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Most neurodegeneration with brain iron accumulation (NBIA) disorders can be

distinguished by identifying characteristic changes on magnetic resonance imaging (MRI)

in combination with clinical findings. However, a significant number of patients with an

NBIA disorder confirmed by genetic testing have MRI features that are atypical for their

specific disease. The appearance of specific MRI patterns depends on the stage of

the disease and the patient’s age at evaluation. MRI interpretation can be challenging

because of heterogeneously acquired MRI datasets, individual interpreter bias, and lack

of quantitative data. Therefore, optimal acquisition and interpretation of MRI data are

needed to better define MRI phenotypes in NBIA disorders. The stepwise approach

outlined here may help to identify NBIA disorders and delineate the natural course of

MRI-identified changes.
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INTRODUCTION

Neurodegeneration with brain iron accumulation (NBIA) is a group of inherited disorders with
hallmark features that include abnormal iron accumulation in the basal ganglia, mainly the
globus pallidus (GP) and substantia nigra (SN) (1). Ten associated genes have been identified
[Table 1; (2)]. The four most common NBIA disorders include pantothenate kinase-associated
neurodegeneration (PKAN), phospholipase A2-associated neurodegeneration (PLAN),
mitochondrial membrane protein-associated neurodegeneration (MPAN), and beta-propeller
protein-associated neurodegeneration (BPAN) (3). Recently, new candidate genes have been
described with the advent of next-generation sequencing (4). However, the scarcity of cases makes
it impossible to determine their relevance to NBIA disorders (5).

Evidence by magnetic resonance imaging (MRI) of excessive brain iron indicates the possibility
of NBIA. One established hallmark MRI feature of NBIA is the presence of T2 hypointense lesions
in the GP and SN on T2-weighted images (T2WI) (3, 6). Certain MRI abnormalities may help
distinguish among the NBIA disorders and facilitate more definitive diagnosis (1, 7). However,
mutations in NBIA-related genes may not always lead to pronounced iron deposition (1, 7, 8).
A significant number of patients confirmed to have an NBIA disorder by genetic testing have MRI
features that are atypical for their specific disease (7, 9, 10). The appearance of specificMRI patterns
depends on the stage of the disease and the patient’s age at evaluation (1, 10), and evidence for iron
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TABLE 1 | MRI characteristics of NBIA subtypes.

Disease Gene/

inheritance

Iron distribution Core features Early features Additional features

PKAN PANK2/AR GP, SN, STN Eye-of-the-tiger sign in GP

(typically, the surrounding T2

hypointensity)

Linear T2 hyperintense streak along

the medial border of GP in infancy [10]

Isolated hyperintense center during

early childhood [10]

Basal ganglia calcification

MPAN C19orf12/AR,

AD

GP, SN Preserved isointense signal in

medial medullary lamina of GP

Three signal layers in GP (T2*WI)

T2 hyperintense “dot” in

the central part of GP [9]

Diffuse brain atrophy

Variable degree of WM

involvement

BPAN WDR45/XD SN, GP Halo sign in SN Thin corpus callosum

Myelination delay

T2 hyperintensity and swelling in SN,

GP, deep cerebellar nuclei [41]

T2 (or SWI) hypointensity,

predominantly in SN and/or T1

hyperintensity

Diffuse brain atrophy

Basal ganglia calcification

Variable degree of WM

involvement

PLAN PLA2G6/AR GP, SN Disproportionate cerebellar

atrophy and/or cerebellar

cortical hyperintensity

Vertically oriented thin corpus

callosum [54]

Hypertrophy of the clavum [71]

Supratentorial atrophy

Variable degree of WM

involvement

Hypoplastic optic tracts and

chiasms

FAHN FA2H/AR GP, SN WM hyperintensities

(periventricular, parietal

predominance)

Pontocerebellar atrophy

Thin corpus callosum

Supratentorial atrophy

Neuroferritinopathy FTL/AD Widespread, basal

ganglia, thalamus,

cerebellum, cerebral

cortex

Cavitation involving GP and

putamen

SWI hypointensity in GP, SN,

thalamus, red nucleus, and dentate

nucleus, without cavitation, and

cortical pencil lining sign [45]

Diffuse brain atrophy

WM hyperintensities

Aceruloplaminemia CP/AR Widespread, uniform

basal ganglia,

thalamus,

cerebellum, cerebral

cortex

Iron accumulation in the brain,

liver, pancreas, and

myocardium

Diffuse brain atrophy

WM hyperintensities

Woodhouse-

Sakati

syndrome

DCAF17/AR GP, SN WM hyperintensities

(frontoparietal/

periventricular WM)

Small pituitary gland

Kufor-Rakeb

syndrome

ATP13A2/AR Putamen, caudate,

GP

Diffuse brain atrophy

CoPAN COASY /AR GP, SN T2 hyperintensity of caudate,

putamen, and thalamus

Swollen putamen and caudate

GP calcification

PKAN, pantothenate kinase-associated neurodegeneration; MPAN, mitochondrial membrane protein-associated neurodegeneration; BPAN, beta-propeller protein-associated

neurodegeneration; PLAN, PLA2G6-associated neurodegeneration; FAHN, fatty acid hydroxylase-associated neurodegeneration; CoPAN, COASY protein-associated

neurodegeneration; AR, autosomal recessive; AD, autosomal dominant; XD, X-linked dominant; GP, globus pallidus; SN, substantia nigra; WM, white matter.

accumulation may be absent or subtle early in the disease course.
This phenomenon is particularly common in younger patients,
where whole exome sequencing often leads to early diagnosis
(3). Minor lesions visible in the early stages of disease and more
extensive lesions in the late stages often are non-specific.

MRI interpretation can be challenging in rare brain

diseases and can be limited by heterogeneously acquired MRI
datasets, individual interpreter bias, and a lack of quantitative

and longitudinal data. Therefore, optimal acquisition and
interpretation of MRI data are needed to better define MRI

phenotypes in the NBIA disorders. We describe here the
evolution of MRI characteristics and provide a practical
approach to identify NBIA subtypes.

IDENTIFICATION OF IRON-SPECIFIC
BASAL GANGLIA T2 HYPOINTENSITY

A routine brain MRI, without iron-sensitive sequences, is often
suboptimal for evaluating for a possible NBIA disorder (7). Iron-
sensitive sequences, especially susceptibility weighted imaging
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(SWI) and T2∗-weighted imaging (T2∗WI), can more clearly
depict the increase and extent of iron deposition, even in small
gray matter nuclei (10, 11). High-field strength MRI can detect
iron with improved sensitivity (12).

To correctly diagnose abnormal brain iron accumulation,
the interpreting physician should have a working knowledge of
normal age-dependent signal hypointensities onMRI (7). The GP
and SN normally become hypointense on T2WI around the end
of the first decade of life when compared with signal in the
adjacent normal-appearing white matter (13). Iron concentration
in the basal ganglia increases with age. An “internal signal-
intensity reference” that we empirically use to determine if iron
is indeed increased over “normal” is to compare the GP and SN
to the red nucleus (RN). They normally appear slightly more
hypointense relative to the RN based on their higher iron content
at all ages (14). If the signal in GP or SN is significantly more
hypointense than in RN, then there is likely to be increased iron.
To correct for inconsistencies in the reference standard, signal
hypointensity can also be normalized by dividing the structure
signal intensity by the mean signal intensity of the cerebrospinal
fluid (15, 16).

Once T2 hypointensity is identified, iron-sensitive sequences
should be reviewed to distinguish excessive iron deposition from
other causes of T2 hypointensity. Hypointense basal ganglia have
been observed in hypomyelinating leukodystrophy, lysosomal
storage disorders, and other metal accumulation disorders (17).
Due to the paramagnetic property of iron, the degree of signal loss
is profoundly enhanced in iron-sensitive sequences. Manganese
is also paramagnetic, and its deposition typically causes high
signal intensity on T1WI (11). Although iron has a T1-shortening
effect that can appear as high signal intensity on T1WI, the
degree of T1 hyperintensity is variable and is influenced by the
status of iron and T1WI parameters (11). Computed tomography
(CT) scans may be more useful than MRI in differentiating
calcifications from iron deposits. Basal ganglia calcification can
co-exist with iron accumulation in NBIA cases, although its
frequency is unknown (18–21).

REGIONAL DISTRIBUTION OF EXCESSIVE
IRON ACCUMULATION

In most forms of NBIA, excessive iron deposition is mainly
confined to the GP and SN (Table 1). Other iron-rich deep nuclei
in the gray matter, like the dentate nucleus, can occasionally be
affected to a lesser extent but only in specific NBIA disorders (22).

In PKAN, iron-related hypointense signals on SWI are
restricted to the GP, SN, and subthalamic nucleus (STN) and the
fiber tracts between these structures (10). In BPAN, the earliest
and most intense iron deposition occurs in the SN as opposed to
the GP, unlike PKAN and other NBIA disorders (7). Widespread
brain iron accumulation involving the basal ganglia nuclei,
thalami, dentate nuclei, and cerebral and cerebellar cortices
may develop in aceruloplasminemia and neuroferritinopathy
(7, 22). The symptom onset for both of these diseases has been
described in adults (1). All basal ganglia and thalami are more
uniformly involved in aceruloplasminemia (22). Cortical iron
deposition appears as thin hypointense lines on SWI, referred

to as pencil-lining in neuroferritinopathy (23, 24). Even in an
asymptomatic mutation carrier for this autosomal dominant
disease, a characteristic pattern of iron deposition can be seen
on iron-sensitive sequences (25). Of the limited number of
patients reported, only a small portion of cases with Kufor-
Rakeb syndrome had iron accumulation within the putamen and
caudate nuclei (26, 27).

EVOLUTION OF PALLIDONIGRAL
ABNORMALITIES

The characteristic pallidonigral lesions of the major NBIA
disorders are established diagnostic clues (Table 1). These
include the “eye-of-the-tiger” sign in PKAN, preservation of
isointense signal in the medial medullary lamina in the GP of
MPAN patients, the “halo” sign in the SN of BPAN patients, and
“cavitation” in neuroferritinopathy. Other NBIA disorders do not
have distinct pallidonigral lesions. However, the morphological
patterns of pallidonigral lesions can vary according to the
patient’s age. Typical findings may not appear until adolescence
or early adulthood and are therefore not usually useful in infancy
or early childhood. For these reasons, the frequency of MRI clues
varied across studies.

The detection of these specific MRI signs can also be
influenced by MRI acquisition settings (10). Image planes and
levels for optimal visualization should be selected for efficient
identification of the signs (Figure 1).

Eye-of-the-tiger Sign in PKAN
The hallmark of PKAN is the eye-of-the-tiger sign that comprises
a round hyperintense center and surrounding hypointensity in
the GP on T2WI. This sign in its classic form is not observed in
other NBIA disorders, including in patients withCOASY protein-
associated neurodegeneration (CoPAN), which affects coenzyme
A metabolism, similar to PKAN (21, 28).

The earliest change observed in infancy was the linear
hyperintense streak along the medial border of the GP. During
early childhood, T2WI mostly shows the isolated hyperintense
center in the anteromedial region, which is typically visible at
the level of the anterior commissure (29). The surrounding T2
hypointensity tends to increase in size and decrease in signal
intensity with age (Figures 1A,B). Signal hypointensity on SWI
was first detected in a 3-year-old patient, and advanced from the
medial to the lateral portion of the GP (10, 18). In adult patients,
the hyperintense center varies in shape, from small and round
to streaked, or is lost entirely. Furthermore, the T2 hyperintense
area of the signmay be obscured by diamagnetic calcium deposits
(10, 18).

This sign has been reported to occur as an imaging phenocopy
in other conditions, such as carbon monoxide intoxication,
neuroferritinopathy, MPAN, Wilson’s disease, multiple system
atrophy, as well as in healthy adults (10, 30–32). The combination
of T2 hypointense and hyperintense lesions, resulting from iron
deposition and gliosis, respectively, can mimic the eye-of-the-
tiger sign. The PKAN-specific eye-of-the-tiger sign is better
defined by the region-specific pattern of iron deposition on
SWI (10).
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FIGURE 1 | MRI hallmarks of PKAN (A–C), MPAN (D,E), and BPAN (F–H). In a PKAN patient with serial MRIs, the surrounding T2 hypointensity decreases in signal

intensity with age (A,B, asterix). The PKAN-specific eye-of-the-tiger sign at the level of the anterior commissure (C-1) is better defined by the region-specific pattern of

(Continued)
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FIGURE 1 | iron deposition on susceptibility-weighted image (C-2). In a younger patient with MPAN, T2- and T2*-weighted images shows preservation of isointense

signal in the middle of inner and outer layers of iron accumulation (D-1, D-2, thin arrows). The typical streaking of the medial medullary lamina on T2-weighted image

becomes more pronounced as signal intensity in the GP decreases, which is typically visible at the level of the anterior commissure (D-1, E-1). Brain MRI scans of

three BPAN patients at different ages show age-related MRI changes. Brain MRI of a patient with BPAN at the age of 2 shows no abnormality on T2-weighted (F-1,

F-2) and susceptibility-weighted (F-3, F-4) images. The substantia nigra is seen as hypointense on T2-weighted image (G-1, H-1) and hyperintense on T1-weighted

image, whereas the central hypointense band is not demonstrated (G-2). T1-weighted image demonstrates hyperintensity of the substantia nigra and cerebral

peduncle surrounding a central linear band of hypointensity, also known as the halo sign (H-2, thick arrow).

Preserved Isointense Signal in Medial
Medullary Lamina in MPAN
Iron accumulation in the GP, followed by the SN, is evident
on MRI (1). A characteristic feature in MPAN is T2 iso- to
hyperintense streaking in the region of the medial medullary
lamina between the abnormally hypointense GP interna and
externa (33, 34), typically visible at the level of the anterior
commissure (Figure 1). However, this MRI finding is present
only in some MPAN patients (33, 35, 36). In recent reports, this
sign was detectable in about half of patients and brain MRI may
be normal in the early stages of MPAN (9, 37, 38).

Typical linear streaking (Figure 1E) develops over time and
becomesmore pronounced as signal intensity in the GP decreases
due to iron accumulation. Initially, the GP appears as three signal
layers consisting of the isointense signal layer in the middle of the
hypointense inner and outer signal layers of iron accumulation,
and is more contrasted on iron-sensitive T2∗WI (Figure 1D).

Substantia Nigra Halo Sign in BPAN
A unique feature of BPAN is the presence of a hyperintense
halo surrounding a central band of hypointensity on axial T1WI
within the SN [Figure 1H; (19, 39, 40)]. T1 hyperintensity
extends to the cerebral peduncles. T2WI shows prominent
hypointense signal in the SN and cerebral peduncles. The SN
is more hypointense relative to the GP, indicating higher levels
of iron.

MRI changes in BPAN develop as age-dependent phenomena
(Figures 1F–H). A serial MRI study demonstrated that SWI
hypointensity in the GP and SN was observed after 2–7 years
old, whereas T2 hypointensity after 4–7 years old (41). Here,
the T1 hyperintense signal in the SN was detectable by early in
the second decade of life (40, 42, 43). A characteristic halo sign
appears later in the disease course, particularly as parkinsonism
becomes evident in early adulthood (1).

Cavitation in Neuroferritinopathy
Cavitation involving the GP and putamen is unique
to neuroferritinopathy among the NBIA disorders. A
neuropathological study has demonstrated fluid accumulation
within these cysts (22). Cavitary lesions with T2 hyperintensity
are lined by hypointense rims secondary to prominent iron
deposition (23). In a case report, Fluid-attenuated inversion
recovery (FLAIR) images exhibited a tri-lamellar intensity
consisting of an outer layer with iron deposition, a middle layer
with gliosis, and a cystic core (44). This may represent different
stages of expanding pathology. Cavitary lesions occur late in the
disease, usually after excessive iron deposition, and evolve with
time (22, 45).

NON-IRON AND EXTRAPALLIDAL
ABNORMALITIES

Besides excessive iron, extrapallidal MRI abnormalities
are helpful to facilitate diagnoses [Table 1; (7, 17)].
Neuroradiographic anatomic regions where non-iron and
extrapallidal abnormalities are common in the NBIA disorders
are summarized in Supplementary Figure 1.

The Extent and Magnitude of the Cerebral
Atrophy
The extent of atrophy may depend on the nature of the
underlying pathology (8, 46). Widespread α-synuclein-positive
Lewy pathology has been identified in PLAN andMPAN (47, 48).
Tau-positive neurofibrillary tangles are common in the brains
of patients with BPAN (49). Indeed, pathologic α-synuclein and
tau can spread extensively across the brain using a prion-like
mechanism of propagation (50). Therefore, neurodegenerative
changes can be more widely distributed throughout the brain.
Serial MRI studies showed that brain atrophy progresses with the
disease course (9, 34). On the contrary, in PKAN, neuronal loss,
and astrogliosis are largely restricted to the GP in the absence of
misfolded protein aggregates (49).

Visual rating scales are useful tools in assessing the severity of
atrophy objectively. An established 4-point rating scale (51–53)
is applicable for the assessment of cerebral and cerebellar cortical
atrophy in NBIA disorders. In addition, planimetric analysis
using sagittal T1WI can be used to evaluate volumetric changes in
midsagittal structures including the corpus callosum, cerebellar
vermis, and brainstem.

Disproportionate Cerebellar Atrophy in
PLAN
In the majority of NBIA disorders, brain atrophy, if present, is
usually generalized and has been commonly described without
regional dominance. Cerebellar atrophy is a hallmark feature
in PLAN, and is often the earliest sign on MRI (7, 54). It has
been seen in up to 95% of patients with PLA2G6 mutations (55).
In infantile neuroaxonal dystrophy (NAD) and childhood-onset
PLAN (juvenile NAD), cerebellar atrophy is a near universal
feature (56, 57). Patients with an earlier disease onset showed
a more severe cerebellar atrophy, which was assessed using the
ratio of the mid-sagittal vermis size over the total posterior
cranial fossa size (57). T2 or FLAIR hyperintensity in the
cerebellar cortex often accompanies cerebellar atrophy (54, 58).
In contrast, excessive iron deposition in the GP is seen in only
up to half of PLAN cases (7, 55). Disproportionate cerebellar
atrophy and iron deposition can be absent in adult-onset PLAN
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(56, 59, 60), where there may be only frontally predominant
atrophy (61) and MRI may even appear normal (56).

Thin Corpus Callosum
Thinning of the corpus callosum is a uniform feature in fatty
acid hydroxylase-associated neurodegeneration (FAHN) (7, 62).
Abnormal posterior corpus callosum that are thin and vertically
oriented were noted in some cases of PLAN (54). Corpus
callosum thinning may be an early sign of BPAN in the absence
of excessive iron during infancy and early childhood (39, 40, 63).

It is important to evaluate the thickness and the morphology
of corpus callosum in association with other findings observed in
NBIA disorders, such as cerebral atrophy, myelination defect, or
white matter damage (64).

White Matter Hyperintensities
T2 hyperintensities in white matter have been reported in
most NBIA subtypes (1, 7, 8, 17) and are prominent in FAHN,
Woodhouse-Sakati syndrome (WSS), and aceruloplasminemia.
In a large cohort of patients with FAHN, the most common
findings were white matter changes (100%), followed by
ponto-cerebellar atrophy, GP hypointensity, and thin corpus
callosum (62). T2 hyperintense white matter abnormalities
were consistently found in the periventricular white matter
with parietal predominance. In WSS, frontoparietal and
periventricular white matter lesions were the most common
non-iron abnormalities (65). And, older age was associated with
a more severe degree of white matter lesions. In this study,
the extent of white matter lesions was graded as none, mild
(small focal), moderate (patchy scattered), or severe (diffuse
confluent) according to their site, shape, confluency, and
multifocality (65, 66). Prominent white matter hyperintensity
is frequently noted in aceruloplasminemia (7). White matter
hyperintensities in the posterior frontal and parieto-occipital
regions extend caudally to the brainstem along the corticospinal
tracts in a patient with aceruloplasminemia (67). Confluent
T2 hyperintensities in white matter, localized mostly to the
periventricular region, may be observed to a lesser extent in
MPAN, BPAN, PLAN, and neuroferritinopathy (7–9, 40).

Although white matter T2 hyperintensity may be observed
in NBIA disorders, diffuse cerebral hypomyelination is generally
not a feature of these disorders (17). Delayed myelination has
been reported in some cases of BPAN diagnosed in infancy
and childhood (63, 68). However, the MRI findings in these
cases were not described in enough detail to assess myelination.
Hypomyelination is defined as an unchanged pattern of deficient
myelination on two successive MRI scans at least 6 months apart
in a child older than 1 year (69, 70). Myelinated white matter
structures have a higher signal than do gray matter structures on
T1WI and a lower signal on T2WI (69).

Miscellaneous Findings
Apparent hypertrophy of the clavum has been proposed as an
important early feature of PLAN and may precede cerebellar
atrophy (57, 71). Confirmation of clavum enlargement was made
by comparison of its largest anteroposterior dimension on mid-
sagittal T1WI with age-matched controls (71). Hypoplastic optic
tracts and chiasms are seen in infantile NAD (72). SN swelling

in the absence of iron deposition has been described as an early
sign of BPAN (73), although the reason for SN enlargement is
unknown. In a serial MRI study, transient T2 hyperintensity
and swelling in the SN, GP, and/or deep cerebellar nuclei was
observed during the episodes of pyrexia and seizures (41).
Similarly, swelling and T2 hyperintensity of the caudate nucleus,
putamen, and thalamus have been found in CoPAN (28). Small
pituitary glands are common MRI abnormalities in WSS (65).

CURRENT LIMITATIONS AND
FUTURE DIRECTIONS

Visual inspection of MRI can be highly subjective, and results
can be varied. Objective interpretation is limited due to a lack
of consistent methods to quantify the severity of MRI findings. A
feasible way to objectively assessMRI severity is to use established
visual rating scales or planimetric analysis as described above.

Iron quantification can be challenging, particularly within
routine clinical settings. T2WI and SWI do not directly reflect
iron concentrations (74). Instead, both the transverse relaxation
rate (R2∗) and quantitative susceptibility mapping are highly
sensitive and accurate for measuring iron content in the brain
(75). In a recent randomized trial of deferiprone for PKAN, iron
concentrations in the GP were measured by MRI-R2∗ mapping
(76). Diffusion-tensor imaging study demonstrated a significant
increase of FA in patients with PKAN suggest the presence of
abnormal iron in deep gray matter nuclei, even in the absence
of its demonstration on T2∗WI (77). An optimized protocol
for quantitative MRI analysis is needed to monitor disease
progression and treatment response.

Finally, studies that have investigated the pathological
correlates of MRI signal alterations are rare. In some
NBIA disorders, excessive iron deposition has not yet been
demonstrated pathologically due to lack of autopsy-proven
cases. Further research is needed to verify the exact underlying
pathology of MRI abnormalities.

CONCLUSION

Specific NBIA disorders can be diagnosed by identifying
characteristic MRI changes in combination with clinical findings.
If an NBIA disorder is suspected or in the differential diagnosis,
then iron-sensitive sequences should be included in an initial
MRI. It is important to consider that MRI features specific
to each NBIA disorder develop in an age-dependent manner
and evolve during the disease course. The stepwise pattern-
recognition approach outlined here may help to distinguish
specific NBIA disorders as well as to delineate the natural course
of MRI changes.
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