of Gynecologic Oncology at the Institut Claudius
Regaud. The project was reviewed and approved by the Institut Claudius Regaud Human
research Ethics Committee. All patients included in the study gave informed written consent
prior to surgery.

Sample Collection

Three patients with Stage 3C high grade serous ovarian cancer were recruited for this study
before any treatment at the Institut Claudius Regaud, Toulouse. All displayed metastasis in the
lymph node and peritoneum. During primary cytoreductive surgery, tissue samples from the
ovary, peritoneum and lymph node were collected and snap frozen. Biopsies were macrodis-
sected and snap frozen sections were controlled and samples with 80% of tumor cells were
selected. DNA and RNA was extracted with Qiagen RNA/DNA extraction kit. Additional clini-
cal details are in S1 Text. Patients and sites are abbreviated (P1, P2, P3 for patients 1, 2, 3 and
OV, PE, LN for ovary, peritoneum and lymph node).

Ovarian cancer cell line SKOV3 (HTB-77) was purchased from ATCC, primary ovarian
cancer cell line GOC2 propagated in-house and human fibroblasts were maintained in culture
(DMEM high glucose [Hyclone, Thermo Scientific], 10% FBS [Hyclone, Thermo Scientific],
1% Penicillin-Streptomycin-Amphotericyn B solution [Sigma], 1X Non Essential Amino-Acid
[Hyclone, Thermo Scientific]). Human primary ovarian epithelial cells from ScienCell were
cultured in poly-L-lysine-coated culture vessel (2 pg/cm2, T-75 flask) following ScienCell rec-
ommendations (Ovarian Epithelial Cell Medium (OEpiCM, Cat. No. 7311), 1% Ovarian Epi-
thelial Cell Growth Supplement (OEpiCGS, Cat. N0.7352), 1% penicillin/streptomycin
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solution (p/s, Cat.No 0503). Cultures were incubated in humidified 5% CO2 incubators and
the media was replaced every 3 days. RNA and DNA were isolated using Qiagen Allprep DNA/
RNA miniprep kit Cat. No. 80204 following manufacturer instructions and stored at -80
degrees Celsius before sequencing. Cells lines are abbreviated SK (SKOV3), GC (GOC2), FB
(Fibroblast) and OE (ovarian epithelial).

Sequencing and Alignment

RNA and exome sequencing was performed at Weill Cornell Medical College—Qatar, Geno-
mics core. Exome capture was done using Agilent’s 38 mB SureSelect Human All Exon kit
(patient tumor samples) and SureSelectXT2 Human All Exon V5 (cell lines and normal patient
samples). Paired end, 100bp sequencing was done on an Illumina Genome Analyzer IIx
(patient tumor samples) and Illumina HiSeq 2500 (cell lines and normal patient samples).
Reads were aligned using BWA (version 0.7.9a) [48], indexed with samtools (version 0.1.18)
[49], processed with Picard mark duplicates (http://picard.sourceforge.net, version 1.110) and
realigned with GATK (version 3.1.1) [50, 51]. GATK bundle 2.8 was used for the reference
genome hgl9 and the realignment data. RNA was processed with Nugen Ovation v2 kit
(patient tumor samples) and Nugen Ovation Single Cell RNA-Seq System (cell lines and nor-
mal patient samples) and 100bp sequencing was done on an Illumina HiSeq 2000 (patient
tumor samples) and Illumina HiSeq 2500 (cell lines and normal patient samples). Resulting
reads were aligned using RNA Star (version 2.4.0g1) in 2-pass mode [52] to the reference
genome hgl9 (S1 Fig) and deduplicated with Picard mark duplicates (version 1.110). Single
nucleotide variants with mapping quality >20 and base quality > 20 were called using VARS-
CAN (version 2.3.7) [53, 54] from samtools mpileup output [55] combining all deduplicated
and filtered exome and RNA samples and then annotated with SNPEFF (version 3.6) to obtain
a VCF. Alignment and post processing read counts are shown in S1 Fig. The annotated VCF
was then analyzed further with custom scripts.

Allele Fraction Differences

Allele fractions were calculated for single nucleotide variants identified in exome and RNA
sequencing data. We limited our analysis to reads with base and mapping quality greater than
or equal to 20 and non-duplicated reads for both exome and RNA sequencing data. We further
focused only on protein coding variants. Allele fractions are defined as the ratio of the number
of reads of the reference allele to the total number of reads at a site. The Fisher Exact Test with
the mid-P correction was used to obtain p-values between the RNA and Exome data (signifi-
cance was set at a p-value less than 0.1). In addition, we imposed a filter that there should be at
least eight reads for both the exome and RNA sequencing data to account for errors in sequenc-
ing and alignment [56]. The allele fraction difference (RAD) is calculated as the RNA allele
fraction minus the exome allele fraction. Allele fraction differences range from -1 to 1 with neg-
ative differences meaning that the variant allele is preferentially expressed and positive differ-
ences meaning that the reference allele is preferentially expressed. Significant alleles refer to
those alleles with significant negative preferential allele expression. Significant genes are those
which have at least one variant allele has statistically significant preferential allele expression.
Where normal sample (non-tumor) data is not available, we consider an allele to be likely
germline if it also exists in dbSNP.

Variant Annotation

SNPeff [57] was used to annotate the variants to identify protein coding variants. We use the
same TMPACT" categorization as SNPEFF (High, Moderate, Low and Modifier). We used
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Ingenuity Pathway Analysis software (Ingenuity Systems) to annotate and functionally charac-
terize gene lists and to identify drug targets. To identify SNPs that were in COSMIC [58], we
downloaded the COSMIC complete export list (v72) and cross-referenced it with our variants
based on genomic coordinates.

Shared Gene Analysis

Identifying shared genes between groups is important as shared genes could point to common
mechanisms. However, in sets where the number of elements is limited such as gene sets, it is
possible to have shared genes that are likely to occur due to chance. To determine in our data if
the number of shared genes or variants are significant, we calculated the number of shared var-
iants from 1000 random selections of variants in our variant data (Shared Random) and com-
pared that to the number of observed shared variants (Shared Observed). We then calculate a
pseudo p-value which is the number of times the shared random selection exceeds or equals
the shared observed number divided by the total number of random trials. A value of 0 means
that in no random selection trial was the shared number of genes greater than the observed
number of shared genes. A value of 1 means that in every random selection trial the number of
shared genes was greater than or equal to the observed shared gene number. Custom Matlab
code was developed for this analysis.

Network Toplogy and Reactome Functional Interactions

Shared genes in both the patient positive and negative RAD sets were input into Jepetto [38], a
Cytoscape interface for TopoGA [37] and topology calculated using the large dataset settings.
Functional interactions were determined by using the Reactome Functional Interactions [39,
40] Cytoscape plugin using the 2014 dataset and using linker genes.

Non-synonymous Variant Enrichment Analysis

This analysis counted at a gene level the frequency of non-synonymous and synonymous vari-
ants for different RAD sets: positive RAD, negative RAD and no RAD. For this analysis to be
possible, genes must have more than one variant. Data was analyzed at numbers of variants
greater than or equal to 2 and greater than or equal to 4. Custom Matlab code was used for this
analysis.

Gene Expression

RNA sequencing data was used to estimate relative gene expression. Alignments (see sequenc-
ing) were processed with FeatureCounts of Rsubread (version 1.18) [59] in paired-end mode,
excluding overlapping reads and overlapping genes to map reads to genes (gencode v19 gene
models). Filtration (remove all genes which have less than 0.1 counts per million) and normali-
zation was done with edgeR (version 3.4.2) [60] to obtain reads per kilobase per million (rpkm)
values for each gene. Patient and cell line data was analyzed identically.

Visualization

GenomeBrowse (Golden Helix) was used to visualize the TP53 gene region. Cytoscape (version
3.2.1) [61] was used to visualize networks in Fig 5. Network diagrams in Fig 7 were made using
Ingenuity software (Qiagen). Proportional Venn diagrams were made using BioVenn [62] and
adjusted with Inkscape (version 0.91) Hierarchical clustering was done with built-in Matlab
(version R2015a) (Mathworks) commands. Pileups, gene subplots, gene expression plots and
parallel plots were made with custom Matlab scripts.
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Supporting Information

S1 Fig. Exome and RNA sequencing read counts.
(TIF)

S2 Fig. Shows what are the significant changes when considering the control corrected dif-
ferential allele ratios. The open colored circles are those significant differential allele expres-
sion before expression and the filled circles are the same after expression. Bottom table shows
the numbers of the differences and these range from 4.5% to 9.4%.

(TIF)

S3 Fig. Allele fraction difference histograms for different types of mutations for A) Patients
and B) Cell lines. Patient, sites and cell line names are indicated on the left. The allele fraction
difference on the x-axis ranges from -1 (only variant allele is expressed) to +1 (only normal
allele is expressed). The frequency is indicated on the y-axis. Allele fraction differences less
than -0.2 or greater than 0.2 were removed. Panels with horizontal lines have no variant of that
type.

(TIF)

$4 Fig. Cumulative density function plots of non-synonymous over synonymous ratios
(non-syn/syn) for genes that have A) at least 2 significant variants or B) at least 4 signifi-
cant variants. The grey, orange and blue lines are as indicated in the legend. Two notable
observations are 1) no preferential allele expression always has low non-syn/syn ratios relative
to at least one form of preferential allele expression and 2) there is a marked increase in non-
syn/syn ratios in P1LN sample and 3) there are higher non-syn/syn ratios for +RAD genes.
(TIF)

S5 Fig. Patient and cell line gene expression levels for the shared 28 genes. The x-axis of
each panel shows the different sites (OV, PE, LN), the line colors correspond to different
patients as indicated in the legend, and in letters (F, G, O, S) indicate the gene expression value
for the cell line samples as indicated in the legend. The y-axis is the log2 (rpkm). Note the rela-
tive similarity of gene expression for most patients and sites. Exceptions to this similarity are
ERRB2 which is high in patient 2 and MMP7 which shows marked changes in different sites.
(TTF)

S6 Fig. Validation of Exome allele fractions with SNP6 data. Note that the exome allele frac-
tion is based on the reference allele (as used in the manuscript) while the SNP6 frequency is
based on the minor allele (as is customary in SNP array analysis). The red points are those
where the minor/major allele needed to be switched as the minor allele matched the reference
allele and the major allele matched the alternate allele. The green and black points represent
sites where at least one of the RNA sequencing alleles did not match any of the SNP array
alleles. The negative correlation is because we are comparing Exome Reference Allele Fre-
quency to SNP array Minor Allele Frequency.

(TTF)

S1 Text. Clinical description of patients.
(DOCX)
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