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Abstract

The complex correlation between regions caused by the externality of air pollution increases

the difficulty of its governance. Therefore, analysis of the spatio-temporal network of air pol-

lution (STN-AP) holds great significance for the cross-regional coordinated governance of

air pollution. Although the spatio-temporal distribution of air pollution has been analyzed, the

structural characteristics of the STN-AP still need to be clarified. The STN-AP in the Yangtze

River Delta urban agglomeration (YRDUA) is constructed based on the improved gravity

model and is visualized by UCINET with data from 2012 to 2019. Then, its overall-individual-

clustering characteristics are analyzed through social network analysis (SNA) method. The

results show that the STN-AP in the YRDUA was overall stable, and the correlation level

gradually improved. The centrality of every individual city is different in the STN-AP, which

reveals the different state of their interactive mechanism. The STN-AP could be subdivided

into the receptive block, overflow block, bidirectional block and intermediary block. Shang-

hai, Suzhou, Hangzhou and Wuxi could be key cities with an all above degree centrality,

betweenness centrality and closeness centrality and located in the overflow block of the

STN-AP. This showed that these cities had a greater impact on the STN-AP and caused a

more pronounced air pollution spillovers. The influencing factors of the spatial correlation of

air pollution are further determined through the quadratic assignment procedure (QAP)

method. Among all factors, geographical proximity has the strongest impact and deserves

to be paid attention in order to prevent the cross-regional overflow of air pollution. Further-

more, several suggestions are proposed to promote coordinated governance of air pollution

in the YRDUA.

1. Introduction

With the rapid development of industrialization and urbanization, China’s economy has

achieved rapid growth, but the country has suffered serious air pollution [1, 2]. To realize the

coordination between economic growth and ecological governance, in the Fourteenth Five-
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Year Plan, China clearly defined air pollution prevention and control actions that must be car-

ried out to eliminate heavy pollution weather. Air pollution is a typical public problem with

characteristics such as cross-regional, strong fluidity, wide influence, noncompetitive and non-

exclusive, and it usually formed a correlation within a certain region [3]. These make the effect

of the fragmented governance that depends on administrative divisions very limited. It is

objectively required to improve regional coordinated governance of air pollution.

As one of the most developed regions in China, the Yangtze River Delta urban agglomera-

tion (YRDUA) has suffered significant air issues [4, 5], and it has been listed as a key area for

air pollution control in China. Facing resource utilization, city construction and economic

development, cities are unwilling to take responsibility for the negative externalities of air pol-

lution, mostly because they selfishly pursue their own economic growth and environmental

statues. To improve coordinated governance of the YRD, in November 2018, China officially

identified the integrated development of the YRD as a national strategy. And in December

2019, the Outline of the Integrated Regional Development of the Yangtze River Delta was pro-

mulgated. This policy alleviate the conflict of motivations for air pollution control and enhance

the awareness of cooperation between cities, which provides an excellent opportunity for the

coordinated governance of air pollution in the YRD.

Recently, the spatio-temporal distribution and regional correlation of air pollution have

received extensive attention worldwide. Some studies have simulated the cross-regional

dynamic diffusion and transmission process of air pollution based on physical or chemical

methods. Researches concluding that the air pollution in a region will be imported from its

environs, then be transported to others, and ultimately forming a pollution cycle and causing

more serious pollution [6, 7]. Several studies prove that mobile monitoring across multiple

census tracts can quantitatively visualize the spatial distribution patterns of air pollution [8, 9].

Currently, some scholars finding that the spatial correlation of air pollution between regions

have formed a spatial network structure [10–13]. However, the study that analyze the struc-

tural characteristics formed by the spatio-temporal correlation of air pollution is relatively

rare.

Studies on the influencing factors of air pollution can be classified into two main aspects:

socio-economic factors and natural ones. Firstly, air pollution is highly correlated with eco-

nomic development [14]. Industrial pollution sources are positively correlated with air pollu-

tion [15]. In terms of natural conditions, there is a strong intercorrelation between air

pollution and temperature [16]. Unusual precipitation increases the amount of chloride ions

in the air, showing a negative impact on air pollution [17]. The impact of socio-economic fac-

tors is more significant than that of natural ones [18]. However, relying only on the research

on the influencing factors of the air pollution level is not enough to support the decision-mak-

ing of air pollution control at the regional scale. It is urgent to identify the spatial correlation

characteristics of air pollution between regions to realize the coordinated governance of

regional air pollution.

Therefore, in this study, (1) The spatial correlation of air pollution is identified by an

improved gravity model, and the STN-AP in the YRDUA is visualized by UCINET. (2) The

characteristics of the STN-AP are revealed by social network analysis (SNA) method. (3) The

key cities of the STN-AP are furtherly determined by the classification of individual and clus-

tering characteristics. (4) Based on quadratic assignment procedure (QAP) method, the socio-

economic and natural factors influencing the spatial correlation of air pollution are analyzed.

At last, several suggestions are proposed to strengthen the coordinated governance of air pollu-

tion in the YRDUA.
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2. Methods and data

2.1 Study area

The YRDUA includes 27 core cities as shown in S1 Table. In 2020, the population and GDP of

the YRD accounted for 16.66% and 24.09% of China, respectively. The annual average number

of days of air pollution (days that the air quality index, AQI, exceed 100) in the YRD was 55,

accounting for 15.07% of the whole year. Meanwhile, the annual average concentrations of

PM2.5, NO2, O3 in this region was 35mg/m3, 29 mg/m3 and 152 mg/m3 respectively, exceeding

the average level of China by 2 mg/m3, 5 mg/m3 and 14 mg/m3 respectively. The high fre-

quency of air pollution and the strong concentration of pollutants make the YRD the region

with one of the most serious air pollution in China and seriously violating the goals of ecologi-

cal sustainable development.

2.2 Identifying the spatial correlation of air pollution

Many modeling methods can be used to determine spatial correlation, such as vector autore-

gression model and gravity model [19–21]. However, the vector autoregression model is too

sensitive to the lag order, which will reduce the accuracy of the network correlation. The grav-

ity model is not only suitable for total data but also can comprehensively consider factors such

as economic development and geographical distance. Therefore, this study chooses the gravity

model to construct the STN. The traditional gravity model is as follows.

Rij ¼ kij

LiLj

Dij
2

ð1Þ

Rij represent the gravity between cities i and j. Li and Lj are attribute index of cities i and j
respectively. kij and Dij are the gravitational coefficient and the distance between the cities

respectively.

Energy consumption is the main source of air pollution because a large amount of carbon

dioxide, sulfur dioxide, soot, etc., which would form haze and acid rain. GDP and population

reflect the economic development level and size of a city respectively, and they are strongly related

to air pollution [22]. Single pollutant or the air pollution index (API) are often used as an indica-

tor to study air pollution and its mutual effects occurring in regions [23–25]. With the develop-

ment of air po1llution monitoring technology, three pollutants, i.e., PM2.5, O3, and CO, have been

added to the API to form the AQI. The AQI as an air pollution indicator can more fully reflect

the air pollution situation and make the research results more reliable. At the same time, the

research indicator are processed by geometric average in the gravity model [26, 27], which can

quantify the comprehensive effect of indicators, also can consider the cross-effects of each indica-

tors between regions. Therefore, we use the geometric average method to incorporate the above-

mentioned air pollution indicators into the gravity model. The ratio of the AQI of a city to the

total AQI to show the gravitational coefficient. The improved gravity model is as follows.

Rij ¼ kij

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
PiGiQiEi

4
p

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
PjGjQjEj

4
p

Dij
2

; kij ¼
Qi

Qi þ Qj
ði ¼ 1; 2; . . . ; n; j ¼ 1; 2; . . . ;mÞ ð2Þ

Rij is the spatial correlation of air pollution between city i and j. Qi, Pi (unit: 10,000 people), Gi

(unit: 100 million yuan) and Ei (unit: 10,000 tons of standard coal) represent the AQI of city i, the

total population at the end of the year, GDP and energy consumption, respectively. Furthermore,

energy consumption is expressed by the total energy consumption of industrial enterprises above

a designated size. kij and Dij (unit: km) are air pollution adjustment coefficient and spherical dis-

tance between cities, respectively.
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Gravity model also has defects, that is, the strength of a correlation cannot be directly

derived. The average value of a correlation is typically used as the critical value to judge the

strength of the correlation [12, 28], but this method is relatively subjective, which may lead to

errors in the results. To compensate for this defect, we adopted a relatively objective method,

the Weaver index [29]. In a multifactor system, the Weaver index is an effective tool for deter-

mining significant relationships. It establishes an approximate hypothesis to test by comparing

the actual distribution with the hypothetical distribution. The main steps are as follows.

Step 1: Set n samples and m types of indicators, where a(1,j),. . .,a(n,j) are n sample values

corresponding to the j index. After sorting the sequence from large to small, we can obtain A
(1,j),A(2,j),. . .A(n,j).

Step 2: Calculate the Weaver index w(i,j) of sample i under index j.

wði; jÞ ¼
Xn

i¼1

sðk; iÞ � 100Aði; jÞ=
Xn

i¼1

Aði; jÞ

" #2

ð3Þ

sðk; iÞ ¼
100=i; ðk � iÞ

0; ðk > iÞ
; ði ¼ 1; 2; . . . ; n; j ¼ 1; 2; . . .mÞ ð4Þ

(

Step 3: Set the main samples as u = {u|w(u,j) = minw(i,j), (i = 1,2,. . .,n)}, and the main sam-

ple set as Xj = {p|p = 1,2,. . .,u}. The index value A(u,j) of the u sample is the critical value deter-

mined by the Weaver index. The Xj sample above the critical value is an important sample.

2.3 Selecting the network characteristics index

SNA is a quantitative analysis method that combines graph theory with mathematical meth-

ods, it can effectively measure and analysis the network characteristics [30]. SNA has been

used to describe the characteristics of the air pollution network [31, 32]. In our paper, the 27

core cities in the YRDUA are used as the network nodes, and the spatial correlation of air pol-

lution identified above is used as paths to build social network. Furtherly, the network charac-

teristics are analyzed by the network characteristic index. The analysis index of network

characteristics mainly includes the overall network characteristics, individual network charac-

teristics, and network clustering characteristics [33]. Among them, the overall network charac-

teristics are described by network density (M1), network relevance (M2), the network

hierarchy (M3), and network efficiency (M4). M1 indicates the closeness of the correlation

among cities in the STN. M2 reflects the reachability and robustness of the STN. M3 and M4

represent the hierarchical structure of each city and the degree of redundant correlation in the

STN, respectively. The individual network characteristics are qualified by degree centrality

(N1), betweenness centrality (N2) and closeness centrality (N3). N1 denotes the extent to which

cities are centrally located in the STN. N2 shows the degree to which a city controls other cities.

N3 indicates the ability of a city to directly connect with other cities. The network clustering

characteristic use the convergent correlations [34] method to divide the STN into several dif-

ferent blocks based on certain rules, and then to analyze the role of each block and the relation-

ships between the blocks in the STN.

2.4 Data sources

This study constructs STN-AP based on air pollution data of 27 core cities in the YRDUA

from 2012 to 2019. The data sources are shown in Table 1.
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3. Results and discussion

3.1 Spatio-temporal distribution of air pollution in the YRDUA

This study identifies the spatial correlation of air pollution in the YRDUA through an

improved gravity model, and the STN-AP from 2012 to 2019 is visualized using UCINET 6.0
(see Fig 1).

Overall, the spatial correlation of air pollution in the YRDUA displays a typical "central–

marginal" network structure. Hangzhou, Shanghai, Wuxi, and Suzhou located at the center of

the STN-AP. There is no isolated city in the network, indicating that air pollution of a city is

not only related to its economic development and population, but also affected by air pollution

in other cities. Additionally, connections of cities changed dynamically during the study

period. Specifically, after 2016, Hangzhou changed from yellow to red, becoming the fourth

city with more than 20 outgoing relationships. After 2014, Huzhou changed from blue to yel-

low, indicating that the number of outgoing relationships between Huzhou and other cities is

increasing. Hangzhou and Huzhou are both located in the south of the YRDUA. While in

2013, Yangzhou dropped to blue, and in 2014, it rose to yellow. The reason is that Yangzhou

lost contact with Xuancheng in 2013, which caused the number of outgoing relationships in

Yangzhou to drop from 10 to 9, but in 2014, Yangzhou re-established contact with Xuancheng.

In the above analysis, we only categorize the cities into three intervals based on the number of

outgoing relationship between cities, but the role of each city in STN-AP needs to further

study.

3.2 Characteristics of the STN-AP in the YRDUA

(1) Overall characteristics. The overall characteristics of the STN-AP in the YRDUA

from 2012 to 2019 are calculated based on UCINET 6.0 (see Table 2).

Calculated by 27×(27–1), the maximum number of theoretical relationships of the whole

network is 702, but the actual annual average number of relationships from 2012 to 2019 is

only 262 (see Table 2). It can be seen that many cities still have the possibility of connection in

this STN-AP. Except for 2017 and 2019, the density of the STN-AP shows an upward trend.

Both the yearly value and the annual average value of the network relevance of the STN-AP are

1, indicating that all 27 cities have air pollution connections. In terms of overall efficiency,

more than 70% of the correlation in the STN-AP overlap, meaning that the STN-AP has good

stability but its efficiency is not high. With the increase in the interactions of air pollution,

there is no obvious network hierarchy, which means that the subordination between cities in

Table 1. Data sources.

Data Unit Type Source

AQI \ txt http://www.mee.gov.cn

Population 10,000 people txt The statistical yearbook and development bulletin of each city

Energy consumption 10,000 tons of standard coal txt

GDP 100 million yuan txt

Urbanization level % txt

Industrial structure % txt

Car ownership 10,000 vehicles txt

Precipitation Millimeter txt http://data.cma.cn/data/weatherBk.html

Temperature Celsius txt

Sunshine hours Hour txt

Spherical distance Kilometer txt Google Maps software

https://doi.org/10.1371/journal.pone.0262444.t001
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the STN-AP is weak. Comprehensively, the STN-AP structure in the YRDUA has been gradu-

ally optimized, but there are still problems such as insufficient correlation and low network

efficiency.

(2) Individual characteristics. Based on the individual characteristics of the STN-AP of

the YRDUA (see S2 Table), the degree centrality of all 27 cities shows an obvious nonequilib-

rium situation. Nine cities have an above average level, accounting for 47.11%. This result

Fig 1. Spatio-temporal network of air pollution in the YRDUA. Since the number of outgoing relationships in each city ranges from 0 to 30, cities

with more than 20 outgoing relationships are marked in red, those with between 10 and 20 are marked in yellow, and the others are marked in blue.

https://doi.org/10.1371/journal.pone.0262444.g001

Table 2. Overall characteristics of the spatio-temporal network in the YRDUA.

Year Actual relationship M1 M2 M3 M4

2012 256 0.365 1 0 0.292

2013 257 0.366 1 0 0.289

2014 261 0.372 1 0 0.277

2015 264 0.376 1 0 0.268

2016 267 0.380 1 0 0.258

2017 265 0.378 1 0 0.265

2018 266 0.379 1 0 0.262

2019 263 0.375 1 0 0.260

Average 262 0.374 1 0 0.271

https://doi.org/10.1371/journal.pone.0262444.t002
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indicates that they have more connections with other cities and are located at the center of

STN-AP in the STN-AP. Among them, Suzhou, Wuxi, and Hangzhou are the top three cities

and they are pivotal areas for other cities. However, Yancheng, Chizhou and Zhoushan are the

bottom three cities, as they are less correlated with other cities and are located in marginal

areas of the STN-AP. Six cities, accounting for 81.84%, have an above average betweenness

centrality. Among them, Suzhou, Wuxi, and Hangzhou play a dominant role in the YRDUA

as they exhibit strong control over the STN-AP. However, the betweenness centrality of Chuz-

hou, Chizhou and Zhoushan makes them the bottom three cities. Nine cities including

Suzhou, Wuxi and Nanjing have an above average closeness centrality, illustrating that these

cities have more direct correlation to other cities in the STN-AP. The reason is that most of

these cities are developed and have a strong resource conversion ability, so they can quickly

establish correlation with other cities in the STN-AP. Yancheng, Chizhou and Zhoushan have

scarce closeness centrality. We found that for all three types of centralities, Suzhou, Wuxi,

Hangzhou, Shanghai, Nanjing, and Changzhou are all above average in the STN-AP.

(3) Clustering characteristics. The 27 cities are divided into four blocks with a maximum

segmentation depth of 2 (see S3 Table). In addition, the four blocks are defined as four types. The

first type is the receptive block which receives more external relationships compared to the over-

flowing external relationships of the block. The second type is the overflow block which overflows

more relationships to other blocks than it receives external relationships. The third type is the

bidirectional block which exhibits both external relationships and internal reception relationships,

and the internal members of this block have more relationships. The fourth type is the intermedi-

ary block which has more external relationships and internal relationships as well as closer rela-

tionships with the members belong to other blocks. After the blocks are divided, the degree of

internal agglomeration and external overflow can be described by comparing the actual internal

relationship ratio (Y) and the expected internal relationship ratio (Z) of the block. We set λ as the

number of overflow relationships inside the block, ε as the total number of overflow relationships,

while θ and η as the number of cities inside the block and the number of all cities, respectively.

The calculation methods are as follows: Y = λ/ε and Z = (θ-1)/(η-1). The overflow relationships of

each block are presented in S4 Table.

There are 264 relationships in the STN-AP. Among them, 126 relationships are within each

block, and 138 relationships are distributed between the blocks. The actual internal relation-

ship ratio (91%) of block I is greater than the expected internal relationship ratio (27%). The

number of received relationships in the block is 93, but the total number of overflow relation-

ships is only 44. Thus, the block is the receptive block, and it has strong pollution absorption

capacity. The actual internal relationship ratio (37%) of block II is greater than the expected

internal relationship ratio (19%). The number of relationships inside the block is 52, and the

number of relationships outside the block is 69. Thus, the block is the intermediary block, and

it plays the role of a connector in the STN-AP. The actual internal relationship ratio (33%) of

block III is greater than the expected internal relationship ratio (23%). The block has a high

number of overflow relationships as 122, but 63 received relationships. Thus, this block is the

overflow block with a strong pollution spillover effect. Finally, the actual internal relationship

ratio (71%) of block IV is greater than the expected internal relationship ratio (19%), and it has

28 overflow relationships and 57 received relationships. Thus, block IV is the bidirectional

block, and its absorption pulling effect is greater than its spillover pushing effect.

3.3 Key cities of the STN-AP

Regarding the individual characteristics of the STN-AP, we found that Suzhou, Wuxi, Hang-

zhou, Shanghai, Nanjing, and Changzhou are the cities with degree centrality, betweenness
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centrality and closeness centrality all above the average level. Compared with other cities, their

changes in the population, economy, and energy consumption may cause more cities to

change in the same way, however, they are not easily affected by other cities. At the same time,

regarding the clustering characteristics of the STN-AP, the cities in the overflow block of the

STN-AP not only have strong air pollution overflow capabilities but also jointly overflow with

the cities in the block. This joint overflow is a difficult problem of air pollution control, because

once a joint overflow is formed, these cities may have more pollution overflow to other cities

than single city without joint. Considering the individual characteristics and clustering charac-

teristics of the STN-AP, we classified the 27 cities into four quadrants based on whether they

are cities with degree centrality, betweenness centrality and closeness centrality are all above

the average level or not and whether they are located in the overflow block (Fig 2).

Wuxi, Suzhou, Shanghai, and Hangzhou are not only cities with degree centrality, between-

ness centrality and closeness centrality are all above the average level in the STN-AP but also

are located in overflow block. Thus, they could become the key cities of the STN-AP. Wuxi

and Suzhou have serious air pollution, and Hangzhou and Shanghai have high population den-

sity [35], which may be a reason why they have become the key cities. On the one hand, key cit-

ies with great impact on the STN-AP can become the leaders, to be pioneers in formulating

new air pollution policies and measures, then make improvements based on the implementa-

tion effects, and spread to others cities. At the same time, key cities can establish a joint mecha-

nism for air pollution prevention and control to reduce their own pollution spillover and

break the jointly overflow. On the other hand, based on inter-provincial administrative bound-

aries, key cities can be used as bridges to build inter-provincial connections to enhance the

coordinated governance of the YRDUA. For each province, Shanghai can give full play to its

advantages in air pollution control technological innovation to drive other cities. Jiangsu Prov-

ince should continue to maintain the advantages of Wuxi and Suzhou in the environmental

protection industry, and take them as the head to establish the environmental protection

industry chain between cities, and further extend it to other regions. It also should help Anhui

Fig 2. Classification of all above centrality and overflow block. All above mean that the city’s degree centrality, betweenness centrality and

closeness centrality are all above the average level.

https://doi.org/10.1371/journal.pone.0262444.g002
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Province, which is geographically nearby, jointly with Shanghai and Zhejiang Province to

establish a regional cooperation mechanism. Zhejiang Province may promote the formation of

a pollution control circle in Hangzhou, Jiaxing and Huzhou and gradually expand the circle

beyond the province.

3.4 Influencing factors of the spatial correlation of air pollution

Since the variables that influence the spatial correlation of air pollution are correlated data, the

measurement methods traditionally to analysis the correlated data may have multi-collinearity

problems, while QAP method does not need to consider the independence between variables,

so it can overcome the problem [36, 37]. Therefore, this study uses the QAP method for corre-

lation and regression analysis. We analysis the influencing factors of the spatial correlation of

air pollution from following two aspects: (i) the socio-economic differences related to human

activities determine the air pollution differences among cities, resulting in pollution overflow

between cities and spatial changes in air pollution. Among all economic factors, the urbaniza-

tion level has a strong impact on the spatial correlation of air pollution [38]. A change in the

industrial structure reflects industrial optimization and technological upgrading, which is

closely related to air pollution control. The increase in the number of motor vehicles will put

tremendous pressure on urban traffic and air pollution, as manifested in congested roads and

poor air flow. Additionally, the fine particles and nitrogen oxides in motor vehicle exhaust are

important causes of haze. Therefore, we choose GDP (G), energy consumption (E), the urbani-

zation level (U), the industrial structure (I) and car ownership (C) to measure socio-economic

differences. Among them, the industrial structure is the ratio of the GDP of the tertiary indus-

try to the regional GDP, and the urbanization level is the ratio of the urban population to the

total population. (ii) Natural factors such as temperature, precipitation, and sunshine hours

play an important role in the diffusion and accumulation of air pollution, resulting in changes

in the spatial correlation [39]. Meanwhile, the air pollution of cities is also more susceptible to

the impact of adjacent cities, which manifests as a spillover effect. Therefore, temperature (T),

precipitation (W), sunshine hours (S), and geographical distance are used to measure the dif-

ferences in natural factors. Among them, distances of [0, 200), [200, 400), and [400, 600) (unit:

km) are selected to measure the proximity relationship, represented by D1, D2 and D3, respec-

tively. The calculation results are shown in S5 and S6 Tables.

The correlation results show that all relevant indicators are significant, indicating that the

regional differences in all of the factors have a strong influence on the spatial correlation of air

pollution. Among them, the correlation coefficients of the differences in the GDP, energy con-

sumption, urbanization level, industrial structure, temperature and distances less than 200 km

of each city are positive, and the intensity order is D1> E> C> G> I> U> T. The correlation

coefficients of the differences in precipitation, sunshine hours and distances above 200 km are

negative, and the intensity order is D2> D3>W> S. Except for the differences in car owner-

ship, sunshine hours, and distances above 200 km, the regression results for the other factors

are significant, meaning that the differences in these factors have a strong influence on the spa-

tial correlation of air pollution [13]. Among them, the regression coefficients of the differences

in GDP, energy consumption, the urbanization level, the industrial structure, temperature and

distances less than 200 km is positive, indicating that the difference in these factors between

cities is greater, the intensity of their promotion is D1> E> I> G> T> U. Comparatively, the

regression coefficients of the difference in precipitation is negative, indicating that the larger

the difference in precipitation between cities, the smaller the intensity of the correlation.

Among all the factors that influence the correlation of air pollution, distances less than 200

km, that is, geographical proximity, is the factor that has the greatest impact on the strength of
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correlation (0.513) and changes in differences (0.358). This is similar to the result that geo-

graphical distance can significantly affect the correlation of regional pollution control [28].

Therefore, cities should pay attention to their geographical proximity to prevent the overflow

and spread of air pollution. For cities that have already caused air pollution overflow, appropri-

ate economic or technical compensation should be provided to the cities that have received the

overflow. Additionally, socio-economic factors such as energy consumption and the economic

level also have a nonnegligible impact on the spatial correlation of air pollution. Compared

with natural factors, such as temperature, the elasticity of socio-economic factors is relatively

large, and the possibility that it will change is greater. Therefore, we suggest that the govern-

ment should try to narrow the socio-economic differences between regions to accelerate the

coordinated governance of air pollution. Specifically, the development of urbanization should

be encouraged by the government. The regional energy consumption structure and industrial

structure should be adjusted, and technology and capital in areas with a low economic level

should be supported. In addition, urban energy consumption, car ownership and the urbaniza-

tion level are all important aspects of environmental regulation, while environmental regula-

tion is an important measure for controlling air pollution [40]. Therefore, we suggest that

when formulating environmental governance policies, the government could improve laws

and regulations concerned with regional air pollution control and regional ecological coopera-

tion to realize the integrated high-quality development of the YRDUA.

3.5 Limitations

This study identified the spatial correlation of air pollution in YRDUA. However, only five

socio-economic factors and four natural factors are analyzed. In view of the complex situation

and the emerging factors, the corresponding indicators of spatial correlation of air pollution

are far more than we consider. Additionally, the conflict of motivations for decision-making

between cities are objectively existing in practice, but we have not yet estimate it in current

study. Therefore, the conflict of motivations for decision-making and multi-factors affecting

spatial correlation of air pollution would be analyzed in the future.

4. Conclusions

Based on the panel data of 27 core cities in the Yangtze River Delta urban agglomeration

(YRDUA), we construct spatio-temporal network of air pollution (STN-AP) and reveal its

characteristics, based on which, influencing factors of spatial correlation of air pollution are

analyzed. Conclusions including: (1) the spatial correlation of air pollution in the YRDUA

formed a complex STN-AP and displayed a typical "central–marginal" network structure. Dur-

ing the study period, the number of outgoing relationships of Hangzhou and Huzhou with

other cities had gradually increased. (2) The STN-AP of YRDUA was relatively stable. Suzhou,

Wuxi, Hangzhou, Shanghai, Nanjing, and Changzhou with degree centrality, betweenness

centrality and closeness centrality all above the average level had a greater impact on the

STN-AP. The STN-AP could be subdivided into the receptive block, overflow block, bidirec-

tional block and intermediary block, and the cities in the overflow block caused air pollution

spillovers to more cities. (3) After categorizing the individual characteristics and clustering

characteristics of the STN-AP, we found that Wuxi, Suzhou, Shanghai, and Hangzhou could

become the key cities with degree centrality, betweenness centrality and closeness centrality

above average level and in the overflow block. The YRDUA should prevent air pollution in key

cities from overflow to other cities, and take advantage of the greater impact of key cities in the

STN-AP and regard key cities as leaders to guide other cities in planning air pollution control.

(4) Socio-economic and natural factors have varying degrees of impact on STN-AP spillover in
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the YRDUA, and among these factors, geographical proximity has the greatest impact. Cities

should prevent air pollution from geographical proximity cities from overflow, and can take

economic or technical compensation measures for cities that have already overflowed. At the

same, economic and social differences between regions should be narrowed and environmen-

tal regulations should be strengthened. In the context of the integration of the Yangtze River

Delta, the urban agglomeration should pay more attention to the spatial relationships and

joint control of air pollution.
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