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Abstract 

Listeria monocytogenes is an important foodborne pathogen that incorporated into many serious infections in human 
especially immunocompromised individuals, pregnant women, the elderly, and newborns. The consumption 
of food contaminated with such bacteria is considered a source of potential risk for consumers. Therefore, a total 
of 250 poultry purchased in highly popular poultry stores besides 50 swabs from workers hands in the same stores, 
in Mansoura City had been tested for the L. monocytogenes prevalence, virulence genes, and antibiotic resistance 
profile illustrating the health hazards from such poultry. The L. monocytogenes were recovered from 9.6% of poultry 
samples while not detected from workers hand swabs. The antimicrobial susceptibility of 24 L. monocytogenes strains 
against 24 antibiotics of seven different classes revealed high susceptibility rates to erythromycin (79.17%), strep-
tomycin (66.67%), gentamycin (66.67%), vancomycin (58.33%), chloramphenicol (58.33%) and cefotaxime (41.67%). 
The majority (79.2%) of L. monocytogenes were classified as multidrug resistant strains with high resistance to tet-
racyclines and β-lactams antibiotics while 16.7% of the strains were categorized as extensively resistant ones. The 
iap virulence-specific determination gene had been detected in all recovered L. monocytogenes isolates while 83.33 
and 70.83% of the isolates harbored hylA and actA genes. In addition, the study confirmed the capability of most L. 
monocytogenes isolates for biofilm formation by moderate to strong production and the quantitative risk assessment 
illustrated the risk of developing listeriosis as the risk value exceeded 100. The current results illustrate that poultry 
meat can be a source of pathogenic antibiotic resistant strains that may cause infection with limited or no treatment 
in immunosuppressed consumers via the food chain.

Keywords  Antibiotic resistance, Foodborne pathogens, Listeria monocytogenes, Public health hazards, Virulence 
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Introduction
Listeria monocytogenes is one of the foodborne patho-
gens incorporated in many outbreaks worldwide [1–4]. 
Listeria monocytogenes causes human listeriosis usually 
of mild illness treated with antibiotics. Serious form of 
listeriosis primarily affects people who are at greater 
risk such as pregnant women resulting in severe dis-
ease in the fetus or even stillborn, people aged 65 years 
old or older, and people whose immune systems are very 
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weak [5]. Invasive human listeriosis includes symptoms 
including septicemia, abortion, meningitis, meningoen-
cephalitis, and even death as recorded to be one in five 
people with the infection [6]. The mortality rates associ-
ated with human listeriosis from food sources had been 
taken great concern worldwide as theyreached around 
20 to 30% [7, 8].

Listeria monocytogenes is a Gram-positive, faculta-
tive anaerobic bacteria widely distributed in the envi-
ronment [9, 10]. Although they are distributed in many 
sources, listeriosis usually arises after the consumption 
of contaminated food, such as undercooked food, ready-
to-eat meals, and dairy products because of the capability 
of L. monocytogenes to grow at refrigeration tempera-
tures (4 °C) and tolerate salty or acidic conditions [11]. L. 
monocytogenes has been frequently isolated from vari-
ous food of animal origin, with high prevalence rates. In 
the poultry chain, contamination of poultry meat often 
occurs during slaughtering and processing, leading to its 
association with listeriosis outbreaks. Notably, a severe 
outbreak in South Africa in 2018 resulted in numerous 
cases and deaths due to the consumption of contami-
nated processed meat [12].

The pathogenicity of L. monocytogenes is promoted 
through various virulence factors [13] which mainly 
depend on its ability to invade and replicate within host 
cells, which attack the host immune system and spread 
throughout the body, especially in people of high risk. 
Virulence factors produced by L. monocytogenes involve 
hlyA, actA, and iap genes. The hylA is responsible for 
the invasion of host cells and the escape from the phago-
somes [14, 15]. The actin assembly gene actA contributes 
tocell-to-cell spread [15]. The invasion-associated pro-
tein gene iap is involved in the adhesion and invasion of 
pathogens to the host cells [16]. The biofilm formation 
capability of listerial cells is also considered a key survival 
strategy for L. monocytogenes, contributing to its persis-
tence in various environments and associated with its 
virulence to cause infection resistance to antimicrobial 
treatments [17].

In Egypt, studies have reported the presence of L. 
monocytogenes in various food products, including 
minced meat, fish fillets, sausage, and raw milk [10, 18, 
19]. The consumption of such contaminated food is con-
sidered a potential risk for consumers. Therefore, the 
objectives of this study are to investigate the prevalence 
of L. monocytogenes in both poultry meat and workers’ 
hands and characterize their virulence genes, antibiotic 
resistance profile, and biofilm formation capability. Fur-
thermore, the study highlights the health risks associated 
with consuming poultry products contaminated with L. 
monocytogenes which is crucial for food safety and public 
health.

Material and methods
Sample collection
Two hundred and fifty whole chicken carcass samples 
were collected from retail poultry shops located in Man-
soura City, Egypt. On the other side, hand swabs were 
collected from fifty workers present in the same shops. 
Each sample of the chicken carcass was wrapped indi-
vidually in a polyethylene bag, while the hand swabs were 
transferred in 25 ml of buffer peptone water, each and all 
the samples were transferred rapidly in an icebox to Meat 
Hygiene Laboratory, Faculty of Veterinary Medicine, 
Mansoura University located in Mansoura City. All the 
samples were analyzed bacteriologically for the presence 
of L. monocytogenes.

Isolation and identification of L. monocytogenes
Detection of L. monocytogenes was performed as 
described by ISO 11290-1 for the isolation of such bacte-
ria from food [20]. First for the enrichment of L. monocy-
togenes, 25 g of each poultry sample was diluted in 225 ml 
of Half Fraser broth (Oxoid, UK) and homogenized in 
a blender for 2 minutes. The hand swab samples were 
transferred to 10 ml of Half Fraser broth. Homogenates 
of poultry samples and swabs were incubated at 30 °C for 
24 h. After that, 0.1 ml of pre-enriched culture was added 
to 10 ml of Fraser broth and incubated at 30 °C for 24 h. 
Each Fraser broth culture was streaked onto Palcam agar 
(Oxoid) and incubated at 37 °C for 48 h. Approximately 
five colonies of the growing Listeria specieswere puri-
fied and underwent further biochemical identification 
using catalase test, oxidase test, sugar fermentation test, 
and evaluation of hemolysis type [21]. The biochemi-
cally confirmed strains of L. monocytogenes in the present 
study were further verified using the API Listeria test 
(BioMerieux).

Molecular analysis
Extraction of genomic DNA from the obtained isolates 
was performed according to Alexopoulou et  al., [22]. In 
brief, overnight bacterial cultures were boiled for 15 min 
and centrifuged for 3 min at 10000 g. The superna-
tant was used as a DNA template and stored at − 20 °C. 
Molecular identification of L. monocytogenes was done 
by screening the 16S rRNA gene of 938 bp (Table 1) [23]. 
The PCR was set for 20 μl reaction volume using 0.1 μl 
of each primer (100 μmol) using Quick Taq™ polymer-
ase by 10 μl with DNA template  1 μl. The amplification 
of the 16SrRNA was performed using an initial dena-
turation step at 94 °C for 2 min, followed by 25 cycles 
(94 °C for 30s denaturation, 57 °C for 30s annealing, and 
68 °C for 1 min. extension). The final extension was per-
formed at 68 °C for 10 min and held at 4 °C. The multiplex 
PCR reaction targeting the virulence genes (hylA, actA, 
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and iap) was performed for positive isolates for the 16S 
rRNA gene by the same previous method except using an 
annealing temperature of 60 °C [24]. PCR amplification 
products were run on a 1.5% agarose gel by electropho-
resis and photo-documented under an ultraviolet illumi-
nator. PCR primer sequences used for the detection of L. 
monocytogenes virulence genes are illustrated in Table 1. 
L. monocytogenes ATCC 35152 strain was used as a posi-
tive control.

Antibiotic susceptibility testing
The antimicrobial susceptibility of L. monocytogenes 
isolates identified was carried out according to Clinical 
and Laboratory Standards Institute guidelines [25] via 
using the disk-diffusion on Mueller–Hinton agar (Oxoid 
CM0337) for different antimicrobial discs (Oxoid, Ltd.) 
of seven different classes of antibiotics. The antibiotics 
included Penicillin (P; 10 μg), Amoxicillin-Clavulanic acid 
(AMC; 20/10 μg), Cefotaxime (CTX; 30 μg), (Ceftazidime 
(CTZ; 30 μg), Amoxicillin (AX; 30 μg), Ciprofloxacin 
(CIP; 5 μg), Nalidixic acid (NA; 30 μg), Streptomycin (SM; 
10 μg), Gentamicin (CN; 15 μg), Erythromycin (E; 10 μg), 
tetracycline (TET; 30 μg), Oxytetracycline (T; 30 μg), 
Vancomycin (VA; 30 μg), Chloramphenicol (C; 30 μg). 
L. monocytogenes isolates were evaluated as resistant, 
intermediate, or susceptible according to CLSI [25]. The 
categorization of the L. monocytogenes isolates as being 
multidrug resistant (MDR), extensively drug resistant 
(XDR), and pan-drug resistant (PDR) had been detected. 
Where the MDR microorganisms are resistant to at least 
one agent in three or more antimicrobial categories while 
XDR microorganisms are resistant to at least one agent 
in at least all but two or more antimicrobial categories 
and PDR microorganisms are resistant to all or nearly all 
available antimicrobials used.

Multiple antibiotic resistance (MAR) index [26]
Multiple antibiotic resistance (MAR) index was cal-
culated for all resistant L. monocytogenes isolates by 

dividing the number of drugs against which each strain 
displayed resistance above the total drugs tested (MAR 
Index = a/b), where “a” indicates the sum of test antibi-
otics the isolates displayed resistance to; “b” represents 
the total sum of antimicrobial agents used.

Biofilm formation assay in vitro
Christensen’s test tube method was used to detect the 
qualitative assessment of the biofilm formation of L. 
monocytogenes in the current study [27]. Each L. mono-
cytogenes strain was cultured in Brain Heart Infusion 
Broth (Oxoid Ltd) and uninoculated broth was used as 
a negative control. The tubes were incubated at 30 °C 
overnight. After incubation, each tube was emptied 
from the broth stained with 1% crystal violet, and incu-
bated for 30 min. Finally, each tube was washed gently 
three times with sterile distilled water to remove non-
adherent dye. Biofilm of L. monocytogenes that formed 
on the wall and bottom of the tube were stained purple. 
Biofilm formation assays were carried out two times.

Quantitative risk assessment of poultry meat by Listeria 
monocytogenes
Hazard characterization
The hazard characterization of L. monocytogenes can be 
calculated using the Beta-Poisson dose-response (DR) 
models of Pouillot et al. [28] or of Xie et al. [29] using 
the following equation:

Where P1: is the probability of severe illness, d is the 
prevalence of the Listeria monocytogenes recovered in 
the samples examined in the current study, and α, β: 
infectious factors (constant, depending on pathogen) 
which were 0.52 and 0.43 according to Pouillot et  al. 
[28] and 0.49 and 0.48 according to Xie et al. [29].

PI (d) = 1− 1+
d

β

−α

Table 1  PCR primer sequences used for the molecular identification of L. monocytogenes isolates and detection of their virulence 
genes

Target gene Primer name Oligonucleotide sequences Amplicon (bp) Reference

16S rRNA 16S rRNA (F)
16S rRNA (R)

5′- CAG​CAG​CCG​CGG​TAA​TWC​-3′
5′- CTC​CAT​AAA​GGT​GAC​CCT​ − 3’

938 [23]

iap iap (F) 5′ ACA​AGC​TGC​ACC​TGT​TGC​AG ′3 131 [24]

iap (R) 5′ TGA​CAG​CGT​GTG​TAG​TAG​CA ′3
hylA hlyA (F) 5′ GCA​GTT​GCA​AGC​GCT​TGG​AGT​GAA​ ′3 456 [24]

hlyA (R) 5′ GCA​ACG​TAT​CCT​CCA​GAG​TGA​TCG​ ′3
actA actA (F) 5′ CGC​CGC​GGA​AAT​TAA​AAA​AAGA ′3 839 [24]

actA (R) 5′ ACG​AAG​GAA​CCG​GGC​TGC​TAG ′3
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Exposure assessment
Listeria monocytogenes exposure assessment in poultry 
was calculated by the following eq. [30, 31]:

Where P: represents the prevalence of the contami-
nation of poultry samples by L. monocytogenes in the 
current study; C: the amount of poultry consumed per 
day per person in Egypt (https://​www.​fao.​org/​faost​at/​
en/#​count​ry/​59) and F: is the frequency of poultry con-
sumption per year which is ranged from 20 to 30 times 
per year (http://​www.​fao.​org/​faost​at/​en/#​data/​QC/​
visua​lize).

Risk assessment [32]
The risk related to the consumption of food contami-
nated by L. monocytogenes. Was calculated using the 
following equation:

Where P1 represents the probability of severe illness.

Statistical analysis
Statistical analysis to determine the correlation 
between biofilm formation and the drug resistance 
characteristics of the obtained isolates was analyzed 
using nonparametric statistical spearman correlation 
test using GraphPad PRISM® 9.1.2. (Graph Pad Soft-
ware Incorporated, San Diego, USA). P-value < 0.05 was 
considered statistically significant.

Results and discussion
Prevalence of L. monocytogenes in poultry samples 
examined
The prevalence of L. monocytogenes detected in the 
current study was 8% (24/300 samples examined). The 
screening recovered L. monocytogenes from poultry 
carcasses 9.6% (24/250) only and there was no positive 
detection of it in hand swabs taken from the workers in 
poultry shops scattered in the city. Similar prevalence 
as 10% (5/50) of poultry samples was recorded to be 
contaminated with L. monocytogenes in previous study 
in Egypt [33], as well as 6.16% (9 of the 79 examined 
samples) in Turkey [34] and 9.4% (15/150) in Jordan 
[35]. While there was no L. monocytogenes could be iso-
lated from raw chicken meat in Egypt previously in the 
study conducted by Dahshan et al., [36].

However slightly higher contamination rates by L. 
monocytogenes had been isolated from poultry car-
casses as 17.9% (35/195) in Brazil [37], 18% (36/200) 
in Iran [38], 24.5% (13/53) in Italy [39], 19.2% (19/99) 

Exposure = P× C× F

Risk = Exposure× P1

in Gauteng, South Africa [40], 20% (42/210) from 
poultry examined in Malaysia [41] and 38% (38/100) 
in Greece [42].

On the contrary, extremely higher rates of contamina-
tion of poultry carcasses and poultry processing environ-
ments were recorded by prevalence of 62.5% in Malaysia 
[43], as well as in Brazil as 52.83% [44] and 94.6% [45] in 
two different studies. It was confirmed that raw poultry 
meat is an appropriate environment for the existence of 
L. monocytogenes that can be retained in food and trans-
ferred to human via consumption of contaminated food 
[46]. The variation of L. monocytogenes contamination 
in different studies related to the source from where the 
bacteria were isolated, the geographical distributions, 
and the hygienic measures used for the food preparation 
system.

Screening of different virulence genes in L. monocytogenes
Screening of three virulence genes hylA, actA, and iap 
which have key role in the pathogenesis of L. monocy-
togenes, for the confirmed L. monocytogenes isolated from 
the poultry carcasses, all the L. monocytogenes strains 
were positive for iap gene, while only 83.33% (20/24) were 
positive hylA gene and and actA gene was detected in 
70.83% (17/24) of the isolates Fig. 1.

In Egypt, most detected virulence genes in L. monocy-
togenes strains are hlyA, iap and actA as recorded in 70.6, 
70.6 and 52.9%, respectively, of the L. monocytogenes iso-
lated from food samples previously [47], and as 100% of 
the samples harbored the three virulence genes in further 
study where the strains were isolated from meat, poultry 
meat, tilapia fish and raw milk [33]. In addition, the hlyA 
and iap virulence genes had been detected in all (100%) 
L. monocytogenes strains isolated from poultry meat 
(nine samples) in a previous study tookplace in Egypt 
[19]. However, in a previous study, that had taken place 
in Egypt, the L. monocytogenes isolated from fish sam-
ples were negative for all the mentioned genes [18]. hylA 
harbored L. monocytogenes strains were isolated from 
human samples before in Egypt [19], suggested a signifi-
cant that may human infection resulted from the con-
sumption of contaminated food which is a great threat 
that should not be neglected.

All L. monocytogenes strains isolated from 335 food 
samples including poultry meat in India harbored actA, 
hlyA and iap virulence genes [48]. Furthermore, it was 
reported that hlyA genes can be detected in L. mono-
cytogenes recovered from food samples [49]. The high 
percentages of virulence genes in the bacterial strains 
isolated in the current study giving the bacteria capability 
to adhere, invade the epithelium of the human digestive 
system causing damage.

https://www.fao.org/faostat/en/#country/59
https://www.fao.org/faostat/en/#country/59
http://www.fao.org/faostat/en/#data/QC/visualize
http://www.fao.org/faostat/en/#data/QC/visualize
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Antibiogram of L. monocytogenes isolates from poultry 
samples examined
The antibiotic susceptibility of the twenty-four isolated 
L. monocytogenes strains, in the current study, in Table 2, 
showed high resistance to Tetracycline, β-lactams, 
and fluroquinolones classes of antibiotics where 91.67 
and 83.33% of the isolates were resistant to tetracy-
cline and oxytetracycline. In addition, approximately 
more than 50% of the strains showed resistance against 
β-lactams antibiotics including penicillin, amoxicillin, 

amoxicillin-Clavulanic acid, ceftazidime, and cefotax-
ime by prevalence 70.83, 70.83, 58.33, 58.33 and 45.83%, 
respectively. Half of the strains (50%) isolated were resist-
ant to both ciprofloxacin and nalidixic acid. Lower antibi-
otics resistances were recorded for the remaining classes 
of antibiotics with the lowest resistance prevalence to 
chloramphenicol where 4 strains (16.67%) were resistant 
to it.

In Egypt, streptomycin, tetracycline, and β-lactams 
antibiotics are widely used not only for disease treatment 

Fig. 1  Percentages of L. monocytogenes isolates harbour the iap, hylA and actA virulence genes

Table 2  Activities of antimicrobial agents tested against of the listeria monocytogenes isolates (n = 24) recovered from the poultry 
carcasses examined

Antibiotic name μg/ disc Antibiotic class resistant intermediated susceptible

Penicillin (P) 10 μg β-lactams 17 (70.83%) 0 (0%) 7 (29.16%)

Amoxicillin-Clavulanic acid 
(AMC)

20/10 μg β-lactams 14 (58.33%) 3 (12.5%) 7 (29.16%)

Cefotaxime (CTX) 30 μg β-lactams 11 (45.83%) 3 (12.5%) 10 (41.67%)

Ceftazidime (CTZ) 30 μg β-lactams 14 (58.33%) 5 (20.83%) 5 (20.83%)

Amoxicillin (AX) 30 μg β-lactams 17 (70.83%) 2 (8.33%) 5 (20.83%)

Ciprofloxacin (CIP) 5 μg Fluoroquinolones 12 (50%) 3 (12.5%) 9 (79.17%)

Nalidixic acid (NA) 30 μg Fluoroquinolones 12 (50%) 5 (20.83%) 7 (29.17%)

Streptomycin (SM) 10 μg Aminoglycosides 8 (33.33%) 0 (0%) 16 (66.67%)

Gentamicin (GEN) 10 μg Aminoglycosides 7 (29.16%) 1 (4.17%) 16 (66.67%)

Erythromycin (E) 15 μg Macrolides 5 (20.83%) 0 (0%) 19 (79.17%)

Tetracycline (TET) 30 μg Tetracycline 22 (91.67%) 0 (0%) 2 (8.33%)

Oxytetracycline (T) 30 μg Tetracycline 20 (83.33%) 3 (12.5%) 4 (16.67%)

Vancomycin (VA) 30 μg Glycopeptides 7 (29.17%) 3 (12.5%) 14 (58.33%)

Chloramphenicol (C) 30 μg Chloramphenicol 4 (16.67%) 6 (25%) 14 (58.33%)
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but also for growth promotion and as prophylactic meas-
ures in the poultry industry sector with no regulation 
[50]. The irrational usage of antimicrobials leads to MDR 
acquisition in many pathogenic food poisoning bac-
teria such as E. coli, Salmonellae species, and L. mono-
cytogenes as well as recovered from different sources of 
food samples including poultry, meat, and their products 
[19, 51, 52].

Likewise, our results, L. monocytogenes strains isolated 
from meat and environmental samples previously in 
Egypt, were MDR especially to penicillin, ampicillin, and 
tetracycline [19]. High resistance of L. monocytogenes 
strains was observed against oxytetracycline (76.4%), 
chloramphenicol (70.5%) with high susceptibility to 
erythromycin (64.6%), gentamicin (58.7%), and vancomy-
cin (58.7%) where bacteria isolated from food products 
from Egypt, previously [47] which were corresponded to 
the current study results. Similarly, all L. monocytogenes 
strains isolated from chicken in Makurdi Metropolis, 
Nigeria were resistant to amoxicillin, cloxacillin, and tet-
racycline [53].

Contrary to our results, all L. monocytogenes strains 
isolated from chicken in northern Greece were sensi-
tive to ampicillin, cephalothin, amoxicillin, ciprofloxa-
cin, penicillin, cefotaxime, chloramphenicol, gentamicin, 
enrofloxacin, erythromycin, kanamycin, neomycin, van-
comycin, streptomycin, and sulfamethoxazole-trimetho-
prim [42] while all the strains were resistant to nalidixic 
acid. Furthermore, all L. monocytogenes strains isolated 
from chicken in Makurdi Metropolis, Nigeria were sus-
ceptible to gentamycin, erythromycin, and chloram-
phenicol [53]. In addition to the results of the previous 

study where 100% of L. monocytogenes strains isolated 
from poultry slaughtered and sold in Brazil were sensitive 
to tested antibiotics, except for clindamycin, where 5% 
of the isolates were resistant [37]. The antibiotic profile 
of L. monocytogenes strains variation from one study to 
another is related to the different samples from which the 
bacteria were isolated, the country, and the usage regula-
tion correlated to each country.

Antimicrobial resistance profiles of L. monocytogenes
The Multiple Antibiotic Resistance (MAR) index of L. 
monocytogenes strains tested in the current study was 
ranged from 0.14 to 0.86 with an average 0.47 (Table 3). 
The majority (95.83%, 23/24) of L. monocytogenes strains 
showed resistance to three or more tested antibiotics, in 
which the MAR index value was higher than 0.2, indi-
cating the overuse of antibiotics. However, only 4.2% 
(1/24) of the stains had MAR value of 0.14. Consistent 
results had been recorded previously where 70.5% of the 
L. monocytogenes strains isolated from vegetable farms 
in Malaysia had MAR index ranged from 0.22 to 0.56 
and 29.5% of the strains had MAR lower than 0.2 [54]. 
However, all (100%) L. monocytogenes strains isolated 
from raw meat in Northwestern Nigeria had MAR value 
ranged from 0.27 to 0.73 [55]. On the other hand, only 
29.2% of the L. monocytogenes strains isolated from raw 
burger patties in Malaysia had MAR more than 0.2 value 
with 39% had MAR index lower than 0.2 with 31.7% has 
no resistance to any antibiotic tested [56]. Difference in 
MAR values among the different studies related to many 
factors such as the antibiotics used, the source of samples, 
the geographical changes and the most important reason 

Table 3  Antimicrobial resistance patterns and Multiple Antibiotic Resistance (MAR) index for the Listeria monocytogenes isolates 
(n = 24)

Antibiotics Resistance Pattern No. of strains MAR index Classification of the strains

Type of resistance No. of isolates (%)

TET, T, P, AX, AMC, CTZ, CIP, NA, CTX, SM, GEN, VA 4 0.86 Extensively drug-resistant 4 (16.7%)

TET, T, P, AX, AMC, CTZ, CIP, NA, CTX, VA 1 0.71 Multi-drug resistant 19 (79.2%)

TET, T, P, AX, AMC, CTZ, CIP, NA, C, E 2 0.71

TET, T, P, AX, AMC, CTZ, CIP, NA, CTX 3 0.64

TET, P, CTX, CTZ, SM, GEN, E, C 1 0.57

TET, T, P, AX, AMC, CTZ, C, E 1 0.57

P, CTX, SM, GEN, VA 2 0.36

TET, T, P, AX, CTZ 2 0.36

TET, T, P, AX, CIP 1 0.36

TET, T, AX, AMC 3 0.29

TET, T, CIP, E 1 0.29

TET, T, NA 2 0.21

TET, SM 1 0.14 Low-drug resistant 1 (4.2%)
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linked to the antibiotics used for the animal, human and 
environment and it was published that resistant bacteria 
had MAR index higher than 0.2 originated from the over-
use of antibiotic drugs for all the source [26].

Categorization of L. monocytogenes isolates based on their 
antimicrobial resistance profiles
L. monocytogenes strains (n = 24) isolated from poultry 
meat in the present study were categorized tested as pan-
drug-resistant (PDR), Extensively drug-resistant (XDR), 
Multidrug resistant (MDR) and low-drug resistant (LDR), 
depending to their resistance against the 14 different 
antibiotics according to the description of Magiorakos 
et al. [57] in Table 3. Nineteen strains of L. monocytogenes 
(79.2%) were classified as Multidrug-resistant (MDR) as 
they exhibited resistance to three or more classes of anti-
biotics None of the tested isolates were resistant to all 
antibiotics tested. Extensively drug-resistant (XDR) L. 
monocytogenes strains represented 16.7% (4/24) and one 
strain was classified as low-drug resistant (LDR) with no 
strain under named as pan-drug-resistant (PDR). Many 
studies isolated L. monocytogenes of multidrug resistant 
type by high prevalence as 100% L. monocytogenes iso-
lated from raw meat in Nigeria [55] and from chicken 
meat in Malaysia [58]. On the contrary, much lower prev-
alence of MDR among L. monocytogenes strain recov-
ered from raw meat and retail foods such as 18.9% [59] 
and 20% [37]. L. monocytogenes is considered one of the 

food-borne pathogens associated with many outbreaks 
all over the world [10] due to the spread of MDR and 
XDR strains leaving few options for treatments.

Biofilm formation capability of L. monocytogenes
The biofilm capability of L. monocytogenes isolates recov-
ered in the current study from poultry samples was cat-
egorized as strong producers in 8.33%, intermediated 
producers in 12.5% and weak producers in 12.5% of the 
recovered samples (Fig. 2). It was obvious that the major-
ity percentages of L. monocytogenes produce weak to 
moderate biofilm producers. There was a great signifi-
cant (< 0.0001) correlation between the biofilm formation 
and the antibiotic resistance characteristics of the iso-
lates. Previous studies illustrated that bacterial cells of L. 
monocytogenes that were isolated from different sources 
including clinical, meat, and milk samples were generally 
weak to moderate biofilm producers [60–62]. In Egypt, 
in a previous study, the biofilm formation of L. monocy-
togenes isolated from different sources including humans, 
animals, food, and environment was investigated as mod-
erate to strong [10]. Biofilm formation by foodborne 
pathogens such as L. monocytogenes represents a serious 
concern in the food industry [63]. However, there are 
scarcity of data about the biofilm capability of L. mono-
cytogenes isolated in Egypt. Therefore, more research that 
focuses on the characterization of the biofilm formation 
and persistence of such pathogens is needed.

Fig. 2  Prevalence of weak, intermediate and strong biofilm producers L. monocytogenes isolates
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Risk assessment of consumption of poultry contaminated 
by L. monocytogenes
The calculated probability of illness associated with 
the consumption of the current study poultry sam-
ples contaminated with L. monocytogenes was 0.9 to 
0.92 which is considered too high especially when the 
exposure assessment of L. monocytogenes ranged from 
112.03 to 168.04 g per year. Therefore, the risk associ-
ated with the consumption of L. monocytogenes had a 
value exceeding 100 which reflects the potential hazard 
of such food origin and represents a significant level 
of risk of L. monocytogenes highlighting the impor-
tance of preventive measures to minimize exposure 
and protect public health. The current study as shown 
in Fig. 3 is the first study in Egypt to measure the risk 
assessment associated with the consumption of poultry 
samples contaminated with L. monocytogenes illustrat-
ing the antimicrobial susceptibility profile, virulence 
and biofilm formation capability of the isolates high-
lighting the importance of continuous monitoring of 

such pathogens in poultry industry. Therefore, future 
research quantifies the risk assessment through the 
whole poultry processing chain from farm to fork in 
Egypt is needed.

Conclusion
The current study demonstrated that poultry can be a 
vector for L. monocytogenes as a major contaminant to 
human consumers, even handlers, and the surround-
ing environment. Such results require great atten-
tion to the awareness of hygienic measures in the food 
industry. The majority of L. monocytogenes isolated 
in the present study were multidrug-resistant, hold-
ing virulence factors including their biofilm formation 
capability, adding further burden to the existing global 
antimicrobial resistance problems besides the risk of 
human infection incidence of difficult or no treatment. 
The molecular characteristics of the L. monocytogenes 
strains isolated from poultry had the same molecular 
features of clinical samples isolated strains in Egypt, 

Fig. 3  The whole work flow of the current study including the results highlighting the potential human risk illness associated to consumption 
of contaminated poultry with L. monocytogenes isolates
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indicating that poultry could be a critical source of 
human infections since they harbor multi-virulent 
multi-drug resistant L. monocytogenes strains. There-
fore, the establishment of control systems to monitor 
the use of antibiotics in veterinary medicine is crucial 
and should be regularly monitored.
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