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The roles of FOXM1 in pancreatic stem cells
and carcinogenesis
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Abstract

Pancreatic ductal adenocarcinoma (PDAC) has one of the poorest prognoses among all cancers. Over the past
several decades, investigators have made great advances in the research of PDAC pathogenesis. Importantly,
identification of pancreatic cancer stem cells (PCSCs) in pancreatic cancer cases has increased our understanding of
PDAC biology and therapy. PCSCs are responsible for pancreatic tumorigenesis and tumor progression via a
number of mechanisms, including extensive proliferation, self-renewal, high tumorigenic ability, high propensity for
invasiveness and metastasis, and resistance to conventional treatment. Furthermore, emerging evidence suggests
that PCSCs are involved in the malignant transformation of pancreatic intraepithelial neoplasia. The molecular
mechanisms that control PCSCs are related to alterations of various signaling pathways, for instance, Hedgehog,
Notch, Wnt, B-cell-specific Moloney murine leukemia virus insertion site 1, phosphoinositide 3-kinase/AKT, and
Nodal/Activin. Also, authors have reported that the proliferation-specific transcriptional factor Forkhead box protein M1
is involved in PCSC self-renewal and proliferation. In this review, we describe the current knowledge about the signaling
pathways related to PCSCs and the early stages of PDAC development, highlighting the pivotal roles of Forkhead box
protein M1 in PCSCs and their impacts on the development and progression of pancreatic intraepithelial neoplasia.
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Introduction
The incidence of pancreatic cancer is increasing annu-
ally, especially in industrialized countries [1]. Despite
ever-increasing research efforts over the past few de-
cades, prognoses for pancreatic cancer remain among
the poorest for all cancers. It is also one of the leading
causes of cancer-related mortality in developed coun-
tries, with a median survival duration of 6 months and
5-year overall survival rate of less than 5% [2,3]. Conven-
tional therapies, such as surgery, radiation therapy, chemo-
therapy, and combinations of them, have had a limited
impact on the course of this aggressive neoplasm, which is
characterized by rapid metastasis and resistance to these
therapies [4]. Researchers recently demonstrated that the
presence of cancer stem cells (CSCs) in pancreatic tumors
contributes to the early metastasis and chemotherapeutic
drug resistance of pancreatic cancer [5]. Therefore, eluci-
dating the molecular mechanisms underlying the critical
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roles of pancreatic CSCs (PCSCs) in pancreatic cancer de-
velopment and progression is imperative.
CSC research has resulted in many advances in the

fundamental understanding and clinical management of
several solid tumors, including brain, breast, head and
neck, lung, prostate, colon, ovarian, and pancreatic can-
cer [5-11]. CSCs are now widely accepted to be a sub-
population of tumor cells with the capacity for extensive
proliferation, self-renewal, multipotency, high tumori-
genicity, and treatment resistance. Moreover, CSCs have
a high propensity for invasiveness and metastasis [12].
CSCs in pancreatic cancer cases are characterized by ex-
pression of the cell surface markers CD44, CD24, and
epithelial-specific antigen (ESA; epithelial cell adhesion
molecule [EpCAM]) [13]. Authors reported that CD133+

cells in primary pancreatic tumors and pancreatic cancer
cell lines represent those with enhanced, potent prolifer-
ative capacity [14]. Increasingly, studies have demon-
strated that the presence of PCSCs combined with drug
resistance and high levels of metastasis contribute to
therapy failure, resulting in the high mortality rates for
pancreatic cancer [5]. Furthermore, researchers have
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proposed that Forkhead box protein M1 (FOXM1) is in-
volved in the self-renewal of PCSCs, and tumorigenesis
and metastasis of pancreatic cancer cells [15].
FOXM1 is a member of the Forkhead box transcrip-

tion factor superfamily, which consists of more than
50 members sharing a conserved winged-helix DNA-
binding domain. FOXM1 is a proliferation-specific tran-
scription factor whose expression is correlated with the
proliferative ability of cells [16]. FOXM1 is well known
to be a key cell-cycle regulator for both transition from
G1 to S phase and progression from G2 phase to mitosis
[17]. Increasing evidence suggests that FOXM1 expres-
sion is substantially elevated in most human malignan-
cies, such as glioblastoma, lung cancer, hepatocellular
carcinoma (HCC), breast cancer, and pancreatic cancer,
and plays a crucial role in tumorigenesis, angiogenesis,
invasion, and metastasis [17-23]. Also, several recent
studies suggested that FOXM1 is involved in self-renewal
and proliferation of CSCs [15,24,25]. However, the mo-
lecular mechanisms by which FOXM1 signaling regulates
PCSCs in pancreatic cancer development and progres-
sion remain poorly understood.
A deeper comprehension of PSCSs would likely pro-

vide a new perspective on and increased understanding
of the mechanisms that govern the development of pan-
creatic cancer. In this review, we briefly describe the
crucial role of FOXM1 in PCSCs in pancreatic cancer
development and progression with a focus on recent
insight into the cross-talk between FOXM1 and signal-
ing pathways in PCSCs here and below.

The roles of FOXM1 and signaling pathways in
the early stages of pancreatic ductal
adenocarcinoma development
Over the past few decades, increasing evidence has dem-
onstrated that almost all pancreatic cancers progress
from diverse premalignant lesions to invasive carcin-
omas. Precursors of pancreatic cancer include pancreatic
intraepithelial neoplasia (PanIN), intraductal papillary
mucinous neoplasms (IPMNs), mucinous cystic neo-
plasms (MCNs), and intraductal tubular papillary neo-
plasms (ITPNs) [26-28]. Pancreatic carcinoma in general
may arise from any of these precursor lesions, yet pan-
creatic ductal adenocarcinoma (PDAC) in particular is
much more closely associated with PanIN than with the
other precursor lesions. PanIN lesions are classified as
PanIN-1, -2, or -3 based on the degree of morphologic
atypia and the genetic events during pancreatic carcino-
genesis [26,28]. In this section, we describe the roles of
signaling pathways related to PanIN in the early stages
of PDAC development and the cross-talk between
FOXM1 and these pathways (Figure 1).
A comprehensive genetic analysis of 24 pancreatic

cancer cases identified a total of 1562 somatic mutations.
Further categorization of these alterations using whole
exome sequencing revealed that they corresponded to 12
core signaling pathways, which contained several import-
ant genes already confirmed to be drivers in the early
stages of PDAC development, such as cellular processes
(KRAS), DNA damage control (tumor suppressor 53
[TP53]), cell-cycle regulation (cyclin-dependent kinase
inhibitor 2a [CDKN2A]), and transforming growth factor
(TGF)-β signaling (SMAD4) [29]. The progression of
PanIN from trivial dysplastic epithelium (PanIN-1) to cy-
tologic and nuclear atypia (PanIN-2 and −3, respectively)
and, ultimately, invasive carcinoma corresponds to the
gradual accumulation of genetic alterations. These al-
terations include activating mutation of the oncogene
KRAS and inactivation of the tumor suppressor genes
CDKN2A, TP53, and SMAD4 [28,30,31].

KRAS
The earliest and most important genetic alterations ob-
served in pancreatic carcinogenesis are activating muta-
tions of KRAS [32-34]. At least 90% of PanIN-1 lesions
harbor mutations of KRAS, and the average concentra-
tion of mutant KRAS alleles in PanIN lesions increases
markedly along with the PanIN grade; ultimately, almost
all PanIN lesions have KRAS mutations [30,35]. Re-
searchers have identified three major point mutations in
codons 12, 13, and 61 that lead to the association of ab-
normal KRAS protein products with malignant trans-
formation, with mutations in codon 12 being the most
important to pancreatic carcinogenesis [32,33]. KRAS
encodes for a guanosine triphosphate (GTP)-binding
protein that functions as a crucial modulator of a series
of cellular processes, such as proliferation, survival, and
motility. Ras activity in cells is tightly regulated, and Ras
is normally bound to guanosine diphosphate (GDP) in an
inactive state. Exogenous signals such as growth factor
stimulation trigger the removal of GDP from Ras, allow-
ing for GTP to bind and activate downstream effectors.
Activated ras feeds multiple signaling pathways, including
the Ras/Raf/mitogen-activated protein kinase (MAPK)
pathway and the phosphoinositide 3-kinase (PI3K)/AKT
signaling pathway, which have diverse roles in cytoskeletal
alterations, cell-cycle progression, and apoptosis inhib-
ition. Activating mutations of KRAS contribute to loss of
intrinsic GTPase activity of Ras protein; consequently,
continuous activation of ras occurs even in the absence of
extracellular signals [34]. To determine the role of onco-
genic RAS mutations in PanIN development and progres-
sion, Hingorani and colleagues directed endogenous
expression of KRASG12D to progenitor cells in the mouse
pancreas and found that physiologic levels of KRASG12D

activity induced the formation of ductal lesions that recap-
itulate the full spectrum of PanIN lesions, which are highly
proliferative and histologically progressive, and exhibit



Figure 1 Model of the genetic progression of pancreatic carcinogenesis. The genetic alterations that occur during pancreatic carcinogenesis
can be classified as early (activating mutation of KRAS), intermediate (inactivation of CDKN2A), and late (inactivation of TP53 and SMAD4 and
activation of some pathways in PCSCs) events. Markers of PCSCs, including CD24, CD44, CXCR4, ESA, and Nestin, are detected in different sites
during pancreatic carcinogenesis (in order of increasing percentage): normal ducts, low-grade PanIN lesions, high-grade PanIN lesions, and PDACs.
FOXM1 may play a critical role in the early stages of PDAC development via cross-talk with major signaling pathways. Other gene mutations may
occur during PanIN formation but are not illustrated in this model.
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various activated signaling pathways that are quiescent
in normal ductal epithelium [36,37]. Almost all PanIN
lesions and invasive pancreatic carcinomas harbor onco-
genic mutations of KRAS, furthermore, a small fraction
of KRAS-wild-type PDACs have BRAF mutations, simi-
larly resulting in aberrant MAPK signaling [38]. These
results indicated that KRAS activation is an important
initiating step in the early stages of PDAC development
and that this activation leads to the onset of most cases
of pancreatic tumorigenesis.

CDKN2A (p16)
Researchers have observed inactivation of the p16 gene,
also known as CDKN2A as well as multiple tumor sup-
pressor 1, by deletion, point mutation, or methylation of
the promoter region of the gene in more than 90% of
PDAC cases, with the resultant loss of activity of p16
protein, a key regulator of the transition from G1 to S
phase in the cell cycle, corresponding to increased cell
proliferation [39-41]. The vast majority of inactivation of
CDKN2A arises as early as the PanIN-2 stage [39,40].
P16 primarily functions in cell-cycle control as a nega-
tive regulator of the extraordinary pRb/E2F signaling
pathway. At the G1-S transition, p16 specifically in-
hibits CDK4/6-mediated phosphorylation of Rb, the
retinoblastoma-susceptible gene product, thus sequester-
ing the transcription factor E2F as incompetent pRb/E2F
complexes and inhibiting cell-cycle progression [42]. In
addition, the CDKN2A gene alternative splicing sites that
lead to formation of several protein products, such as
p14, may sequester MDM2, helping stabilize TP53 [43].

TP53
TP53 is a homotetrameric complex that transactivates
key target genes in response to a series of cellular pro-
cesses, including cell-cycle progression, apoptosis, and
DNA damage response. DNA damage specifically acti-
vates p53 protein, which promotes DNA damage repair
or leads to cell-cycle arrest at G1 phase and induces
apoptosis [43]. About 75% of pancreatic cancer cases
have TP53 inactivation, including that caused by gene
mutation and/or abnormal nuclear accumulation of p53
protein, with the vast majority of genetic alterations
occurring in PanIN-3 lesions [44-46]. Hingorani et al.
[47] targeted concomitant endogenous expression of
Trp53R172H (a TP53 mutant) and KrasG12D to the mouse
pancreas, resulting in cooperative promotion of chromo-
somal instability and development of highly metastatic
PDAC from early-stage, preinvasive lesions with KrasG12D

expression.

SMAD4
The Smad4 gene, also known as tumor suppressor DPC4
(deleted in pancreatic cancer cells), is inactivated in about
55% of PDAC cases, either by homozygous deletion or
intragenic mutation with loss of its second allele [48]. As
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with TP53, investigators have observed loss of Smad4 ex-
pression in PanIN-3 lesions [49]. The Smad4 protein has a
crucial role in propagation of extracellular signaling path-
ways via the TGF-β signaling pathway, which modulates
cell proliferation and differentiation, thus functioning as a
critical tumor suppressor in normal cells. This signaling
pathway is activated when TGF-β binds to type I and II
serine/threonine kinase cell surface receptors, resulting in
receptor dimerization and subsequent phosphorylation of
receptor I by receptor II. Activation of receptor I leads to
phosphorylation of Smad2 and Smad3 proteins, with which
Smad4 forms complexes, thus corporately translocate into
the nucleus. Once in the nucleus, these complexes can as-
sociate with transcriptional co-factors and regulate expres-
sion of the target genes involved in a series of crucial
cellular processes [50]. Deletion of Smad4 in mice on a
mutant Kras (KrasG12D) background resulted in faster for-
mation of PanIN lesions and greater fibrosis, with some
mice having invasive tumors, than did the KrasG12D back-
ground alone. However, mice with Smad4 deletion alone
had no obvious pathological changes [51]. Further research
of the role of Smad4 in pancreatic carcinogenesis demon-
strated that concomitant expression of KrasG12D and hap-
loinsufficiency of the Smad4 tumor suppressor gene
resulted in development of invasive PDAC from mucinous
cystic neoplasms (MCNs) in a mouse model [52]. Loss of
Smad4 expression correlates with both development of
widespread metastasis and poor prognosis in pancreatic
cancer patients [53,54].

Signaling pathways in PCSCS
Carcinoma and stem cells have many of the same prop-
erties, such as sustained proliferative capacity, immortal-
ity, and self-renewal, all of which are associated with
carcinogenesis. Evidence supporting the viewpoint that
pancreatic tumors contain a distinct subpopulation of
self-renewing tumor cells -CSCs that are responsible for
tumorigenesis and metastasis in PDAC cases continues
to mount [55]. Researchers have identified several CSC-
specific markers, including CD24, CD44, CD133, ESA,
Nestin, and combinations of them [13,14,56]. In a recent
study, investigators detected CD24-, CD44-, CXCR4-,
ESA-, and Nestin-positive cells in the following tissues
(in order of increasing percentage): normal ducts, low-
grade PanIN, high-grade PanIN, and PDAC tumors. This
suggested that most CSC markers correlate with pancreatic
tumorigenesis in the PanIN-to-PDAC sequence of progres-
sion [57]. Another group of researchers found that the
homeobox transcription factors Oct4 and Nanog (stem
cell-specific transcription factors) were overexpressed in
metaplastic ducts and that Oct4 expression preceded Kras
mutation, which indicated that these CSC-specific tran-
scription factors are associated with early stages of pancre-
atic carcinogenesis and may play important roles in that
process [58]. In addition, some aberrant signaling pathways
in PCSCs, such as Notch [59-61], PI3K/AKT/phosphatase
and tensin homolog deleted from chromosome 10 (PTEN)
[62], B-cell-specific Moloney murine leukemia virus inser-
tion site 1 (Bmi1) [63], c-Myc [64], and c-Met [65], par-
ticipate in pancreatic carcinogenesis via stimulation of
oncogenic Kras-dependent malignant transformation of
PanIN.

Crosstalk between FOXM1 and the signaling
pathways in PCSCS
The transcription factor FOXM1 is a regulator of a wide
spectrum of biologic processes in tumors, including
cell-cycle progression, cellular proliferation, cellular differ-
entiation, DNA damage repair, apoptosis, tissue homeosta-
sis, and angiogenesis. Several studies have demonstrated
that the FOXM1 signaling network is frequently deregu-
lated in human malignancies with leading to its overex-
pression, which is associated with poor prognosis for
various cancers, including pancreatic cancer [22,66]. These
findings point to a principal role for FOXM1 in the patho-
genesis and progression of pancreatic cancer via its in-
volvement in progression, proliferation, angiogenesis,
epithelial-to-mesenchymal transition (EMT), invasion, and
metastasis [67-69].
Increasing evidence suggests that pancreatic carcino-

genesis is a stepwise progression from epithelial precursor
lesions to invasive PDAC via successive genetic alterations,
including activation of the oncogene Kras and inactiva-
tion of the tumor suppressor genes CDKN2A, TP53,
and Smad4. Furthermore, some signaling pathways in
CSCs play a role in this progression. Abnormal activa-
tion of Kras in the Ras/Raf/MAPK and PI3K/AKT
pathways plays a pivotal role in cell-cycle progression
and apoptosis inhibition. FOXM1 has close relation-
ships with both of these signaling pathways. Specifically,
Ras/Raf/MAPK stimulates the nuclear translocation and
transactivating activity of FOXM1 [70], and upregula-
tion of FOXM1 expression is mechanistically linked
with hyperactivation of the PI3K/AKT pathway and loss
of function of TP53 [71]. Also, investigators found that
constitutive expression of FOXM1 cooperated with acti-
vated Kras to induce lung cancer growth in vivo [72]. A
recent study demonstrated that upregulation of FOXM1
expression suppressed the expression of CDKN2A via
promoter hypermethylation [73]. The results of another
study demonstrated that aberrant upregulation of FOXM1
expression induces genomic instability, which abolishes
the normal checkpoint response to DNA damage (e.g.,
p53, p16). Consequently, damaged cells are allowed to
proliferate, and the genetic aberrations or mutations re-
quired for tumor initiation can take place [74]. A study of
malignant neuroblastoma suggested that FOXM1 plays
a pivotal role in the tumorigenicity of these aggressive
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tumor cells via maintenance of their self-renewal capacity
[15]. Additional studies demonstrated that FOXM1 plays
a key role in maintenance of stem cell pluripotency in vivo
by inducing the expression of pluripotency genes, includ-
ing Oct4, Nanog, and Sox2 [75]. Taken together, these
findings provide convincing evidence that FOXM1 plays a
central role in the early stages of PDAC development via
cross-talk with signaling pathways related to PanIN and
PSCSs.

Major signaling pathways in PCSCS
Increasing evidence supports the existence of CSCs in
pancreatic tumors. PCSCs make up a subpopulation of
cells distinguishable from the majority of regular tumor
cells because of their exclusive ability to drive tumori-
genesis, invasion, metastasis, drug resistance, and disease
relapse via extensive proliferation, self-renewal, and mul-
tipotency. Similar to common cancer cells, multiple ab-
normal signaling pathways are found in PCSCs, such
as Hedgehog (HH), Notch, Wnt, Bmi, PI3K/AKT/PTEN,
FOXM1, and Nodal/Activin [68,76-81]. In addition, the
CSC niche is essential to the development of PCSCs
(Figure 2) [82,83].
Figure 2 Signaling pathways in PCSCs. The HH and Notch developmental
respective ligands. The SHH/Gli signaling pathway plays a pivotal role in main
pluripotency-maintaining factors Nanog, Oct4, c-Myc, and Sox2. Upon activati
nucleus for transcriptional activation of Notch target genes, including hairy an
Wnt/β-catenin pathway is vitally involved in cell fate determination via bindin
(TCF/LEF). PI3K/AKT signaling is involved in PCSCs by directly interactin
stimulating stem-like characteristics and cross-talk with other pathways. Abnorm
this figure. IGF, insulin-like growth factor; EGF, epidermal growth factor; Jag, Jag
factor receptor; ICN, intracellular domain of Notch.
HH Signaling
The HH signaling pathway is essential to embryonic
pancreatic development and differentiation, and re-
searchers have implicated the deregulation of this pathway
in several forms of carcinomas [84]. Mounting evidence
indicates that the HH signaling pathway is aberrantly acti-
vated and one of the majority mediators in PDAC cases
[85]. Sonic HH (SHH) is the most important homologous
gene in the HH family, which also includes Desert HH
and India HH. Canonical signaling of this pathway is mod-
ulated by the transmembrane receptor Patched, which
normally has an inhibitory effect on another trans-
membrane receptor, Smoothened (Smo). Upon binding
with short-acting polypeptide ligands such as SHH, the
Smo-suppressive function of Patched is diminished, thus
allowing transduction via the SHH pathway, which brings
about activation and nuclear translocation of the glioma-
associated oncogene (Gli) family of zinc-finger tran-
scription factors (Gli1, Gli2, and Gli3). Ultimately, these
factors activate transcription of SHH target genes in-
volved in cellular proliferation, progression, survival, and
stemness and cell-fate determination, such as FOXM1,
Wnt, Bmi1, Nanog, Oct4, Sox2, Snail, Slug, and Bcl-2
pathways are highly active in PCSCs and may be activated by a series of
tenance of stemness (self-renewal) via regulation of the expression of the
on by interaction with ligands, Notch is cleaved and translocated to the
d enhancer of split-1, nuclear factor κB (NF-κB), cyclin D1, and c-Myc. The
g to the transcription factor T-cell factor/lymphocyte enhancer factor
g with CD133. FOXM1 plays a pivotal role in PCSCs by directly
al signaling pathways also may involve PCSCs but are not illustrated in
ged; IGF-1R, insulin-like growth factor-1 receptor; EGFR, epidermal growth
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[84,86]. Researchers have observed aberrant expression
of SHH in PDAC tumors as well as PanIN lesions, sug-
gesting that upregulation of SHH expression contrib-
utes to pancreatic cancer initiation, development, and
progression [85]. In another study, inhibition of HH sig-
naling greatly decreased cell proliferation and induced
apoptosis via suppression of the PI3K/AKT pathway
and markedly inhibited EMT by suppressing activation
of the transcription factors Snail and Slug, whose expres-
sion is correlated with pancreatic cancer cell invasion, sug-
gesting that the HH signaling pathway is involved in the
early stages of metastasis [87].
Recently, multiple lines of evidences supported that

the SHH/Gli signaling pathway is highly activated in
PCSCs and plays a pivotal role in maintenance of stemness
(self-renewal) by regulating the expression of pluripotency-
maintaining factors, including Nanog, Oct4, c-Myc, and
Sox2 [77,88-92]. Both sulforaphane and the combination
of epigallocatechin-3 gallate and quercetin inhibit the
self-renewal capacity of PCSCs via attenuation of the
SHH/Gli pathway [88-91]. The Gli transcription factor in-
hibitor GANT-61 inhibits PCSC viability, spheroid forma-
tion, Gli-DNA binding, and transcriptional activity and
induces apoptosis. Furthermore, GANT-61 inhibits PCSC-
containing tumor growth, which is associated with upregu-
lation of TRAIL-R1/DR4 and TRAIL-R2/DR5 expression
and downregulation of Gli-1, Gli-2, Bcl-2, and ZEB1 ex-
pression in tumor samples obtained from nude mouse
xenografts [77]. Huang et al. [92] observed that Panc-1
tumorspheres have stemness potential, in which the SHH
pathway is active as indicated by expression of the HH
components Smo, Gli1, and Gli2. They also observed that
treatment with the SHH inhibitor cyclopamine could re-
verse resistance to gemcitabine owing to decreased expres-
sion of the ATP-binding cassette transporter ABCG2 in
PANC-1 tumorspheres. PCSCs are thought to be respon-
sible for tumor maintenance, progression, and resistance to
chemotherapy and radiation therapy. Recent studies dem-
onstrated that the SHH/Gli pathway plays pivotal roles in
chemoresistance caused by PCSCs based on ATP-binding
cassette transporter overexpression [93]. Combined block-
ade of SHH and mammalian target of rapamycin (mTOR)
signaling together with standard chemotherapy is capable
of eliminating PCSCs [94]. Another study demonstrated
that the combination of HH signaling inhibition and radi-
ation therapy had more than additive effects on pancreatic
tumorsphere regeneration in vitro [76]. Vismodegib (GDC-
0449), an oral antagonist of the SHH signaling pathway, in-
hibits PCSC characteristics by blocking the activity of Smo
in vitro [95]. A phase 1 trial of GDC-0449 is under way,
preliminary results of which suggest that it has an accept-
able safety profile and encouraging antitumor activity for
some locally advanced or metastatic solid tumors [96].
Taken together, these findings deepen support the concept
that the SHH signaling pathway is a fundamental driver
of PCSCs.

Notch signaling
The Notch signaling pathway is well known to be re-
sponsible for maintaining the balance between cell pro-
liferation and death and plays instrumental roles in the
formation of multiple human tumors, including pancre-
atic cancer [60,97]. Notch genes encode for proteins that
can be activated via interaction with a family of their li-
gands. Humans have four Notch receptors—Notch1,
Notch2, Notch3, and Notch4—with five related ligands—
Delta-like1, Delta-like3, Delta-like 4, Jagged1, and Jagged2.
Upon activation, Notch is cleaved, releasing the intracellu-
lar domain of Notch, which then can be translocated to
the nucleus for transcriptional activation of Notch target
genes, including hairy and enhancer of split-1, nuclear
factor κB, cyclin D1, and c-myc [98]. Emerging evidence
clearly suggests that activation of the Notch signaling
pathway is mechanistically associated with molecular char-
acteristics of CSCs in PDAC cases [79,99]. For example,
Forced overexpression of Notch1 may increase the forma-
tion of pancreatospheres, which is consistent with expres-
sion of the CSC surface markers CD44 and EpCAM. This
suggests that activation of Notch1 signaling is related to
the self-renewal capacity of PCSCs [78]. Authors recently
reported that expression of Oct4, Nanog, and PDX1 as
markers of self-renewal of PCSCs occurred in Notch2+

BxPC-3 and Panc-1 human pancreatic cancer cells [100].
Also, these investigators found that expression of ALDH,
a PCSC surface marker, was associated with poor overall
survival durations in PDAC patients. Treatment with PF-
03084014, a selective γ-secretase inhibitor, alone or in
combination with gemcitabine is effective in reducing the
number of ALDH+ tumor cells [101]. In a glioblastoma
study, Notch blockade by GBI appeared to deplete stem-
like cancer cells via reduced proliferation and increased
apoptosis associated with decreased AKT and signal trans-
ducer and activator of transcription 3 phosphorylation,
which was consistent with reduced expression of the CSC
markers CD133, Nestin, Bmi1, and olig2 [102]. A growing
body of published reports strongly suggest that Notch
signaling is biologically relevant to CSCs in pancreatic
cancer.

BMI1, WNT, and other signaling pathways
Expression of Bmi1, a member of the polycomb group
of transcriptional repressors, is markedly upregulated in
pancreatic cancer cell lines and resected pancreatic
tumor specimens, and this protein is related to prolifera-
tion of pancreatic cancer cells and survival, and prognosis
in pancreatic cancer patients [103]. Emerging evidence
demonstrates that Bmi1 plays a key role in the function of
CSCs in PDAC cases [80,104]. Yin et al. [104] discovered
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that Bmi1 was more highly expressed in PANC-1 CSCs
than in regular PANC-1 cells, with overexpression of cyclin
D1 and ABCG2 and downregulation of expression of p16.
A more recent study demonstrated that PCSCs had much
higher expression of Bmi1 mRNA than did normal pancre-
atic tissue cells and marker-negative bulk pancreatic tumor
cells. Bmi1 silencing in PCSCs inhibited secondary and ter-
tiary tumorsphere formation, decreased primary pancreatic
tumor xenograft growth, and decreased the proportion of
CSCs in the xenografts [80]. These results demonstrated a
key role for Bmi1 in maintenance of the PCSC compart-
ment by regulating the cells’ self-renewal.
PI3K/AKT signaling plays a vital role in many biologic

processes in PDAC cases, including cellular proliferation,
differentiation, and survival. Recent studies demon-
strated that PI3K/AKT signaling is involved in CSCs in
diverse types of cancer, including pancreatic cancer
[94,105,106]. Based on the results of studies of glioblast-
oma, PTEN, a regulator of PI3K/AKT signaling, appears
to function as a crucial inhibitor of proliferation of CSCs
and as an inducer of senescence, suggesting that the
PTEN/PI3K/AKT axis is a fundamental signaling path-
way in glioblastoma stem cells [105]. Researchers also
found that CD133, a crucial trigger of self-renewal and
tumorigenesis of CSCs, interacted directly with the PI3K
85-kDa regulatory subunit, resulting in preferential acti-
vation of the PI3K/AKT pathway in glioblastoma stem
cells [106]. Mueller et al. [94] recently revealed that
CD133+ PDACs had particularly high levels of mTOR
signaling, suggesting that the PI3K/AKT pathway also
plays a dominant role in PCSCs. Single-agent therapy
with the mTOR inhibitor rapamycin profoundly reduced
the number of CD133+ PCSCs among pancreatic cancer
cells. mTOR, which belongs to the PI3K superfamily, is
the target of a complex signal transduction pathway.
Overall, PI3K/AKT signaling is known to be deeply in-
volved in PCSCs. However, further study is needed to de-
termine the molecular mechanism underlying PCSCs
regulation by PI3K/AKT signaling.
Wnt signaling is one of the most well researched mo-

lecular pathways that regulate CSC self-renewal and pro-
liferation in patients with various cancers, including
colorectal cancer and glioma [24,107]. However, evi-
dence demonstrating the functions of Wnt signaling in
PCSCs is lacking in the literature. The Wnt/β-catenin
pathway, the canonical pathway of Wnt signaling, is vital
to cell-fate determination via binding to the transcrip-
tion factor, T-cell factor/lymphocyte enhancer factor, and
subsequent transcription of Wnt target genes. A study of
colon cancer implicated that a high level of Wnt/
β-catenin signaling activity is one of the mechanisms that
drive the transition from colitis to cancer by sustaining the
tumor-initiating potential of colon CSCs [107]. In addition,
Zhang et al. [24] reported that FOXM1, as a downstream
component of Wnt signaling, controlled the self-renewal
of glioblastoma-initiating cells (GICs) via interaction with
β-catenin. These results indicated that deregulation of Wnt
signaling may play a key role in PCSCs and that the spe-
cific mechanisms must be elucidated.
The embryonic morphogens Nodal and Activin belong

to the TGF-β superfamily and are crucial regulators of
embryonic stem cell fate via binding to the Activin-like
type I and II receptors (ALK4 and ALK7). Nodal and
Activin are secreted proteins that are expressed during
embryonic development and essential for maintaining
the pluripotency of human embryonic stem cells. Recent
evidence demonstrated that Nodal and Activin were
barely detectable in highly differentiated pancreatic cancer
cells but markedly overexpressed in PCSCs and stroma-
derived pancreatic stellate cells (PSCs). Knockdown or
pharmacologic inhibition of expression of ALK4 and ALK7
in PCSCs abrogated their self-renewal capacity and tumori-
genicity in vivo and reversed the resistance of orthotopi-
cally engrafted PCSCs to treatment with gemcitabine
[81]. The same research team later reported that Nodal-
expressing PSCs are pancreatic tumor stroma components
important to creation of a paracrine niche for PCSCs and
that secretion of Nodal and Activin by PSCs promoted
sphere formation in vitro and invasiveness of PCSCs in an
ALK4-dependent manner [83]. These data implied that
Nodal/Activin signaling, which is involved in the paracrine
niche at the tumor-stroma interface, drives the self-renewal
and tumorigenicity of PCSCs.

Role of FOXM1 in PCSCS
Authors have well documented that FOXM1 plays an
important role in the development and progression of
PDAC and that FOXM1 overexpression is associated
with poor prognosis and advanced clinicopathologic stages
of PDAC [22]. Recent studies using human and mamma-
lian models revealed that FOXM1 has a role in promotion
of tumorigenesis by stimulating stem cell-like characteris-
tics in pancreatic cancer cells, including self-renewal cap-
acity [15,72,75]. Accordingly, a lung tumorigenesis study
demonstrated that overexpression of FOXM1 promoted
Clara cell hyperplasia and cooperated with activated K-Ras
to induce lung cancer development in vivo [72]. In
addition, mouse model studies demonstrated that FOXM1
is involved in maintenance of the carcinogenicity of neuro-
blastoma cells and the self-renewal capacity of mouse
neural stem/progenitor cells via induction of expression of
the pluripotency genes Sox-2 and Bmi1 [15]. A study of
P19 embryonal carcinoma cells revealed that expression
of FOXM1 is repressed during retinoic acid-induced
differentiation at early stages and correlated with de-
creased expression of pluripotent stem cell markers and
that expression of FOXM1 protein is downregulated
before expression of Oct4 and Nanog decreases upon
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differentiation. Expression of Oct4 and Nanog is dimin-
ished by knockdown of expression of FOXM1, and the
Oct4 promoter is regulated directly by FOXM1. In differ-
entiated cells, such as retinoic acid-induced P19 cells and
human newborn fibroblasts, overexpression of FOXM1
alone restarts the expression of the pluripotency-related
transcription factors Oct4, Nanog, and Sox2. Taken to-
gether, these findings provide convincing evidence of crit-
ical involvement of FOXM1 in maintenance of stem cell
pluripotency [75]. That acquisition of the EMT pheno-
type and induction of the CSC or a cancer stem-like cell
phenotype are highly interrelated is common knowledge.
Bao et al. [25] recently reported that FOXM1 is deeply
involved in acquisition of the EMT and CSC phenotypes
in pancreatic cancer cells. Forced overexpression of
FOXM1 led to increased self-renewal capacity of AsPC-1
human pancreatic cancer cells, which was consistent with
enhanced expression of CSC cell surface markers such as
CD33 and EpCAM.
Although strong evidence that FOXM1 directly affects

PCSCs has been limited until now, the close relationships
of FOXM1 with HH, Notch, Bmi1, PI3K/AKT, Wnt, and
other signaling pathway determine its promotive role in
PCSCs.

Cross talk between FOXM1 and the HH signaling
pathway
In 2002, authors first reported that expression of the
SHH target Gli1 in primary basal keratinocytes and
other human cell lines caused a significant elevation of
FOXM1 mRNA expression and transcriptional activity,
indicating that FOXM1 is a downstream target gene of
Gli1 [108]. Pignot et al. [109] confirmed this in a recent
study of transitional cell carcinoma of the bladder. A
colorectal cancer study demonstrated that SHH, Gli1,
and FOXM1 mRNA expression levels were higher in
colorectal adenocarcinomas than in adjacent normal
colon tissue [110]. The researchers also found strong cor-
relations between expression of SHH and FOXM1 and
between expression of Gli and FOXM1 in colorectal can-
cer cells. Exogenous SHH expression increased prolifera-
tion of colon adenocarcinoma-derived cells (HT-29 and
CaCo2) in vitro by inducing Gli1 and FOXM1 transcrip-
tion. Another study demonstrated that FOXM1 overex-
pression in non-small cell lung cancer cells was remarkably
correlated with Gli1 expression, indicating SHH signaling
activation [111]. In human HCC cases, FOXM1 protein
overexpression was highly associated with increased tumor
grade and advanced tumor stage. Additionally, investiga-
tors observed a strong association between the expression
of Gli2 and that of FOXM1 in HCC cells, which is consist-
ent with the concept that in human HCC cases, the SHH
signaling pathway is involved in differentiation and prolif-
eration of tumor cells, in part via induction of nuclear
accumulation of Gli2 and subsequent upregulation of ex-
pression of FOXM1 [112]. Taken together, these findings
are convincing evidence of tight cross-talk between
FOXM1 and the HH signaling pathway.

Cross talk between FOXM1 and the PI3K/AKT
signaling pathway
Emerging evidence demonstrates determinate specific
cross-talk between FOXM1 and the PI3K/AKT pathway.
For example, Upregulation of FOXM1 expression in an-
aplastic thyroid carcinoma cells is mechanistically linked
with loss of function of p53 and hyperactivation of the
PI3K/AKT signaling pathway [71]. Additionally, Park
et al. [113] recently reported that in addition to the well-
characterized function of FOXM1 in proliferation, de-
regulation of FOXM1b expression is a major driving
force for multiple steps of tumor metastasis via activa-
tion of the AKT/Snail1 pathway and stimulation of ex-
pression of stathmin, lysyl oxidase, lysyl oxidase like-2,
and several other genes involved in metastasis. In a prior
study, the same research team found that the continuous
presence of FOXM1 was required for survival of tumor
cells expressing activated AKT (escaping premature sen-
escence and apoptosis caused by oxidative stress), which
was attributed to FOXM1’s critical roles in regulation of
reactive oxygen species activity [114].

Cross talk between FOXM1 and other signaling
pathways
Downregulation of Notch1 expression leads to inhibition
of cell growth and apoptosis induction, which is mechan-
istically linked with downregulation of AKT and FOXM1
expression, suggesting that AKT and FOXM1 are down-
stream targets of Notch1 signaling [115]. Bmi1 plays an
integral role in enhancing pancreatic tumorigenicity and
the function of CSCs in PDAC development and progres-
sion. A recent investigation demonstrated that Bmi1 is a
downstream target of FOXM1; this was supported by
dose-dependent induction of Bmi1 protein and mRNA
expression by FOXM1 and the finding that depletion of
FOXM1 by RNA interference decreased Bmi1 expres-
sion. Using Bmi1 promoter reporters with wild-type and
mutated c-Myc binding sites and short hairpin RNAs tar-
geting c-Myc, the researchers in that study further found
that FOXM1 activated Bmi1 expression via c-Myc, the
expression of which was recently reported to be regulated
by FOXM1 [116]. In addition, investigators demonstrated
that FOXM1 is a downstream component of the Wnt sig-
naling pathway and critical for β-catenin nuclear location
and transcriptional activation. A conceivable molecular
mechanism was that Wnt3a increased the expression
level and nuclear translocation of FOXM1, which bound
directly to β-catenin and enhanced its activation. Further-
more, they discovered that interaction between FOXM1
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and β-catenin plays a critical role in the self-renewal
and differentiation of GICs, as knockdown of FOXM1
or β-catenin expression substantially decreased the size
and number of primary and secondary spheres formation
and reduced the efficiency of neural colony formation in
GICs [24,117].

Role of FOXM1 in the PCSC niche
Thus far, we have extensively described the mechanisms
responsible for self-renewal and maintenance of the un-
differentiated status of stem cells. The stemness of stem
cells seems to be sustained by interactions with other
cells, as most stem cells isolated from tissue cannot be
maintained independently in vitro. Over the past few
years, researchers have made increasingly explicit stand-
point that the stem cell niche provides a microenvir-
onment that is pivotal to protecting and perpetuating
the self-renewal and undifferentiated state of stem cells
[118]. This role of the stem cell niche also extends to the
field of cancer biology. Like somatic stem cells, CSCs rely
on a stem cell niche, dubbed the CSC niche, for self-
renewal and differentiation. The CSC niches include the
glioblastoma, colorectal, and hepatic CSC and PCSC
niches [12,82,119,120].

FOXM1 and the hypoxic microenvironment
PDAC is characterized by an excessive number of des-
moplastic reactions and a hypoxic microenvironment,
as the mesenchymal tissue at the primary tumor site
consists of high-density fibrotic stroma that com-
presses the tumor vasculature, giving rise to intratu-
moral hypoperfusion. Poor blood perfusion leads to
highly hypoxic conditions, which induces expression
of hypoxia-inducible factor (HIF)-1α, thereby inducing
the transcription of genes that regulate a variety of
important cellular processes. The hypoxic and fibro-
genic microenvironment of PDAC comprises not only
tumor cells but also surrounding stromal cells, such
as stellate, endothelial, and infiltrating immune cells.
Researchers demonstrated that hypoxic conditions re-
sulted in a large increase in the expression of the neural
stem cell markers CD133 and Nestin as well as the stem
cell markers Oct4 and Sox2 [121]. Hypoxia also induced
the human embryonic stem cell transcriptional program,
including the induced pluripotent stem cell inducers
Oct4, Nanog, Sox2, KLF4, c-Myc, and microRNA302, in
11 cancer cell lines [122]. In PDAC cases, hypoxia in-
duces tumor aggressiveness, which is associated with ex-
pansion of the CD133+ pancreatic cancer cell population
in a predominantly HIF-1α–dependent manner [123].
Hypoxia, a common feature of the microenvironments of
solid tumors, induces expression of FOXM1 in tumori-
genic cells owing to direct binding of HIF-1 to the HIF-
1–binding sites in the FOXM1 promoter. Investigators
found that transcriptional upregulation of FOXM1 ex-
pression accelerated the growth of hypoxic cancer cells
by decreasing nuclear expression levels of p21 and in-
creasing expression of cyclin B1 and cyclin D1 [124]. As
described above, low oxygen levels in the PCSC niche
may be of great importance to the development of PCSCs
in an HIF-1α–dependent manner, and FOXM1 may be
involved in this process.

FOXM1 and the TGF-β signaling pathway
Hypoxia exists around not only cancer cells but also sur-
rounding PSCs, which are abundantly present in the
stroma containing pancreatic cancer cells and may serve
as a CSC niche. Hypoxia stimulates PSCs to induce fi-
brosis and angiogenesis in PDAC tumors by facilitating
migration, type-I collagen expression, and vascular endo-
thelial growth factor production in PSCs. Furthermore,
the presence of stromal desmoplasia is a hallmark of
PDAC, forming a unique microenvironment that com-
prises many cell types. PSCs have been identified to play
a key role in pancreatic cancer desmoplasia. Authors re-
ported that conditioned media of hypoxia-treated PSCs
promoted endothelial cell proliferation and migration
and angiogenesis in vitro and in vivo accompanied by
expression of several angiogenesis-regulating molecules,
including vascular endothelial growth factor receptor,
angiopoietin-1, and Tie-2 [125]. A recent study demon-
strated that the presence of PSCs enhanced the CSC-like
phenotypes in pancreatic cancer cells. The results of this
study indicated that indirect co-culture of pancreatic
cancer cells and PSCs enhanced the spheroid-forming
ability of the cancer cells and induced expression of the
PCSC-related genes ABCG2 and Nestin [126]. Lonardo
et al. [83] demonstrated that Nodal/Activin-expressing
PSCs are major components of the pancreatic tumor
stroma, providing a paracrine niche for PCSCs. Nodal
and Activin are crucial regulators of embryonic stem cell
fate. They are barely detectable in differentiated tumor
cells but markedly overexpressed in PCSCs and PSCs
[81]. Secretion of Nodal and Activin by PSCs promotes
sphere formation in vitro and PCSC invasiveness in vivo
[83]. These studies suggested that the Nodal/Activin
pathway is essential to the self-renewal capacity and
stemness properties of PCSCs [81,83].
In addition to Nodal and Activin, other TGF-β family

members, together with other pathways, form a network
that regulates the acquisition and/or maintenance of
CSC properties via modulation of the tumor microenvir-
onment [127,128]. TGF-β–induced EMT can guide can-
cer cells to dedifferentiate and gain CSC-like properties.
Furthermore, EMT facilitates generation of stromal cells
that serve as a niche for CSCs [127]. Researchers found
that the side population of pancreatic cancer cells, a
CSC-enriched fraction from a pancreatic cancer cell line,
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possessed great potential to switch the cells’ phenotype
between mesenchymal and epithelial via TGF-β stimula-
tion or elimination [128]. Additionally, autocrine TGF-β
signaling is involved in the maintenance and survival of
stem-like cell populations [129], and exposure of tumor
cells to TGF-β and tumor necrosis factor-α induces
EMT, which generates tumor cells with stem cell proper-
ties [130,131]. Expression of Bone morphogenetic pro-
tein, another TGF-β family member, is necessary for the
self-renewal of embryonic stem cells via inhibition of dif-
ferentiation [132]. Medici and colleagues discovered that
TGF-β2 and bone morphogenetic protein 4 were stimu-
lators of the conversion of vascular endothelial cells into
multipotent stem-like cells [133]. As described above,
TGF-β signaling, together with other reported and/or
unknown pathways, may regulate the acquisition and/or
maintenance of the stemness of PCSCs, creating a malig-
nant stem cell niche.
Although little is known about the cross-talk between

FOXM1 and PSCs, emerging evidence demonstrates the
existence of cross-talk between FOXM1 and TGF-β
pathways [134,135]. FOXM1 is involved in TGF-β1–
induced EMT, and TGF-β–based treatment has led
to a dramatic increase in FOXM1 expression in non-small
cell lung cancer cells [134]. A recent study demonstrated
that transgenic expression of activated FOXM1 in alveolar
epithelial cells upregulated radiation-induced expression
of EMT-associated genes, including interleukin-1β, Snail1,
Snail2, Zeb1, Zeb2, Twist2, and Foxf1; reciprocally, condi-
tional deletion of FOXM1 from respiratory epithelial cells
prevented an increase in EMT-associated gene expression.
Furthermore, a study demonstrated that FOXM1 in-
duced EMT by binding to and increasing the promoter
activity of the Snail gene, a crucial transcriptional regula-
tor of EMT [135]. The investigators also found that
FOXM1 expression was induced in alveolar epithelial
cells after lung irradiation and that this induction
strengthened radiation-induced pneumonitis and pulmon-
ary fibrosis. In contrast, inhibition of FOXM1 expression
diminished fibrosis [135].

FOXM1 and tumor-associated macrophages
Tumor-infiltrating immune cells are a hallmark of most
solid tumors, and accumulating evidence has demon-
strated that the presence of varied immune populations
significantly affects prognosis in various mouse and hu-
man malignancies [136,137]. Macrophages that infiltrate
and interact with cancer cells, i.e., tumor-associated macro-
phages (TAMs), are the dominant immune cell compo-
nents and play indispensable roles in tumor development
and progression through secreting numerous cytokines,
chemokines and growth factors, which promote tumor
growth, angiogenesis, metastasis and immunosuppression
[138-140]. Two distinct subsets of macrophages have been
proposed, including classically activated (M1) and alterna-
tively activated (M2) macrophages. Evidently, the infiltrated
macrophages in most tumors are M2 phenotype, which
provides an immunosuppressive microenvironment for
tumor progression [138]. Jonathan et al. reported that
targeting tumor-infiltrating macrophages decreased the
number of tumor-initiating cells, relieved immunosup-
pression and improved chemotherapeutic responses in
pancreatic cancer [139]. Furthermore, several studies
have demonstrated the interaction between TAMs and
CSCs [138,141-143]. TAMs are closely associated with
CSCs in tumor lesion [144]. Yang et al. demonstrated
that TAMs regulate murine breast cancer stem cells
through macrophage-induced upregulation of Sox2, me-
diating by a novel paracrine EGFR/Stat3/Sox2 signaling
pathway [141]. Recent studies have shown that FOXM1
promotes macrophage migration and recruitment during
inflammation and tumor formation [145-147]. Ren and
colleagues have elegantly demonstrated that FOXM1 defi-
ciency did not influence the proliferation of macrophages
or their monocytic precursors but impaired monocyte re-
cruitment during liver repair [145]. The same research
team has further shown that expression of FOXM1 in mac-
rophages is required for pulmonary inflammation, recruit-
ment of macrophages into the tumor site and lung tumor
growth [146,147]. Collectively, those findings strongly sup-
port the potential role of FOXM1 in TAMs infiltration and
recruitment and tumor development and progression.
The interaction between CSCs and their niche is a

complicated and bidirectional process. The niche may
maintain self-renewal or dedifferentiation of CSCs by
producing stemness factors, and CSCs may affect the niche
by inducing EMT or other signaling pathways, such as
TGF-β. Although direct evidence of a role for FOXM1 in
the PCSC niche is lacking, FOXM1 conceivably has a cru-
cial role in PCSCs partially through regulation of PCSC
niche-associated signaling pathways.

Conclusions and future directions
Evidence confirming the concept that the presence of
CSCs contributes to the initiation and progression of
PDAC continues to mount. As a proliferation-associated
transcription factor, FOXM1 plays pivotal roles in the
development of PCSCs via cross-talk with several signal-
ing pathways, including HH, Notch, Bmi1, PI3K/AKT,
and Wnt, which are responsible for maintenance of stem-
ness. Moreover, FOXM1 is a key promoter of pancreatic
carcinogenesis, functioning as an initiator of the early
stages of PDAC development via interaction with signaling
pathways related to PanIN and PCSCs. A wealth of data
from recent molecular mechanistic studies of CSCs has
helped us to more deeply comprehend PCSCs, which
should give us a better understanding of the mechanisms
that govern the initiation and development of pancreatic
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cancer. Novel therapeutic strategies targeting PCSCs and
thus having a positive impact on clinical outcome in PDAC
patients can be envisaged because of this improved under-
standing. However, the molecular mechanisms by which
FOXM1 and other signaling pathways regulate PCSCs
remain poorly understood. Additionally, mechanisms gov-
erning the PCSC niche must be elucidated. Equally import-
ant would be to address the pancreatic cancer specific
questions like desmoplasia using the available tissue-
specific FOXM1 knockout models of FOXM1. Further
studies of the cross-talk of FOXM1 with other signaling
pathways as well as studies of the CSC niche also would
provide valuable insight into pancreatic cancer pathogen-
esis and lead to more preventive and therapeutic ap-
proaches for PDAC.
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