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on ILC2s Control Lung Infiltration,
Effector Functions, and Development
of Airway Hyperreactivity
Benjamin P. Hurrell , Emily Howard, Lauriane Galle-Treger , Doumet Georges Helou,
Pedram Shafiei-Jahani , Jacob D. Painter and Omid Akbari*

Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California,
Los Angeles, CA, United States

Asthma is a heterogeneous airway inflammatory disease characterized by increased
airway hyperreactivity (AHR) to specific and unspecific stimuli. Group 2 innate lymphoid
cells (ILC2)s are type-2 cytokine secreting cells capable of inducing eosinophilic lung
inflammation and AHR independent of adaptive immunity. Remarkably, reports show that
ILC2s are increased in the blood of human asthmatics as compared to healthy donors.
Nevertheless, whether ILC2 expression of adhesion molecules regulates ILC2 trafficking
remains unknown. Our results show that IL-33-activated ILC2s not only express LFA-1
but also strikingly LFA-1 ligand ICAM-1. Both LFA-1−/− and ICAM-1−/− mice developed
attenuated AHR in response to IL-33 intranasal challenge, associated with a lower airway
inflammation and less lung ILC2 accumulation compared to controls. Our mixed bone
marrow chimera studies however revealed that ILC2 expression of LFA-1 — but not
ICAM-1 — was required for their accumulation in the inflamed lungs. Importantly, we
found that LFA-1 remarkably controlled ILC2 homing to the lungs, suggesting that LFA-1
is involved in ILC2 trafficking to the lungs. Our exploratory transcriptomic analysis further
revealed that ICAM-1 deficiency on ILC2s significantly affects their effector functions. While
it downregulated pro-inflammatory cytokines such as Il5, Il9, Il13, and Csf2, it however
notably also upregulated cytokines including Il10 both at the transcriptomic and protein
levels. These findings provide novel avenues for future investigations, as modulation of
LFA-1 and/or ICAM-1 represents an unappreciated regulatory mechanism for ILC2
trafficking and cytokine production respectively, potentially serving as therapeutic target
for ILC2-dependent diseases such as allergic asthma.
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INTRODUCTION

Group 2 innate lymphoid cells (ILC2)s rapidly respond to tissue-specific interleukin (IL)-33, IL-25
and thymic stromal lymphopoietin (TSLP) by releasing copious type-2 cytokines (1–4). IL-25, IL-
33, and TSLP are endogenous molecules that act as danger signals recognized by the immune
system. They contribute to ongoing type 2 immune responses leading to lung inflammation but can
org October 2020 | Volume 11 | Article 5428181

https://www.frontiersin.org/articles/10.3389/fimmu.2020.542818/full
https://www.frontiersin.org/articles/10.3389/fimmu.2020.542818/full
https://www.frontiersin.org/articles/10.3389/fimmu.2020.542818/full
https://www.frontiersin.org/articles/10.3389/fimmu.2020.542818/full
https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles
http://creativecommons.org/licenses/by/4.0/
mailto:akbari@usc.edu
https://doi.org/10.3389/fimmu.2020.542818
https://www.frontiersin.org/journals/immunology#editorial-board
https://www.frontiersin.org/journals/immunology#editorial-board
https://doi.org/10.3389/fimmu.2020.542818
https://www.frontiersin.org/journals/immunology
http://crossmark.crossref.org/dialog/?doi=10.3389/fimmu.2020.542818&domain=pdf&date_stamp=2020-10-30


Hurrell et al. LFA-1 on ILC2s Controls Trafficking
themselves directly induce cardinal features of asthma, including
airway hyperreactivity (AHR) and eosinophilia, by activating
ILC2s in the absence of adaptive immunity (5). It is now well
appreciated that ILC2 activation is tightly regulated by complex
interactions as we and others have reported that the severity of
asthma symptoms is alleviated through modulation of ILC2
effector functions (3). Remarkably, reports show that ILC2s are
increased in the blood of human asthmatics as compared to
healthy donors, suggesting that circulating ILC2s continually
contribute to the resident lung ILC2 pool (6). In line with this
finding, although ILC2s are commonly known as tissue-resident
cells, recent reports have shown that ILC2s migrate and
accumulate in different tissues upon inflammation, including
in the lungs (7–10).

ILC2 migration to inflamed tissues is an emerging feature of
ILC2 biology that may be crucial to disease severity. Although
leukocyte migration to the airways is the result of a complex
series of events, it is in part mediated by their expression of
integrins and selectins, involved in the multistep process of
diapedesis (11). Integrins are formed of a beta- and an alpha-
chain, with one of the most studied — leukocyte function
associated antigen-1 (LFA-1) — formed of the CD18 beta-
integrin chain and a distinct alpha-chain, CD11a (12). The
most common ligands for LFA-1 are intercellular adhesion
molecule (ICAM)-1 and ICAM-2, both constitutively expressed
on endothelial cells but also on a variety of leukocytes (13). In the
context of asthma, anti-LFA-1 and anti-ICAM-1 were shown
long ago to be beneficial in experimental asthma through effects
on CD4+ T-cells (14–17). In the field of innate lymphoid cells, we
were the first to show that pulmonary ILC2s remarkably express
both ICAM-1 and ICAM-2, suggesting that the well-known
LFA-1/ICAM-1/2 molecular pair may represent a modulator of
ILC2 biology (18). Prior studies have focused on the function of
LFA-1 and ICAM-1/2 In the context of ILC2-dependent asthma,
but the exact contributions of LFA-1, ICAM-1, and ICAM-2 in
the context of ILC2 trafficking and transmigration to the lungs
remains elusive (10, 19).

Herein we examined how adhesion molecules LFA-1 and
LFA-1 ligands ICAM-1 and ICAM-2 are involved in ILC2
accumulation and function in the lungs. Pulmonary ILC2s
constitutively express LFA-1 subunits CD18/CD11a and
ICAM-2, while activation with IL-33 rapidly induces ICAM-1
expression on ILC2s. Importantly, mice genetically deficient in
LFA-1 or ICAM-1 develop attenuated AHR and lung
inflammation in response to IL-33 intranasal challenge.
However, using a combination of approaches that includes the
generation of chimeric mice, our results suggest that only the
expression of LFA-1 — and not that of ICAM-1 — on ILC2s is
required for their accumulation in the lungs upon inflammation.
Importantly, we show that LFA-1 on ILC2s is required for their
Abbreviations: ILC2, group 2 innate lymphoid cell; IL, interleukin; TSLP, thymic
stromal lymphopoietin; AHR, airway hyperreactivity; LFA-1, leukocyte factor
associated antigen-1; ICAM, intercellular adhesion molecule; sICAM-1, soluble
ICAM-1; WT, wild type; Rm, recombinant mouse; i.n., intranasal; aILC2, activated
ILC2; nILC2, naïve ILC2; FACS, fluorescent-associated cell sorting; BAL,
bronchoalveolar lavage; BM, bone marrow; RNAseq, RNA sequencing.
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homing to the lungs, suggesting that LFA-1 is involved in ILC2
infiltration in the lungs. Although ICAM-1 was not involved in
ILC2 accumulation in the lungs, using a transcriptomic
approach, constitutive genetic ablation or induced blocking of
ICAM-1, our exploratory results reveal that lack of ICAM-1 on
activated ILC2s downregulated pro-inflammatory cytokines such
as Il5, Il9, Il13, and Csf2, while it notably also upregulated
cytokines including Il10 both at the transcriptomic and
protein levels.
MATERIAL AND METHODS

Mouse Experiments
Experimental protocols were approved by the USC institutional
Animal Care and Use Committee (IACUC) and conducted in
accordance with the USC Department of Animal Resources’
guidelines. 5-10 week old age and sex matched mice were used in
the studies. C57BL/6J, BALB/cByJ, ICAM-1 deficient (B6.129S4-
Icam1tm1Jcgr/J), LFA-1 deficient (B6.129S7-Itgaltm1Bll/J), and
RAG2 deficient (C.B6(Cg)-Rag2tm1.1Cgn/J) mice were bred in
our animal facility at the Keck School of Medicine, University
of Southern California (USC).

In Vivo Experiments and Tissue
Preparation
When indicated, mice were challenged on three consecutive days
with 0.5 µg/mouse in 50 µl of carrier-free rmIL-33 or rmIL-25
(BioLegend) diluted in PBS. On day 4, lungs were collected and
processed to single cell suspensions for the indicated readout.
Briefly, following transcardial perfusion with PBS 1× to clear
lungs of red blood cells, collected lungs were then digested in
collagenase Type IV (400 U/ml) at 37°C for 1 h and processed to
single cell suspension through a 70-mm nylon cell strainer
(Falcon) as described previously (20, 21). For experiments
involving bone marrow cells, cells were isolated by flushing the
bone with 5 ml ice cold PBS 1× from one tibia using a 25-G
syringe (Becton Dickinson), red blood cells were lysed and cells
used for the indicated experiment. For experiments involving
peripheral blood, 2 ml of blood was collected via heart puncture
using a 27-G needle syringe (Becton Dickinson) and kept in PBS
1% EDTA, red blood cells were lysed, and peripheral blood cells
used for the indicated experiment. In experiments involving in
vivo antibody blocking antibodies, 100 µg anti-ICAM-1 (YN1/
1.7.4, BioXcell), anti-ICAM-2 (3C4, Biolegend) or corresponding
isotype controls were injected through the tail-vein on days 1, 2,
and 3 prior rmIL-33 intranasal challenge.

Bone Marrow Chimera and Adoptive
Transfer Experiments
CD45.1+ C57BL/6 host mice were first irradiated with 600 rad.
The following day, bone marrow cells were isolated from the tibia
of CD45.1+ C57BL/6 WT or CD45.2+ KO (LFA or ICAM-1)
donors as indicated above, and a CD45.1 to CD45.2 1:1 mix was
prepared prior to adoptive transfer of 5 × 106 cells to host mice
through the tail-vein. After transfer, mice were maintained in our
October 2020 | Volume 11 | Article 542818

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Hurrell et al. LFA-1 on ILC2s Controls Trafficking
pathogen-free facility for 4-6 weeks, and the chimeric blood ratio
was measured 2 weeks after transfer and a day prior start of
experiment. For other adoptive transfer experiments, activated
lung CD45.2+ ILC2s (either C57BL/6 or LFA-1−/−) were FACS-
sorted as described below. At the indicated time, C57BL/6
CD45.1+ host mice were adoptively transferred with 10 × 103

FACS-sorted CD45.2+ activated lung ILC2 (C57BL/6 or
LFA-1−/−) by tail-vein injection.

Murine ILC2 and In Vitro Culture
Murine ILC2s were FACS-sorted to a purity of >95% on a
FACSARIA III system. ILC2s were purified from the lungs of
naïve mice, whereas aILC2s from mice challenged on three
consecutive days with 0.5 µg/mouse in 50 µl of carrier-free
rmIL-33 (BioLegend). ILC2s were gated as lineage (CD3e,
CD4, CD5, CD45R, Gr-1, CD11c, CD11b, Ter119, TCRgd,
TCRb, and FCeRIa) negative CD45+, ST2+, CD127+ cells.
Isolated ILC2s were cultured at 37°C (5 × 104/ml) with rmIL-2
(10 ng/ml) and rmIL-7 (10 ng/ml) purchased from BioLegend in
complete RPMi (cRPMi). For cRPMi, RPMI (Gibco) was
supplemented with 10% heat-inactivated FBS (Omega
Scientific), 100 units/ml penici l l in and 100 mg/ml
streptomycin (GenClone). When stated, nILC2s were in
addition activated with 50 ng/ml rmIL-33 and CD18, CD11a,
ICAM-1, and ICAM-2 expressions were assessed by flow
cytometry at the indicated times. In ICAM-1 blocking
experiments, 10 µg/ml anti-ICAM-1 (YN1/1.7.4, Thermofisher)
or corresponding isotype were added to culture.

Flow Cytometry
The following murine antibodies were used: biotinylated anti-
mouse lineage CD3e (145-2C11), CD4 (GK1.5), CD5 (53-7.3),
TCRb (H57-597), CD45R (RA3-6B2), Gr-1 (RB6-8C5), CD11c
(N418), CD11b (M1/70), Ter119 (TER-119), FceRIa (MAR-1),
Streptavidin-FITC, PE-Cy7 anti-mouse CD127 (A7R34),
APCCy7 anti-mouse CD45 (30-F11), PECy7 anti-mouse CD45
(30-F11), APCCy7 anti-mouse CD11c (N418), FITC anti-mouse
CD19 (6D5), APC anti-mouse Gr-1 (RB6-8C5), PerCPCy5.5
anti-mouse CD3 (17A2), Alexa Fluor 647 anti-mouse CD102
(3C4), FITC anti-mouse CD102 (3C4), BV510 anti-mouse
CD45.1 (A20), APC anti-mouse CD45.2 (104), APC anti-
mouse KLRG1 (2F1), APC anti-mouse CD25 (3C7) were
purchased from BioLegend. PE anti-mouse CD18 (C71/16),
APC anti-mouse CD11a (2D7), BV510 anti-mouse CD54
(3E2), PE anti-mouse SiglecF (E50-2440) were purchased from
BD Biosciences. APC anti-mouse CD90.2 (53-2.1), TCR-gd
(eBioGL3), PerCP-eFluor710 anti-mouse ST2 (RMST2-2),
eFluor450 anti-mouse CD11b (M1/70) were purchased from
Thermofisher. Intranuclear staining was performed using the
Foxp3 Transcription Factor Staining Kit (Thermofisher)
according to the manufacturer’s instructions and APC anti-
mouse Ki67 (SolA15, Thermofisher) or PE anti-mouse/human
GATA3 (TWAJ, Thermofisher) were used. Intracellular staining
was performed using the BD Biosciences Cytofix/Cytoperm kit.
When indicated, cells producing cytokines was measured following
4 h in vitro stimulation with 50 µg/ml PMA, 500 µg/ml ionomycin
Frontiers in Immunology | www.frontiersin.org 3
(both Sigma) and 1 µg/ml Golgi plug (BD Biosciences) using the
BD Cytofix/Cytoperm Plus staining kit (BD Biosciences). PE
anti-mouse IL-10 (JES5-16E3, BD Biosciences), eFluor 450 anti-
mouse IL-13 (eBio13A, Thermofisher), PE anti-mouse/human
IL-5 (TRFK5, Biolegend) were used. For apoptosis staining, PE
Annexin V (Thermofisher) and DAPI (Sigma) were used
according to the manufacturer’s instructions. Live/dead fixable
violet cell stain kit was used to exclude dead cells, used according
to the manufacturer’s instructions (Thermofisher) and
CountBright absolute counting beads (Thermofisher) to
calculate absolute cell numbers when indicated. Stained cells
were analyzed on FACSCanto II and/or FACSARIA III systems
and the data was analyzed with FlowJo version 9 software.

Measurement of Lung Function
On day 4 following rmIL-33 intranasal challenge, lung function
was measured using the FinePointe RC system (Buxco Research
Systems) as described previously (20, 22, 23). Briefly, mice were
surgically tracheotomized under deep anesthesia and placed on
the mechanically ventilated system where increasing doses of
methacholine (acetyl-b-methylcholine chloride (Sigma) are
sequentially nebulized. Methacholine is a bronchoconstrictor
inducing airway contraction and was nebulized at various
doses in 10 µl, ranging from 0 to 40 mg/ml. For each dose,
lung resistance was measured and computed over a period
of 3 min.

Cytokine Measurements and Collection of
BAL Fluid
The amounts of cytokines in culture supernatants were
measured by ELISA as described previously (24). Murine IL-
5, IL-13, and IL-10 ELISA kits were all purchased from
Thermofisher and used according to the manufacturer’s
instructions. BAL fluid was collected as previously described
(20). Briefly, the lungs of tracheotomized mice were washed
three times with 1 ml PBS 1× to collect cells. Following red
blood cell lysis, cells were stained for flow cytometry analysis.
Eosinophils were gated as CD45+ CD11c− SiglecF+ single cells.

RNA Sequencing and Data Analysis
Transcriptomic analysis was performed as described previously
(20, 25). Briefly, FACS-sorted pulmonary ILC2s were recovered,
directly lysed in RLT buffer (Qiagen), and RNA was extracted
using the MicroRNeasy kit (Qiagen). For each sample, a total of
10 ng of RNA was used to generate cDNA (SMARTer Ultra Low
Input RNA v3 kit, Clontech) for library preparation. Samples
were then amplified and sequenced on a NextSeq 500 system
(Illumina) where on average 30 million reads were generated
from each sample. Raw reads were then further processed on
Partek Genomics Suite software, version 7.0 Copyright ©; Partek
Inc. Briefly, raw reads were aligned by STAR — 2.6.1 d with
mouse reference index mm10 and GENECODE M20
annotations. Aligned reads were further quantified and
normalized using the upper quartile method and differential
analysis by GSA. Transcripts showing an average normalized
October 2020 | Volume 11 | Article 542818
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count below 1 were removed from the analysis, as were genes
showing cumulative normalized counts below 10.

Statistical Analysis
Experiments were repeated at least three times (n = 4–8 each)
and data are shown as the representative of >2 independent
experiments, except for the RNAseq performed in Figure 6.
Non-parametric tests were used: Mann-Whitney U tests were
used to compare the differences between two groups, except for
multi-group comparisons where Kruskal Wallis tests were used.
All tests were performed using Prism Software (GraphPad
Software Inc.). The degree of significance was indicated as:
*p < 0.05, **p < 0.01, ***p < 0.001.
RESULTS

Pulmonary ILC2s Express LFA-1, ICAM-1,
and ICAM-2
Leukocyte trafficking to inflamed tissues such as the lungs is in
part controlled by the expression of adhesion molecules, with the
LFA-1/ICAM-1/2 molecular interaction crucial in controlling
immune cell diapedesis. We therefore first challenged WT mice
for three consecutive days with rmIL-33 intranasally (i.n.) and
measured the levels of expression of ICAM-1, ICAM-2 and LFA-
1 subunits CD18/CD11a on lung ILC2s by flow cytometry on day
4 (Figure 1A). ILC2s were gated as live CD45+, Lineage-,
Thy1.2+, CD127+ and ST2+ cells. An extensive murine
activated ILC2 (aILC2) gating strategy can be found in
Supplementary Figure 1. We found that pulmonary activated
ILC2s highly express both LFA-1 subunits CD18 and CD11a, but
surprisingly also corresponding ligands ICAM-1 and ICAM-2
(Figure 1B). We next assessed expression dynamics of these
adhesion molecules on lung ILC2s. We therefore FACS-sorted
naïve lung ILC2s (nILC2)s from a cohort of naïve WT mice and
cultured them in vitro in the presence of rmIL-33 to measure the
expression of CD18, CD11a, ICAM-1, and ICAM-2 on ILC2s
over time by flow cytometry (Figure 1C). We found that CD18
and CD11a as well as ICAM-2 were expressed by lung nILC2 but
not induced by rmIL-33 in vitro (Figure 1D). Remarkably
however, pulmonary nILC2 expressed low levels of ICAM-1,
which were rapidly induced within as fast as 2 h by rmIL-33 in
vitro. nILC2s incubated without rmIL-33 did not induce ICAM-1
expression over time, suggesting that our observations are
specific to IL-33 stimulation (data not shown). Furthermore,
the upregulation of ICAM-1 upon rmIL-33 stimulation on ILC2s
as well as expression of ICAM-2 and LFA-1 subunits are
independent of the genetic background, as we observed similar
results in both BALB/c and C57BL/6 mice (Supplementary
Figures 3A, B). Interestingly, IL-25 also induced ICAM-1
expression on ILC2s, albeit at a lower level as compared to
rmIL-33 (Supplementary Figures 3A, B). Together, our findings
suggest that LFA-1 and ICAM-2 are constitutively expressed by
naïve and activated pulmonary ILC2s. Furthermore, naïve ILC2s
express low levels of ICAM-1 that are rapidly increased following
IL-33 stimulation.
Frontiers in Immunology | www.frontiersin.org 4
LFA-1, ICAM-1 but Not ICAM-2 Are
Required for ILC2-Dependent AHR
We next assessed the biological relevance of LFA-1, ICAM-1
and ICAM-2 expressions on the development of ILC2-
dependent AHR and airway inflammation. AHR is a powerful
tool allowing the measure of airway resistance, a cardinal
feature of asthma, as described previously (18–20, 25). Briefly,
mice were surgically tracheotomized under deep anesthesia and
placed on a mechanically ventilated system where increasing
doses of methacholine are sequentially nebulized. Methacholine
is a bronchoconstrictor inducing airway contraction and was
nebulized at various doses ranging from 0 to 40 mg/ml. For
each dose, lung resistance was measured and computed. We
therefore treated cohorts of WT, LFA-1−/− and ICAM-1−/− mice
with rmIL-33 or PBS i.n. for three consecutive days and measured
AHR on day 4 (Figure 1E). LFA-1−/−mice constitutively lack both
CD18 and CD11a, whereas ICAM-1−/− mice constitutively lack
ICAM-1, without affecting ICAM-2 expression (Supplementary
Figure 2). As expected, we first observed that WTmice challenged
with rmIL-33 induced significantly higher lung resistance as
compared to mice challenged with PBS (Figure 1F). However,
LFA-1−/− and ICAM-1−/− mice developed significantly less lung
resistance as compared to WT controls in response to rmIL-33
challenge, suggesting that the expression of LFA-1 or ICAM-1
are required for efficient development of AHR in response to IL-
33 (Figure 1F). Furthermore, airway inflammation was lower in
both LFA-1−/− and ICAM-1−/− mice compared to WT mice, as
the decrease in AHR was associated with decreased numbers of
eosinophils in the bronchoalveolar (BAL) fluid (Figures 1G, H).
Since ILC2s play a central role in the development of IL-33-
induced AHR, we next measured the numbers of pulmonary
ILC2s in each cohort. We found that both LFA-1−/− and — as
reported previously (19) — ICAM-1−/− mice harbored
significantly less lung ILC2s compared to WT mice (Figures
1I, J). Importantly, we also assessed the requirement of ICAM-2
expression on airway inflammation using an anti-ICAM-2
blocking strategy (Supplementary Figure 5). Strikingly,
blocking ICAM-2 neither affected airway inflammation nor the
number of pulmonary ILC2s following intranasal challenge with
rmIL-33 on three consecutive days. In addition, we did not
observe an increase in ICAM-2 expression in ICAM-1−/−

activated lung ILC2s, suggesting that ICAM-1 and ICAM-2 are
not functionally redundant in this context (Supplementary
Figures 2D–F). Together, our findings reveal that LFA-1 and
ICAM-1 — but not ICAM-2 — are required for ILC2
accumulation in the lungs and development of ILC2-
dependent AHR.
LFA-1 on ILC2s Is Required for
Accumulation in the Lungs
Following the observation that pulmonary ILC2s are decreased
in the constitutive absence of LFA-1, we next investigated the
functional requirement of LFA-1 on ILC2s for their
accumulation in the lungs during inflammation. To do so, we
generated mixed bone marrow (BM) chimera experiments
October 2020 | Volume 11 | Article 542818
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using the WT (CD45.1) and LFA-1−/− (CD45.2) mice models
that allow tracking of immune cells within tissues based on
their expression of the CD45 isoform. Using this approach, we
therefore directly assessed the function of LFA-1 expressed on
ILC2s for their accumulation in the lungs. Lethally irradiated
CD45.1 (host) mice were reconstituted with a mixture of WT
Frontiers in Immunology | www.frontiersin.org 5
(CD45.1) and LFA-1−/− (CD45.2) BM hematopoietic cells
(Figure 2A). There was an average peripheral blood CD45.1:
CD45.2 ratio of 50:50 4 weeks following reconstitution (data
not shown). We next further challenged chimeric mice on
three consecutive days with rmIL-33 i.n. and measured the
lung ILC2 CD45.1:CD45.2 ratio on day 4 (Figure 2A).
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BALB/cByJ mice were challenged intranasally on days 1-3 with 0.5 µg rmIL-33 and on day 4 lungs were recovered, processed to single cell suspensions and the
expression of CD18, CD11a, ICAM-1, and ICAM-2 on pulmonary CD45+ Lin− Thy1.2+ ST2+ CD127+ ILC2s was analyzed by flow cytometry. (B) Representative flow
cytometry plots of CD18, CD11a, ICAM-1, and ICAM-2 expressions on pulmonary ILC2s following challenge with rmIL-33. Black line: Corresponding marker, Solid
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ST2+ CD127+) in the lungs, and eosinophils (CD45+ SiglecF+ CD11c−) in the bronchoalveolar lavage (BAL) fluid were analyzed by flow cytometry. (F) Lung resistance
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a baseline control for the measure of AHR. (G) Representative flow cytometry plots of BAL eosinophils in each cohort and (H) corresponding quantitation presented
as the mean number of BAL eosinophils ± SEM. (I) Representative flow cytometry plots of pulmonary ILC2s in each cohort and (J) corresponding quantitation
presented as the mean number of lung ILC2s ± SEM. Data are representative of three individual experiments with n = 5. *p < 0.05, **p < 0.01.
October 2020 | Volume 11 | Article 542818

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Hurrell et al. LFA-1 on ILC2s Controls Trafficking
Strikingly, we found that WT (CD45.1) ILC2s represented an
average 90% of total lung ILC2s, whereas LFA-1−/− (CD45.2)
ILC2s only accounted for 10% of total lung ILC2s (Figure 2B).
When we normalized the CD45.1:CD45.2 ratio of lung ILC2s
to that of the peripheral blood of individual mice, we found a
significant shift towards WT ILC2s, suggesting that the
expression of LFA-1 on ILC2s is required for their
accumulation in the lungs (Figure 2C). We next measured
the functional requirement of LFA-1 on pulmonary ILC2s for
their proliferation (Figures 2D, E) and cytokine secretion
(Figures 2F–I), as both can affect airway inflammation by
modulating ILC2 numbers and activation, respectively. Our
results suggest that LFA-1 on lung ILC2s does not affect their
proliferation, as both WT (CD45.1) and LFA-1−/− (CD45.2)
lung ILC2s expressed similar levels of nuclear cell proliferation
marker Ki67 (Figures 2D, E). Similarly, the expression of LFA-
1 on ILC2s did not appear to modulate intracellular IL-5 and
IL-13 secretion, as we did not observe differences in the
frequencies of WT (CD45.1) or LFA-1−/− (CD45.2) ILC2s
expressing these cytokines (Figures 2F–I). Together, our
Frontiers in Immunology | www.frontiersin.org 6
results suggest that LFA-1 on ILC2s controls their accumulation
in the lungs during inflammation.

ILC2 Expression of LFA-1 Is Not Required
for ILC2 Homeostasis in the Lungs
Differences in cell numbers found in inflamed tissues such as the
lungs can be the result of multiple factors that include defects in cell
development, egress from the bone marrow, proliferation or
survival. We therefore next focused on the role of LFA-1 on
ILC2 development and lung homeostasis. We first measured the
numbers of ILC2s in the bone marrow of WT and LFA-1−/− mice,
both at steady state and following intranasal challenge with rmIL-
33 (Figure 3A). Our results suggest that there is no effect of LFA-1
on ILC2 development, as evidenced by the comparable numbers of
BM ILC2s in both WT and LFA-1−/− mice at steady state (Figure
3B, left panel, and Figure 3C). Importantly, we found that both
WT and LFA-1−/− mice harbored similarly decreased numbers of
BM ILC2s following challenge with rmIL-33, indicating that ILC2
egressed from the bone marrow independently of LFA-1 (Figures
3B, C). In the same cohorts, we next measured the numbers of
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pulmonary ILC2s (Figure 3D). In line with our previous
observations in the bone marrow, LFA-1 did not affect ILC2
numbers at steady state in the lungs (Figures 3E, F). Remarkably
however, a significant increased number of ILC2s accumulated in
the lungs in WT compared to LFA-1−/− mice in response to i.n.
challenge with rmIL-33 (Figures 3E, F). We next measured ILC2
proliferation and survival in LFA-1−/− lung ILC2s, as both can
affect total lung ILC2 numbers in the context of inflammation. We
therefore challenged WT and LFA-1−/−mice with rmIL-33 i.n. and
measured nuclear protein Ki67 expression within lung ILC2s as a
measure of proliferation (Figure 3G). Similar to our findings
shown in Figure 2E, LFA-1 did not appear to affect ILC2
proliferation (Figures 3H, I). In the same line, we measured the
frequencies of Annexin V and DAPI in pulmonary ILC2s as a
measure of cell survival and apoptotic rate (Figure 3G). There was
no significant induction of ILC2 apoptosis in LFA-1−/− ILC2s
Frontiers in Immunology | www.frontiersin.org 7
compared to controls in the inflamed lungs, suggesting that LFA-1
does not affect pulmonary ILC2 survival (Figures 3J, K). Together,
our findings reveal that LFA-1 does not control ILC2 development
or retention in the bone marrow. Furthermore, LFA-1 did not
affect ILC2 survival or proliferation in the activated lungs.

LFA-1 on ILC2s Controls ILC2 Homing to
the Activated Lungs
We next assessed whether LFA-1 controlled ILC2 infiltration to the
lungs by focusing on ILC2 homing to the inflamed lungs. We
challenged WT mice with either PBS or rmIL-33 on three
consecutive days i.n. and quantified the frequencies of peripheral
blood ILC2s on day 4 by flow cytometry (Figure 4A). Compared to
the controls, we found that the peripheral blood of mice challenged
with rmIL-33 harbored on average 10 times more ILC2s, with the
frequency of CD45+ Lineage- ILC2s increasing from 0.3% to 3.05%
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FIGURE 3 | LFA-1 on ILC2s is not required for ILC2 homeostasis in the lungs. (A, D) Cohorts of C57BL/6 (WT) and LFA-1−/− mice were challenged intranasally on
days 1-3 with either PBS or 0.5 µg rmIL-33. On day 4, lungs were recovered as well as the left femur where bone marrow cells were flushed in PBS. Both tissues
were processed to single cell suspensions, and the presence of CD45+ Lin− Thy1.2+ ST2+ CD127+ ILC2s was analyzed by flow cytometry in both the bone marrow
(A–C) and the lungs (D, E). (B) Representative flow cytometry plots of PBS-treated (left) and IL-33-treated (right) bone marrow ILC2s in both WT and LFA-1−/−

ILC2s. Corresponding quantitation in (C) is shown presented as the mean number of bone marrow ILC2s ± SEM. (E) Representative flow cytometry plots of PBS-
treated (left) and IL-33-treated (right) lung ILC2s in both WT and LFA-1−/− ILC2s. Corresponding quantitation in (F) is shown presented as the mean number of lung
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representative of three individual experiments with n = 5. *p < 0.05, ns, non-significant.
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(Figures 4B, C). An increased proportion of ILC2s is therefore
found in the peripheral blood during lung inflammation, likely
egressing from the BM and/or tissues including the inflamed lungs.
In order to assess the role of LFA-1 in ILC2 homing during
inflammation, we next designed adoptive transfer experiments
using the CD45.1/CD45.2 mice models, allowing for donor/
recipient cells to be distinguished based on their expression of
the CD45.1 or CD45.2 isoforms by flow cytometry (Figure 4D).
We therefore challenged separate cohorts of C57BL/6 (WT) and
LFA-1−/− (both CD45.2+) donor mice with rmIL-33 on days 1-3,
and on day 4 FACS-sorted lung activated ILC2s (aILC2s) to a high
purity (Figure 4E). As a control, we confirmed that sorted aILC2s
from LFA-1−/− mice lacked LFA-1 subunit CD18 (Figure 4E).
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Concurrently, we treated cohorts of C57BL/6 CD45.1+ recipient
mice with rmIL-33 on days 2-4, and on day 4 adoptively
transferred FACS-sorted WT or LFA-1−/− aILC2s to the
corresponding cohorts. On day 5 and within 24 h, we found that
adoptively transferred WT aILC2s (Figure 4F, center) efficiently
infiltrated the lungs as compared to un-injected controls (Figure
4F, left). However strikingly, adoptively transferred LFA-1−/−

aILC2s significantly failed to home back to the lungs compared
to WT controls (Figures 4F, right and G). Interestingly, WT
aILC2s also infiltrated the lungs of naïve mice within 24 h, albeit
at a lower level (Supplementary Figure 3C). These results
therefore suggest that while WT ILC2s efficiently home back to
the lungs and contribute to the lung ILC2 pool, the absence of
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CD45.2+ adoptively transferred ILC2s within each population (lower). (G) Corresponding quantitation presented as the mean frequencies of CD45.2+ within total lung
ILC2s ± SEM. Data are representative of 3 individual experiments with n = 5–10. *p < 0.05, **p < 0.01.
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LFA-1 on aILC2s significantly affects their trafficking to the
activated lungs.

ICAM-1 on ILC2s Is Not Required for ILC2
Accumulation in the Lungs
We next sought to investigate the requirement of ILC2 expression
of ICAM-1 on ILC2 accumulation in the lungs. Importantly,
ICAM-1 is constitutively expressed by various cells and in
particular the vasculature, shown in various models to bind to
infiltrating cells expressing LFA-1 (27–29). Similar to our
approach in Figure 2, we generated mixed bone marrow
chimera experiments using the WT (CD45.1) and ICAM-1−/−

(CD45.2) mice models. There was an average peripheral blood
CD45.1:CD45.2 ratio of 60:40 4 weeks following reconstitution
(data not shown). We next further challenged chimeric mice on
three consecutive days with rmIL-33 i.n. and measured the lung
ILC2 CD45.1:CD45.2 ratio on day 4 (Figure 5A). When we
normalized the CD45.1:CD45.2 ratio of lung ILC2s to that of
Frontiers in Immunology | www.frontiersin.org 9
peripheral blood of each individual mice, our results suggest that
ICAM-1−/− ILC2s accumulated as efficiently as WT ILC2s in the
lungs, if not better (Figures 5B, C). As we did in the context of
LFA-1-expressing ILC2s, we next measured the functional
requirement of ICAM-1 for ILC2 proliferation (Figures 5D, E),
and cytokine production (Figures 5F–I). Strikingly, we found that
ICAM-1−/− ILC2s proliferated at a significantly lower rate
compared to controls, as observed by the lower expression of
nuclear proliferation marker Ki67 within ICAM-1−/− (CD45.2)
lung ILC2s compared to WT controls (CD45.1) (Figure 5E). As
reported previously, we observed lower IL-5 (Figures 5F, G) and
IL-13 (Figures 5H, I) expression in ICAM-1−/− (CD45.2) ILC2s
compared to WT controls (CD45.1), as ICAM-1 appeared to
modulate intracellular cytokine secretion within pulmonary ILC2s
(19). Together, our results suggest that — unlike in the context of
LFA-1 on ILC2s — ICAM-1 on ILC2s does not control their
accumulation to the lungs. However, we found a significant effect
of ICAM-1 on ILC2 proliferation and activation.
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CD45.1:CD45.2 ratio of each individual mice ± SEM. Red dotted line represents the ratio of 1. (D) Representative flow cytometry plots of CD45.1+ (WT) and
CD45.2+ (ICAM-1−/−) expression within total lung ILC2s. (E) Representative flow cytometry plots depicting the frequency of Ki67 expression within CD45.1+ and
CD45.2+ lung ILC2 populations and corresponding quantitation presented as mean frequency of Ki67 expression within CD45.1+ and CD45.2+ lung ILC2s ± SEM.
(F-I) After processing to single cell suspension, lung cells were further stimulated with PMA, ionomycin and Brefeldin A for 4 h at 37°C prior staining for intracellular
cytokine markers. Representative flow cytometry plots of IL-5 (F) and IL-13 (H) expression within CD45.1+ and CD45.2+ lung ILC2 populations and corresponding
quantitation (G, I) presented as mean frequency of cytokine expression within CD45.1+ and CD45.2+ lung ILC2s ± SEM. Data are representative of 3 individual
experiments with n = 5. *p < 0.05, ns, non-significant.
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ICAM-1 on ILC2s Controls ILC2
Effector Functions
Based on our findings in Figure 5, we next performed
exploratory transcriptomic analysis to assess the role of ICAM-1
and cell intrinsic factors that could potentially contribute to the
modulation of AHR in response to IL-33. We therefore
challenged cohorts of WT and ICAM-1−/− mice with rmIL-33
on three consecutive days and performed RNA sequencing
(RNAseq) analysis on FACS-sorted pulmonary ILC2s on day 4
(Figure 6A). Sort purities are shown in Supplementary Figure
6A, with used ILC2s >95% pure. The volcano plot presented in
Figure 6B represents the >13,000 transcripts detected in the
analysis according to their fold change (x axis, logFC) and
statisticity (y axis, -log10 p-value). Our data suggest that a total
of 455 transcripts were differentially regulated, with 50
downregulated and a remarkable 405 upregulated (Figure 6B).
The top 50 genes upregulated and downregulated in the absence
of ICAM-1 are found in Supplementary Table 1. Notably, we
found both Il9 and Il13 were amongst the top 50 downregulated
genes, confirming that loss of ICAM-1 affects main activation
Frontiers in Immunology | www.frontiersin.org 10
markers of ILC2s. To further assess the effect of ICAM-1 on
cytokine and chemokine production, we applied a general
cytokine/chemokine filter to our analysis (Figure 6C). In line
with our previous findings, we found that ILC2 pro-
inflammatory markers I l5 , I l9, I l13 , and Csf2 were
downregulated in ICAM-1−/− ILC2s (Figure 6C). However
remarkably, we observed a number of transcripts that were
induced in the absence of ICAM-1, suggesting that lack of
ICAM-1 may not only decrease pro-inflammatory cytokines in
ILC2s. Interestingly, we found that Il10 was the most upregulated
interleukin in ILC2s lacking ICAM-1, and further found that Il16,
Ccl6, Ccl9 and Cxcl15 were also upregulated (Figure 6C). IL-10-
producing ILC2s (ILC210) were described by several groups in
multiple settings (26, 30, 31). Furthermore in the context of
asthma, we recently found that IL-10-producing ILC2s
significantly dampened AHR and lung inflammation, together
providing evidence of their regulatory role in the inflamed lungs
(32). In light of these findings, we found that signature
transcription factors recently found to be induced in IL-10-
producing ILC2s were similarly induced in ICAM-1−/− ILC2s,
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*p < 0.05, **p < 0.005.
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namely Id3, Foxf1, Klf2 (26), and Prdm1 (32) (Figure 6D). We
therefore next sought to confirm the expression of Il10 at the
protein level in activated lung ILC2s of WT and ICAM-1−/− mice
(Figure 6E). In line with our transcriptomic analysis, we found
that ICAM-1−/− activated lung ILC2s significantly upregulated by
3-fold the capacity of IL-10-production by pulmonary ILC2s
upon in vitro PMA/ionomycin stimulation (Figures 6F, G). To
further examine the effects of ICAM-1 on lung ILC2s, we next
cultured WT activated ILC2s with a monoclonal anti-ICAM-1
blocking antibody in vitro andmeasured cytokine secretion in the
culture supernatants after 48 h (Figure 6H). In confirmation of
our previous findings, we first found that anti-ICAM-1 treatment
downregulated IL-5 and IL-13 secretion by ILC2s (Figure 6I),
while it remarkably upregulated the secretion of IL-10 (Figure
6J). Importantly, we made similar observations using ILC2s
isolated from Rag−/− mice that lack both T- and B-cells
(Supplementary Figures 6C, D). Together, our preliminary
results therefore confirm that ICAM-1 affects lung ILC2 effector
functions in general. While it remarkably downregulated pro-
inflammatory cytokines such as Il5, Il9, Il13, and Csf2, it however
also notably upregulated other markers including Il10 — recently
described in IL-10-producing ILC2s— and opens new avenues for
future investigations in the field.
DISCUSSION

In this study, we demonstrate that ILC2 expression of adhesion
molecules LFA-1 and ICAM-1 play crucial roles in the
development of IL-33-induced asthma symptoms, albeit at
different levels. We found that expression by ILC2s of LFA-1
— but not ICAM-1— is required for ILC2 trafficking to the lungs
during inflammation. Additionally, blocking ICAM-1 on ILC2s
reduced pro-inflammatory cytokine secretion and remarkably
induced cytokines including IL-10. Together, our findings
suggest that modulation of the LFA-1/ICAM-1 molecular pair
on ILC2s may represent a promising and unappreciated novel
therapeutic strategy regulating trafficking and cytokine production
in the context of ILC2-dependent asthma.

LFA-1 is a crucial integrin involved in immune cell
trafficking, as adhesion to ligand ICAM-1 facilitates firm
adhesion to endothelium and prolonged contact with antigen
presenting cells. Neutrophil expression of LFA-1 has been known
for a long time to be involved in adherence and migration to
inflamed tissues (27). This effect is however not restricted to
innate cells, as it is now well appreciated that both T and B cells
rely on LFA-1 for extravasation to lymph nodes and tissues (28,
29). Following IL-33 i.n. challenge, mice with constitutive lack of
LFA-1 develop attenuated AHR associated with decreased
accumulation of lung ILC2s as compared to controls. We
found that both naïve and IL-33-activated lung ILC2s express
high levels of LFA-1 subunits CD18 and CD11a, and our
chimeric mice experiments importantly demonstrate that this
expression of LFA-1 on ILC2s is specifically required for
accumulation in the lungs. In confirmation of our findings,
LFA-1 blockade using monoclonal antibodies against b2
Frontiers in Immunology | www.frontiersin.org 11
integrin CD18 — known to dimerize with alpha subunits
CD11a, CD11b, CD11c, or CD11d (12) — suggests that LFA-1
expression in mice is required for ILC2 accumulation in the
lungs in the model of Alternaria-induced airway inflammation,
although the localization of the targeted CD18 was not
determined (10).

LFA-1 did not alter lung ILC2 numbers at steady state, nor
did it affect ILC2 proliferation or survival in the lungs following
IL-33 i.n. challenge, together suggesting that the difference in
lung ILC2s observed is independent of ILC2 homeostasis. Little is
known about the mechanisms underlying ILC2 infiltration in the
airways upon inflammation. Our data however demonstrate that
ILC2s are found in the peripheral blood following IL-33 i.n.
stimulation. Interestingly, a previous report suggests that ILC2s
in the lungs following Alternaria challenge are migrating from
the bone marrow during inflammation (10). In support of this
finding, we found that the bone marrow of mice challenged with
IL-33 intranasally decreased compared to naïve mice, suggesting
that ILC2s may egress from the bone marrow to the peripheral
blood following intranasal stimulation with IL-33. However,
further studies are required to better characterize this process,
in particular how blood ILC2s contribute to lung pathogenesis.
Interestingly, ILC2s found in the peripheral blood can also
originate from the lungs themselves or other tissues such as
the lamina propria as described previously (8). By focusing on
the homing of activated ILC2s to the lungs, we found that the
expression of LFA-1 by ILC2s was required for their infiltration
to the lungs. In support of our findings, several reports show that
adoptive transfer of activated lung ILC2s in Rag−/− Il2rg−/−

alymphoid mice followed by three consecutive days of IL-33
intranasal challenge induces a potent ILC2-dependent airway
inflammation and associated airway hyperreactivity (18–20).
Our results therefore suggest that ILC2 infiltration to the lungs
during inflammation — via ILC2 expression of LFA-1 — may
contribute to the lung ILC2 pool and resulting ILC2-induced
airway inflammation.

Although LFA-1 is widely known as a trafficking molecule, it
was previously reported that LFA-1 on CD8+ T-cells is required
for their retention in the mouse lungs (33). Our results do not
exclude the contribution of LFA-1 in ILC2 retention in the lungs,
as further studies are required to better characterize this process
in the context of airway inflammation. Furthermore in the
adipose tissue, it was recently demonstrated that a stromal cell
niche expressing ICAM-1 is providing proliferation and
activation signals to LFA-1-expressing ILC2s (34). Although
lung adventitial stromal cells could provide such signals in the
lungs (35), we did not observe a role for LFA-1 in ILC2 activation
nor proliferation using our approach.

In the context of IL-33-induced asthma, we found that mice
lacking ICAM-1 developed lower AHR and lung inflammation,
and confirmed our results using a clinically proven anti-ICAM-1
blocking antibody in Rag−/− mice (Supplementary Figure 4).
Anti-ICAM-1-treated mice showed lower lung ILC2s, lower BAL
eosinophilia associated with a decrease in ILC2-dependent IL-5
and IL-13 expression compared to controls. Although we found
that ILC2s expressed ICAM-1, our chimeric mice experiment
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surprisingly revealed that ILC2 expression of ICAM-1 did not
affect ILC2 accumulation in the lungs upon inflammation.
However as reported previously, we found that the lack of
ICAM-1 specifically on ILC2s resulted in a decrease of pro-
inflammatory cytokines as well as proliferation, together further
affecting lung inflammation and development of AHR (19). In
support of our findings, Lei et al. in this study importantly show
that ICAM-1 controls ILC2 activation, although they did not
directly assess the requirement of ICAM-1 for ILC2 trafficking.
Interestingly, we found that ICAM-1 was induced on ILC2s as
early as 2 h following IL-33 challenge in vitro, as opposed to
ICAM-2 which was highly expressed on ILC2s in both naïve and
activated contexts. However, blocking ICAM-2 in vivo during IL-
33-induced airway inflammation did not affect either the
numbers of pulmonary ILC2s or BAL eosinophilia, suggesting
that ICAM-2 — either on ILC2s or other cells — does not affect
ILC2 accumulation in the lungs, at least sufficiently. In line with
our observations, ICAM-1 on neutrophils was recently shown to
affect neutrophil effector functions such as phagocytosis, but did
not play a role in transmigration to inflamed tissues (36). In
addition, human immature monocyte-derived dendritic cells
treated with an ICAM-1 blocking antibody were shown to
downregulate MHCI, MHCII, CD80, CD86 expression and
cytokine secretion in response to LPS, suggesting that ICAM-1
on dendritic cells is required for efficient maturation and
activation (37). Our results therefore rule out a role for
ICAM-1 on ILC2s for their trafficking to the lungs but confirm
ICAM-1 as a regulator of immune cell activation. It is important
to note that soluble ICAM-1 (sICAM-1) in the sera is linked with
asthma severity, suggesting that ICAM-1 may represent an
adequate target for the treatment of the disease (38).

Our exploratory transcriptomic analysis confirmed previous
reports that ICAM-1 controls pro-inflammatory cytokines (19). In
addition, it showed that ICAM-1 may also negatively regulate the
expression of chemokines/cytokines in ILC2s such as Il16, Cxcl15,
Ccl6, and Ccl9 in ILC2, which would all warrant further
investigations. Remarkably, we found that Il10 is the most
upregulated interleukin in ICAM-1−/− activated ILC2s, as we
further confirmed our findings at the protein level as well as
using a clinically proven anti-ICAM-1 blocking antibody in vitro.
Interestingly, Cxcl15 and Chil3 were recently shown to be
expressed by the pulmonary ILC210 subset, as we further
observed in ICAM-1−/− ILC2s the expression of transcription
factors upregulated in this population (26, 32). Although known
producers of type 2 cytokines, it was recently demonstrated that
ILC2s acquire the capacity to secrete cytokines not typically
associated with their Th2 inflammatory phenotype. They were
shown to produce IL-17 in a papain model of asthma (39), but
more interestingly IL-10 and TGF-b in different models of asthma
(26, 31, 40). IL-10 is a cytokine produced by T-regulatory cells,
macrophages, and additional immune subtypes that is known for
its anti-inflammatory properties (41). IL-10-producing ILC2s were
described as anti-inflammatory, showing a specific transcription
factors signature, but the exact mechanisms underlying their
complex generation and control remains largely unknown (26).
Interestingly, it was recently reported that intestinal ILC2s produce
Frontiers in Immunology | www.frontiersin.org 12
IL-10 at steady state, with IL-2, IL-4, IL-27, IL-10, and neuromedin
U (NMU) enhancing IL-10 production in activated intestinal
ILC2s (30). Importantly in the context of asthma, we recently
found that IL-10–producing ILC2s significantly dampened AHR
and lung inflammation, together providing evidence of their
regulatory role in the inflamed lungs (32). Together, these
findings suggest that IL-10-producing ILC2s are emerging as
important players in the modulation of tissue inflammation,
including the lungs. ICAM-1 may therefore represent a novel
approach in the control of IL-10 production within ILC2s, as our
findings pave the way for future investigations in the field. In
support of our findings, it was previously reported that the
engagement of ICAM-1 suppresses IL-10 production by human
CD4+ T-cells (42). In this study, co-stimulation of ICAM-1 on
activated CD4+ T-cells (but not CD8+ T-cells) in vitro increased IL-
2 production, while remarkably inhibiting that of IL-10.

IL-10-producing ILC2s were described by several groups before
and the production of IL-5 and IL-13 was always maintained in
these cells (26, 30, 31, 40). Although the proportion of ILC2s
producing IL-10 is low compared to that of IL-5 and IL-13, we
believe that IL-10-producing ILC2s can contribute to the lung
physiology. In support of our claim, a recent report showed that
blocking TNF signaling in CD4+ T cells induced low but
physiologically relevant levels of IL-10 as compared to Th1
signature cytokines, suggesting that TNF signaling similarly
controls IL-10 secretion within CD4+ T-cells (43). Moreover, the
induction of the same population of IL-10-producing ILC2s by
Retinoic Acid at physiological levels made a similar significant
impact on the phenotype (31). Although further studies are
required to translate our findings to humans, it was recently
reported that human ILC2s express ICAM-1 (19).

In conclusion, modulation of LFA-1 and/or ICAM-1
represents a promising and unappreciated novel therapeutic
strategy regulating trafficking and cytokine production
respectively in ILC2-dependent asthma.
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