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Abstract: The cell-surface topography and density of nicotinic acetylcholine receptors (nAChRs) play
a key functional role in the synapse. Here we employ in parallel two labeling and two super-resolution
microscopy strategies to characterize the distribution of this receptor at the plasma membrane of
the mammalian clonal cell line CHO-K1/A5. Cells were interrogated with two targeted techniques
(confocal microscopy and stimulated emission depletion (STED) nanoscopy) and single-molecule
nanoscopy (stochastic optical reconstruction microscopy, STORM) using the same fluorophore, Alexa
Fluor 647, tagged onto either α-bungarotoxin (BTX) or the monoclonal antibody mAb35. Analysis of
the topography of nanometer-sized aggregates (“nanoclusters”) was carried out using STORMGraph,
a quantitative clustering analysis for single-molecule localization microscopy based on graph theory
and community detection, and ASTRICS, an inter-cluster similarity algorithm based on computational
geometry. Antibody-induced crosslinking of receptors resulted in nanoclusters with a larger number
of receptor molecules and higher densities than those observed in BTX-labeled samples. STORM
and STED provided complementary information, STED rendering a direct map of the mesoscale
nAChR distribution at distances ~10-times larger than the nanocluster centroid distances measured
in STORM samples. By applying photon threshold filtering analysis, we show that it is also possible
to detect the mesoscale organization in STORM images.

Keywords: nicotinic acetylcholine receptor; super-resolution microscopy; nanoscopy; STED; STORM;
cholesterol; nanoclusters

1. Introduction

The spatial organization of membrane proteins is intimately linked to their functional
properties, and this is particularly relevant in the case of ligand-gated receptors, where the
signaling efficacy of the external ligand is tightly coupled to the supramolecular organiza-
tion of the receptor molecules. For this reason, the characterization of the supramolecular
topography of the ubiquitous neurotransmitter for acetylcholine, the nicotinic acetylcholine
receptor (nAChR), and the factors that regulate its topography in the membrane are im-
portant areas of research for understanding the functional and pathophysiological conse-
quences of receptor distribution. At the mature cholinergic synapse, the neuromuscular
junction (NMJ), nAChRs are organized in the form of a single 2-dimensional supramolecu-
lar complex of quasi-maximal packing density in a small area juxtaposed to the nervous
terminal, patched at the extraordinary density of 10,000–20,000 particles/µm2; their density
falls sharply in the rest of the plasma membrane to less than <100 particles/µm2 ([1,2]
reviewed in [3]). Synaptic strength and efficacy are to a great extent determined by the
number of active nAChR molecules. This, in turn, relies on the equilibrium between two
sets of factors: (i) diffusion into and out of the synaptic region from non-synaptic (extrasy-
naptic) areas [4,5], and (ii) the turnover of receptors at the cell surface [6–9], determined by
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the rate and extent of biosynthesis and exocytic delivery to the plasmalemma on the one
hand, and removal of surface receptors by internalization (endocytosis) on the other.

Using stimulated depletion super-resolution microscopy (STED) [10] the nAChR was
the first neurotransmitter receptor to be imaged with optical nanoscopy, revealing the
occurrence of supramolecular aggregates in the form of clusters of nanometric dimen-
sions [11]. Subsequent studies from our laboratory have employed total internal reflection
(TIRF) microscopy and single-particle tracking methods [12] to follow the translational
motional regimes of the receptor in live-cell imaging. More recently, single-molecule local-
ization microscopy (SMLM) methods, and in particular stochastic optical reconstruction
microscopy (STORM) [13] were applied to describe the heterogeneous and anomalous
diffusional properties of the receptor at the cell surface [14,15].

Here, we study the cell-surface supramolecular organization of the adult muscle-type
nAChR heterologously expressed in a mammalian cell system. We label the nAChR with
either a monovalent ligand, fluorescent α-bungarotoxin (αBTX) conjugated with Alexa
Fluor 647 or a multivalent ligand, the primary monoclonal antibody mAb35 against the
α1 subunit of the receptor, also directly tagged with the same fluorophore, Alexa Fluor
647. The cyanine dye Alexa Fluor 647 is commonly used for STORM imaging applications
because of its photo-switchable character and the photostability of its fluorophore [16],
but it is not commonly applied in STED microscopy. Here we show that it is possible to
successfully use this fluorophore to image the nAChR in fixed cells using STORM and
confocal/STED nanoscopies alike. In STORM single-molecule localization microscopy
(SMLM), super-resolution images are not directly captured in a single micrograph; instead,
their localizations are reconstructed from the stochastic on-off blinking of the fluorophores
tagging individual molecules. Some molecules may thus not appear in the reconstruction
due to sub-stoichiometric or total lack of labeling, or exhaustion of the fluorophore. In
contrast, single molecules may be counted more than once, giving rise to overcounting [17].
The latter would be particularly detrimental to our specific goals, namely determining the
topographic distribution and degree of aggregation of individual receptor molecules. STED
nanoscopy is a non-stochastic, targeted direct (“what you see is what you get”) method
that does not require reconstruction of the localizations via post-acquisition analysis and
is therefore not prone to overcounting artifacts [17]. The complementary use of two
different super-resolution approaches in tandem provides more solid grounds to validate
the occurrence of protein molecular aggregates in cell membranes. For the analysis of the
state of aggregation of the nAChR we apply STORMGraph, an automated quantitative
clustering method developed for SMLM and based on graph theory and community
detection [18]. We also employ a recently introduced analytical tool, ASTRICS, an algorithm
and inter-cluster similarity measure based on triangulation of data points and α-shapes [19],
and compare the results with those obtained with the original STORMGraph version.
Finally, by applying a photon threshold filtering procedure we show that it is possible to
reveal the mesoscale organization in STORM samples.

2. Results
2.1. Correlative Confocal and STED Microscopy

CHO-K1/A5 cells, a clonal cell line robustly expressing adult muscle-type nAChR [20]
were used throughout. In the case of the primary monoclonal antibody, this protein was
directly tagged with Alexa Fluor 647. PFA-fixed cells labeled with Alexa Fluor 647-BTX
or Alexa Fluor 647-mAb35 against the nAChR α-subunit were imaged at their coverslip-
adhered (ventral) surface. Between 8 and 20 cells were recorded per condition. As shown in
Figure 1, in both series of experiments cell-surface membranes exhibited a fine punctiform
distribution as well as spots of slightly larger nanometric dimensions.
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Figure 1. Confocal and STED images of the same ROI showing cell-surface nAChRs labeled with 
Alexa Fluor 647-mAb. Scale bar corresponds to 1 μm. 

2.2. STORM Imaging 
Figure 2 shows reconstructed nAChR puncta imaged with SMLM (STORM mode). 

Superresolution images of the entire flat ventral surfaces of the cells were acquired, con-
taining tens of thousands of validated localizations. 

Figure 1. Confocal and STED images of the same ROI showing cell-surface nAChRs labeled with
Alexa Fluor 647-mAb. Scale bar corresponds to 1 µm.

2.2. STORM Imaging

Figure 2 shows reconstructed nAChR puncta imaged with SMLM (STORM mode).
Superresolution images of the entire flat ventral surfaces of the cells were acquired,
containing tens of thousands of validated localizations.

2.3. STORMGraph Analysis of nAChR Nanoclusters

We next applied STORMGraph [18] for the identification and analysis of particle
nanoclusters. This analytical approach differentiates these supramolecular aggregates
from single nAChR particles at the cell surface. The method applies graph theory to
detect particle cluster nodes and assign or discard molecules (particles) to clusters, as
schematically depicted in Figure 3.

Using this approach nanoclusters were observed and quantitated under both experi-
mental conditions. As shown in Figure 4, one of the outputs of STORMGraph provides
immediate visual rendering of isolated single-particle localizations and distinct, individu-
ally identified nanoclusters, respectively.
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Figure 2. Representative raw STORM image showing reconstructed BTX-labeled nAChR localiza-
tions recorded from the entire coverslip-adhered ventral surfaces of CHO-K1/A5 cells. The ROI is 
20 × 20 μm. The bar corresponds to 1 μm. 
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Figure 2. Representative raw STORM image showing reconstructed BTX-labeled nAChR localiza-
tions recorded from the entire coverslip-adhered ventral surfaces of CHO-K1/A5 cells. The ROI is
20 × 20 µm. The bar corresponds to 1 µm.

Examples of nanocluster parameters obtained through STORMGraph analysis of the
two experimental super-resolution imaging conditions are shown in Figure 5. The number
of molecules assigned to a cluster and the relative nanocluster density was higher for mAb-
labeled samples (p < 0.0001). Statistically significant differences were also observed for the
individual nanocluster area, and the inter-nanocluster centroid distance (See Figure S3),
higher for BTX-labeled samples (p < 0.0001). The number of molecules per unit area
within a single nanocluster (i.e., intra-cluster molecular density) was higher in BTX-labeled
samples (p < 0.05).
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Figure 3. Schematic flow diagram of the STORMGraph analysis. STORMGraph first determines the 
ROI-specific length scale (ro) using a heuristic method or kNN distances. The graph is constructed 
using the weights formula in the central upper panel. Non-clustered nodes are subsequently re-
moved, and the graph is regenerated with a new ro. A hierarchy of node clusters is found using the 
multi-level community detection algorithm followed by a merging algorithm that combines con-
cepts of both symmetric kNN graphs and mutual kNN graphs. STORMGraph only merges clusters 
if they remain connected after the random removal or displacement of any node. The localization 
data with the cluster labels allows the extraction of data such as cluster area, localizations per clus-
ter, and other metrics [18]. 

Figure 3. Schematic flow diagram of the STORMGraph analysis. STORMGraph first determines the
ROI-specific length scale (ro) using a heuristic method or kNN distances. The graph is constructed
using the weights formula in the central upper panel. Non-clustered nodes are subsequently removed,
and the graph is regenerated with a new ro. A hierarchy of node clusters is found using the multi-level
community detection algorithm followed by a merging algorithm that combines concepts of both
symmetric kNN graphs and mutual kNN graphs. STORMGraph only merges clusters if they remain
connected after the random removal or displacement of any node. The localization data with the
cluster labels allows the extraction of data such as cluster area, localizations per cluster, and other
metrics [18].
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ticles in a 10 × 10 μm ROI (left picture is the ROI number 3 of Figure S1). Non-clustered, isolated 
particles are shown in dark blue. nAChR molecules classified as clustered by STORMGraph are 
depicted as slightly larger colored spots, each color identifying an individual nanocluster. Individ-
ual spot sizes are not drawn to scale (size is irrelevant for the analysis). The cluster with the largest 
number of molecules in the example shown on the left (BTX-labeled sample) includes approxi-
mately 4% of the validated localizations in the ROI. In the case of the mAb-tagged sample (illustra-
tion on the right), the “macro” nanocluster outliers, i.e., the macro-nanoclusters account for up to 
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Examples of nanocluster parameters obtained through STORMGraph analysis of the 
two experimental super-resolution imaging conditions are shown in Figure 5. The number 
of molecules assigned to a cluster and the relative nanocluster density was higher for 
mAb-labeled samples (p < 0.0001). Statistically significant differences were also observed 
for the individual nanocluster area, and the inter-nanocluster centroid distance (See Fig-
ure S3), higher for BTX-labeled samples (p < 0.0001). The number of molecules per unit 
area within a single nanocluster (i.e., intra-cluster molecular density) was higher in BTX-
labeled samples (p < 0.05).  

Figure 4. STORMGraph depiction of clustered and non-clustered (i.e., isolated single-molecule
localizations) nAChR particles. The plots show the total single-molecule localizations of nAChR
particles in a 10 × 10 µm ROI (left picture is the ROI number 3 of Figure S1). Non-clustered, isolated
particles are shown in dark blue. nAChR molecules classified as clustered by STORMGraph are
depicted as slightly larger colored spots, each color identifying an individual nanocluster. Individual
spot sizes are not drawn to scale (size is irrelevant for the analysis). The cluster with the largest
number of molecules in the example shown on the left (BTX-labeled sample) includes approximately
4% of the validated localizations in the ROI. In the case of the mAb-tagged sample (illustration on the
right), the “macro” nanocluster outliers, i.e., the macro-nanoclusters account for up to 5%. The bar
corresponds to 1 µm.

To learn whether the distribution of single-molecule localization varied across the
surface of the plasmalemma, we selected ROIs from the peripheral and central regions of
the cell (Figure S1). The periphery of the cells exhibited a higher density than the central
region in mAb (<0.01) and BTX-labeled samples (<0.0001), but no differences were observed
in the number of clustered molecules between these two regions for a given fluorescent
label. From this type of analysis, we can conclude that the nanoclusters in the peripheral
region of the cell are more tightly packed, in smaller areas, than those located in the central
area of the cell. This is in agreement with the analysis of inter-nanocluster centroid distances
(Figure S3). The statistics indicate that the centroids of the nanoclusters are separated by
larger distances in the central region, both for BTX and mAb (p < 0.0001). Numerical results
are listed in Table S1 and shown in Figures S2 and S4.
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nanoclusters) are shown in log scale.

2.4. STORMGraph + ASTRICS Analysis of nAChR Nanoclusters

The addition of ASTRICS to the STORMGraph analysis (STORMGraph+ASTRICS)
applies the similarity measure implemented in ASTRICS [19] to the lower levels of the
cluster hierarchy generated by STORMGraph. The combined algorithms were used to
identify nanoclusters, and multiple variables quantitated under both experimental condi-
tions using custom-written software. mAb-tagged samples exhibited higher densities, a
larger proportion of clustered molecules, and clusters with a higher number of molecules
than BTX-labeled samples (p < 0.0001). BTX-labeled samples showed larger nanocluster
areas and larger inter-nanocluster centroid distances than mAb-tagged samples (p < 0.0001).
Results of these analyses are shown in Figure 6.
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Figure 6. Main parameters derived from the STORMGraph + ASTRICS analysis of the STORM
experimental data. The whiskers represent the interquartile range and the median. The extremes of
the intervals indicate the 2.5–97.5 percentile. The dots are outliers. All the plots (except for molecules
in nanoclusters) are shown in log scale. Metrics derived from these analyses are listed in Table 1 and
in the Discussion section.

Central regions from BTX-labeled samples showed larger centroid distances (p < 0.05),
larger areas (p < 0.01), and lower densities (p < 0.001) than peripheral regions from the
same labeled samples. Peripheral regions from mAb-labeled samples showed statistically
significant higher densities than central regions (p < 0.0001). The latter exhibited larger
centroid distances than peripheral regions from mAb (p < 0.001). No statistical differences
were found in the number of clustered molecules, the number of molecules per nanocluster,
and areas when comparing the two regions from mAb-labeled samples. When we further
compared parameters from the same regions of mAb vs. BTX-labeled samples, we found
that central regions from mAb-labeled samples showed higher densities (p < 0.05), a higher
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percentage of clustered localizations (p < 0.001), and a larger number of molecules per
nanocluster (p < 0.0001) than BTX-labeled samples. Central and peripheral regions from
BTX-labeled samples showed larger centroid distances and larger areas than mAb-labeled
samples (p < 0.001). Peripheral regions from mAb-labeled samples had higher densities,
more clustered molecules, and a larger number of molecules per nanocluster than BTX-
labeled samples (p < 0.001, p < 0.0001, p < 0.0001, respectively). Results of this analysis are
shown in Figure 7 and listed in Table 2.
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Figure 7. Main parameters derived from STORMGraph + ASTRICS of the STORM experimental data
in the peripheral and central regions of the cell. The whiskers represent the interquartile range and
the median. The extremes of the intervals indicate the 2.5–97.5 percentile. The dots are outliers. All
plots (except for the one showing molecules in nanoclusters) are in log scale. The numerical values
for this Figure are listed in Table 2.
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Table 1. Comparison of parameters resulting from application of the STORMGraph + ASTRICS
analysis to STORM data *.

Parameters BTX mAb

% Localizations in nanoclusters 29.12 (24.31–36.34) 56.04 (53.18–60.17)

Single nanocluster area (µm2) 0.0025 (0.0024–0.0026) 0.0013 (0.0013–0.0014)

Molecule density (number of molecules/µm2

within individual nanocluster)
8726 (8422–9025) 19,661 (18,941–20,408)

Validated localizations per nanocluster 20 (20–21) 25 (24–26)

Inter-nanocluster centroid distance (µm) 2.25 (2.24–2.26) 1.58 (1.57–1.59)

* Data are expressed as median and lower 95% CI of the median/upper 95% CI of the median values in brackets.

Table 2. Metrics derived from STORMGraph + ASTRICS analysis of STORM images, subdivided into
peripheral and central regions *.

BTX mAb

Median Peripheral Region Central Region Peripheral Region Central Region

% Molecules in nanoclusters 24.99 (19.59–32.28) 35.11 (29.00–42.61) 57.80 (44.92–62.34) 54.32 (49.06–60.94)

Single nanocluster area (nm2) 2494 (2294–2658) 2665 (2531–2813) 1375 (1297–1519) 1337 (1264–1411)

Nanocluster density (number
of molecules/nm2) 9.15 (8.65–9.81) 8.21 (7.80–8.67) 20.14 (18.97–21.23) 19.29 (18.61–20.25)

Molecules/nanocluster 20 (19–21) 21 (20–22) 25 (23–26) 25 (24–26)

Inter-nanocluster centroid
distance (nm) 2248 (2233–2262) 2272 (2253–2291) 1478 (1467–1489) 1663 (1651–1673)

* Data are expressed as median and lower 95% CI of the median/upper 95% CI of the median values in brackets.

2.5. Comparison between STED and STORM Parameters

Because of the physical principles on which the two nanoscopy approaches rely (see
e.g., [10]), the results obtained with STED and STORM complement each other and provide
information on different scales; however, only a few metrics can be directly matched, since
one of them (STORM) looks at single molecules and macromolecular aggregates whereas
STED currently resolves the latter [11]. Thus, the number of single-molecule localizations,
the percentage of clustered localizations, the number of localizations per cluster and the
density of the nanoclusters were quantified in STORM samples only. The distances between
nanocluster and spot centroids as well as their size could be measured in the two types
of nanoscopies. The areas of the spots imaged with STED were on average larger than
those of the STORM nanoclusters (p < 0.0001), and the inter-centroid distances measured
in STED images were roughly twice the median distance of the nanoclusters identified
with STORM (p < 0.0001) (Table 3), suggesting that the two techniques accentuate different
scales of the samples.

Information about the shapes of the spots and nanoclusters was also obtained. Since
most of them exhibited an ellipsoid shape under both types of nanoscopy, we implemented
a method (detailed in Supplementary Material) to calculate the eccentricity of the ellip-
soid and the length of its major axis. STED spots had a greater eccentricity than STORM
nanoclusters (p < 0.0001). In STED BTX-tagged samples, inter-spot distances were approx-
imately 8.6 times larger than the corresponding BTX-labeled inter-nanocluster distances
in STORM (p < 0.0001), and in mAb-tagged samples, inter-spot distances were 10.8 times
longer than inter-nanocluster distances imaged in STORM (p < 0.0001).
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Table 3. Comparison of parameters obtained by applying STORMGraph + ASTRICS analysis to
STED and STORMGraph to STED data *.

STORM STED

Parameters BTX mAb BTX mAb

% Localizations in
nanoclusters 29.12 (24.31–36.34) 56.04 (53.18–60.17) - -

Nanocluster/spot area (µm2) 0.0025 (0.0024–0.0026) 0.0013 (0.0013–0.0014) 0.004 (0.003–0.005) 0.001 (0.0006–0.0017)

Relative nanocluster density
(number of molecules/µm2) 8726 (8422–9025) 19,661 (18,941–20,408) - -

Validated localizations per
nanocluster 20 (20–21) 25 (24–26) - -

Inter-nanocluster/spot
centroid distance (µm) 2.25 (2.24–2.26) 1.58 (1.57–1.59) 4.42 (4.36–4.47) 3.2 (3.06–3.32)

Nanocluster/spot eccentricity 0.72 (0.71–0.73) 0.69 (0.68–0.70) 0.93 (0.91–0.94) 0.89 (0.85–0.94)

Major axis length of
nanocluster/spot (µm) 0.086 (0.084–0.088) 0.061 (0.060–0.063) 0.360 (0.332–0.399) 0.150 (0.107–0.267)

Inter-particle distances (nm) 42.42 (42.23–42.63) 14.23 (14.17–14.28) 366.5 (362.6–369.7) 153.9 (150.5–158.4)

Nearest particle distances (nm) 15.70 (15.50–15.80) 11.20 (11.10–11.20) 75.70 (70.40–80.70) 20.65 (19.50–22.70)

Maximum distance of
considerable clustering (nm) 47.00 (41.60–51.00) 109.0 (72.20–208.0) 317.5 (300.0–357.0) 354.0 (311.0 566.0)

* The ThunderSTORM analysis applied to the STED data was used as STORMGraph input. Parameters k , m, and
α (see Material and Methods) were different for each ThunderSTORM analysis.

Using the distribution function G(d) (see Material and Methods for a detailed explana-
tion), in the case of STORM the scale of the clustering was higher in mAb than in BTX sam-
ples (p < 0.0001), whereas in the case of STED, no statistical differences were found between
mAb and BTX-labeled samples. As expected, STED scales were approximately 6 times
higher in BTX-labeled, STED-imaged samples than in BTX/STORM samples (p < 0.0001). In
the case of mAb STED samples, they were 3 times higher than in mAb/STORM (p < 0.0001).

2.6. Nanocluster Distribution in the Peripheral and Central Regions of the
Coverglass-Adhered Plasmalemma

When we applied the ASTRICS analysis to the STORM data, we found that the metrics
derived from the combined STORMGraph + ASTRICS approach rendered smaller nanoclus-
ter sizes, similar to those obtained in previous work from our laboratory [14,15]. In addition,
some large elongated nanoclusters depicted by STORMGraph where split by ASTRICS
into several smaller clusters with a more circular profile. Due to the low dimensionality
of the localizations, ASTRICS bypasses the CS step, i.e., reduction in dimensionality, and
moves directly to the ASTRI step, which uses α-shapes. An α-shape is a representation of
the shape of a set of points. The degree of detail of the α-shape is determined by α [21]:
if α decreases, more detail can be observed in the set [22]. Thus, the last step takes seed
clusters and, for every pair of clusters, calculates its α-shape such that α is a minimum:
α-shape encloses all data points from one of the paired clusters. The way α is selected
increases the probability that well-separated clusters have zero similarity. If similarity is
zero for a given pair of clusters, these are not merged. Otherwise, they are merged, and the
algorithm continues until no more similarities are found between clusters. A more detailed
explanation is given in Supplementary Material. The metrics derived from this series of
analysis are listed in Tables 2 and 3.

As shown in Table 3, differences are observed in the distribution of nAChR molecules
between the two labeling conditions. The most striking difference is the higher percentage
(~50%) of nAChRs occurring in clusters, and the higher relative density of receptors in
mAb-tagged nanoclusters relative to BTX-labeled samples, a consequence of the antibody-
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induced crosslinking. The cell-surface coverage by nanoclusters (nanocluster density) is
also much lower in BTX samples, which exhibit larger nanocluster sizes. However, the
number of molecules within a nanocluster, and the distribution of receptors between central
and peripheral regions, is essentially the same independently of the labeling conditions.

2.7. ASTRICS for Low Dimensional Data and Its Combination with STORMGraph

When visualizing STORMGraph depictions (Figure 8) we noticed that some nanoclus-
ters exhibited an elongated appearance, while others showed single-particle localizations
that appeared to lie far away from the densest part of the clusters. STORMGraph creates
an additional level on top of the multi-level Infomap cluster hierarchy, merging those
clusters that are sufficiently interconnected. To test whether the STORMGraph-generated
clusters were artifactually biased toward larger clusters, ASTRICS was applied at the lowest
hierarchical levels of STORMGraph to merge clusters. The ASTRICS approach resulted
in the identification of clusters having roughly half the area of those detected by STORM-
Graph alone, and cluster densities were twice as high as those resulting from STORMGraph
analysis alone.
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Figure 8. Comparison of clusters detected with STORMGraph alone with those obtained using the
STORMGraph + ASTRICS combination on BTX samples (upper row) and mAb samples (lower row).
It is apparent that (i) ASTRICS analysis results in smaller nanoclusters and (ii) some localizations are
excluded from the clusters upon application of ASTRICS.

3. Discussion
3.1. The Idea behind Complementary Correlative Microscopy Approaches

Combining different modalities of optical microscopies provides the means to com-
pare, complement, and expand the information yielded by the individual approaches,
and ultimately produces a much richer depiction of the object under study. Thus confo-
cal microscopy together with stochastic STORM [23,24], super-resolution optical fluctua-
tion imaging (SOFI) [25] combined with confocal microscopy [26], STED complemented
with RESOLFT techniques [27], or various SMLM modalities blended with STED mi-
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croscopy [28–30] have been applied to this end. In the last example the successful com-
plementary approach was aimed at minimizing the spectral crosstalk of the fluorophores
employed in STED, sptPALM, and uPAINT, respectively. In the present work the goal was
to compare the cell-surface topography of the nAChR rendered by two receptor-specific bi-
ological probes with inherently different abilities to label the nicotinic receptor protein. The
small peptide α-bungarotoxin, a quasi-irreversible competitive antagonist of the nAChR,
is a monovalent ligand that labels the α subunits of the nAChR in a 2:1 stoichiometry
relative to the receptor monomer. In contrast, the monoclonal antibody mAb35 is a multi-
valent, crosslinking ligand. Importantly, both receptor-specific ligands were tagged with
the same red-absorbing cyanine dye, Alexa Fluor 647, which in the case of mAb35 was
directly attached to the primary antibody. Furthermore, imaging was performed using two
nanoscopy modalities, targeted STED super-resolution imaging and single-molecule recon-
struction STORM nanoscopy, that rely on different physical principles and photochemical
properties of the dyes. This combination provided a consistent complementary depiction
of the distribution of the nAChR protein at the cell surface.

3.2. The Alexa Fluor 647 Fluorophore and Imaging Conditions

The field of nanoscopy grew hand-in-hand with the development of appropriate
fluorescent probes, both for biological and materials science applications. The original
implementation of STORM, for instance, required multiple lasers and the appropriate
combination of rather limited pairs of fluorescent dyes (e.g., Alexa Fluor 405 for activa-
tion/Alexa Fluor 647 for imaging), an approach implemented up until a few years ago.
In the present work, the choice of the cyanine dye Alexa Fluor 647 was initially based
on its top overall performance in SMLM: high extinction coefficient, photostability, and
relatively high photon yield per switching event, low on-off duty cycle, and good survival
fraction [31]. In addition, the probe has a low spectral heterogeneity, i.e., it exhibits a
spectrally homogeneous (692 ± 3.3 nm) single-molecule fluorescence emission [32], which
is conserved upon conjugation to an antibody [33]. As expected, Alexa Fluor 647 performed
very well in STORM using a thiol-containing glucose oxidase/catalase (GLOX) imaging
oxygen scavenger system with a relatively low concentration of glucose (<2%). Contrary to
expectations, its subsequent application under identical labeling and similar imaging con-
ditions and using the same oxygen-depleted buffer in the STED experiments showed that
the fluorescent probe conjugated either to the small peptide (~8000 MW) α-bungarotoxin
or to an antibody macromolecule performed remarkably well in this targeted-microscopy
modality. Oxygen depletion is expected to prolong the triplet state lifetime and decrease
photon counts using the higher laser intensities required for STED because photobleaching
occurs predominantly from this state [34]. In the present work, laser power was kept
to a minimum for imaging with reasonable scanning times to allow for recovery of the
bright “on” state. To maintain conditions as close as possible to those employed in STORM,
imaging in STED was undertaken in the same buffer as used in SMLM.

3.3. STORM Nanocluster Metrics

Aggregates of membrane proteins of nanoscopic dimensions at the cell surface are of
great interest in cell biology because they represent a supramolecular organization of phys-
iological importance in signal transduction [35,36]. Pioneer fluorescence energy transfer
in the homo-FRET modality provided early evidence of the occurrence of these platforms
in the mammalian cell CHO-K1 [37,38], the parental cell of CHO-K1/A5, the clonal cell
line produced in our laboratory used in the present study, that robustly expresses adult
muscle-type nicotinic receptors [20]. Near-field optical microscopy [35,39], STED [11,40],
STED-FCS [41], and SMLM [6,42–44] have contributed to characterizing the presence of
nanoclusters formed by a variety of membrane proteins at the plasmalemma of several
cell types.



Int. J. Mol. Sci. 2022, 23, 10435 14 of 22

Various methods have been developed to identify and analyze membrane protein
nanoclusters in fixed specimens. Some are based on Ripley’s K function [11,44], others
on Bayesian statistics [45–47], or deep learning strategies [48], including Density-Based
Spatial Clustering of Applications with Noise (DBSCAN) [49]. Most approaches are based
on a user-specified minimum number of points lying within a user-specified radius, often
resulting in a biased analysis and specific settings that may also vary between sub-regions
of the same ROI.

Mapping the topographical distribution of nAChR molecules obtained via a direct
method such as STED can be reduced to finding a function n(r) describing the number of
molecules at coordinate r ± ∆r/2, ∆r being the spatial interval in which molecules exhibit
the on-fluorescence state. ∆r is effectively the spatial resolution given by the full-width at
half-maximum of the effective point spread function (PSF) h(r) of the imaging process [50].

Here, we initially analyzed the STORM images using STORMGraph, an approach
based on graph theory (see, e.g., PhenoGraph [51]) and graph merging [52,53] with com-
munity detection algorithms [54,55] such as Infomap [56] or the Louvain method [57]).
STORMGraph determines thresholds adaptively, circumventing user-defined parameters
and thus allowing batch analysis over heterogeneous samples using identical settings to
avoid bias [18].

3.4. ASTRICS for Low Dimensional Data and Its Combination with STORMGraph

Some clustering algorithms such as ClusterViSu [58] and SR-Tesseler [59] resort to
Voronoï diagrams to quantify clusters in SMLM. The STORMGraph + ASTRICS approach
uses the Delaunay triangulation, a dual form of Voronoï tessellation. ASTRICS triangulates
the α-shape utilizing a subset of the Delaunay method [19]. Owing to the sparseness of the
similarity matrix returned by ASTRICS, the STORMGraph + ASTRICS combined analysis
was able to detect smaller clusters than STORMGraph alone in both BTX- and mAb-labeled
samples (Figures 8 and S12).

3.5. STORM Localizations Filtered by Photons Emitted Revealed the Occurrence of a Mesoscale
Distribution Similar to That Directly Apparent in STED Samples

Since STED particles (“spots”) are local maxima directly observed in the micrographs,
it is possible that the particles detected by ThunderSTORM in STED data correspond to
the brightest localizations of the STORM data. In another attempt to establish correlations
between STORM and STED datasets, we selected 10 µm × 10 µm ROIs from BTX and
mAb STORM samples and filtered out particles according to the photons emitted by each
localization. Those localizations that did not pass a given photon threshold were removed.
We next obtained the inter-particle distances using the Delaunay triangulation method.
The inter-particle distances as a function of photon threshold are shown in Figure S15.
The thresholds that resulted in the closest inter-particle distances from STED were 18,000
and 16,500 for mAb and BTX, respectively, and the resulting localizations are shown in
Figure S16. We then ran STORMGraph on the filtered STORM localizations. As shown
in Table 4, the photon threshold filtering analysis revealed that despite the different sizes
of the objects imaged by the two labeling techniques, the STORM nanocluster centroids
in both BTX and mAb samples are separated at scales similar to those separating spots in
STED (2–4 µm, Table 2).
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Table 4. Metrics derived from STORMGraph analysis of BTX- and mAb-labeled nAChR STORM with
photo-filtered data *.

STORM Data after Filtering

Parameters BTX mAb

Cluster area (µm2) 0.0053 (0.0032–0.0076) 0.0007 (0.0005–0.0016)

Cluster centroid distance (µm) 4.82 (4.72–4.90) 4.34 (4.29–4.40)

Cluster eccentricity 0.95 (0.91–0.96) 0.92 (0.88–0.95)

Major axis length of cluster (µm) 0.207 (0.173–0.255) 0.087 (0.076–0.104)

Maximum distance of
considerable clustering (nm) 347.0 (284.0–408.0) 292.0 (190.0–503.0)

* The filtered STORM data were used as STORMGraph input. Parameters were, in the case of BTX, k = 2, m = 2,
and α = 0.05. In the case of mAb, k = 5, m = 2, and α = 0.05.

3.6. Complementarity of Nanoscopies, Biosensors, and Biological Implications of the Findings

Sil and coworkers [60] define the nano-scale organization of the CD44 as “being
built of individual molecules brought together within ~10 nm distances” and mesoscale
as “domains ~100 nm–1000 nm in scale”. Although these authors refer to a completely
unrelated membrane protein, they concur with our results [14,15] in that the nano-scale
organization of the molecules dictates, to a large extent, their mesoscale organization
and dynamics. STORM provided a detailed quantitative description of nanocluster size,
shape, distribution, and occupancy (number of molecules per cluster, density). STED
delivered a complementary picture, providing a direct map of the mesoscale nAChR
distribution, with inter-spot centroid distances ~10-times larger than those of the STORM
approach. We introduced a novel approach, photon threshold filtering analysis, that
brought out the mesoscale receptor organization in STORM samples. The combination
of STORM and STED nanoscopies and novel image analytical techniques thus provides
not only a fuller picture than that of each approach in isolation but also reconciles the
nano- and mesoscale information rendered by the two methodologies. Differences between
samples remain because of the biosensors used: the monovalent BTX vs. the polyvalent
crosslinking antibodies. The former is most appropriate to characterize the nanocluster
in fine detail, and the second rendered the mesoscopic organization of the clusters at
a larger scale, with possible implications in the pathology of the peripheral cholinergic
synapse [61,62]. Though nAChR nanoclusters may no longer occur as such in the tightly
packed, adult neuromuscular junction, they are of importance during the early ontogenetic
neurodevelopmental stages as the initial form of association of individual receptors that
subsequently coalesce into patches ([63–65], reviewed in [66]) that fuse to produce the
peripheral cholinergic synapse.

4. Material and Methods
4.1. Materials

Mouse monoclonal antibody clone mAb35 (purified immunoglobulin, product No.
M-217) against the extracellular moiety of the nAChR α1-subunit and Alexa Fluor 647
(product no. W32466) were purchased from Thermo Fisher, Germany. Catalase from
Aspergillus niger (product no. C3515), glucose oxidase type VII (product no. G2133), and
β-mercaptoethanol (product no. 63689) were obtained from Sigma Chem. Co. (St. Louis,
MO, USA).

4.2. Cell Culture

CHO-K1/A5 cells, a clonal cell line robustly expressing adult muscle-type nicotinic
acetylcholine receptor (nAChR) [20] were grown in Ham’s F12 medium supplemented
with 10% fetal bovine serum for 2–3 days at 37 ◦C before experiments. Cells are used
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for a maximum of 20 passages. No ethical approval was required for the use of the
biological material.

4.3. Cell-Surface Fluorescence Staining of nAChRs

CHO-K1/A5 cells grown on 18 mm diameter no. 1.5 glass coverslips (WRL) in Ham’s
F12 medium at 37 ◦C were washed thrice with M1 medium and fixed with 2.4% PFA for
10 min. After 3× rinsing with 1× PBS, the cells were quenched with 1× PBS containing
1% BSA with several changes for 3 min. Cells were then stained with Alexa Fluor 647-BTX
at a final concentration of 1 µM for 10–30 min at 20 ◦C and finally washed thrice with a
cold M1 medium containing 1% PBS. Another set of PFA-fixed cells was incubated with
mAb35 monoclonal antibody coupled with Alexa Fluor 647. Coverslips with the adhered
cells were subsequently mounted on glass slides and examined within 1–2 h.

4.4. Single-Molecule Stochastic Optical Reconstruction Microscopy (STORM) Single-Molecule
Localization Microscopy (SMLM)

Samples were imaged with a standard, custom-built STORM microscope, using β-
mercaptoethanol-based blinking buffer, as described in ref. [67].

4.5. STED Nanoscopy Imaging

Imaging was performed using an add-on Stedycon STED nanoscope from the firm
Abberior (Göttingen, Germany). Some experiments were performed using the Expert STED
nanoscope from Abberior.

4.6. Superresolution Data Analysis
4.6.1. Sub-Diffraction Coordinates of STED Superresolution Images in Fixed Specimens
Stained with Alexa Fluor 647-BTX or Alexa Fluor 647-mAb

Each series of STED images obtained from a given experiment was first pre-processed
using ImageJ to provide optimal contrast and subtract background noise. Images were
then analyzed with ThunderSTORM [68]. The “Difference of averaging filters” filter was
set with a first kernel size of 3 [px] and a second kernel size of 5 [px]. The localization
“Centroid of Connected Components” method was used, with the “std (Wave.F1)” peak
intensity threshold. The “PSF: Integrated Gaussian” sub-pixel localization fitting procedure
with a “weighted least-squares” routine was applied.

4.6.2. Single-Molecule STORM Localization in Specimens Stained with Alexa Fluor
647-BTX or Alexa Fluor 647-mAb

Frames were convolved with a Gaussian Kernel with unit height and width set as the
expected PSF, lowered to have a zero integral [69]. This procedure reduces high-frequency
noise and low-frequency background variations. A threshold was applied to the images,
and the peaks were identified with the local maxima. A squared region of 5–7 pixels
centered on each peak was passed through a non-linear least-squares fitting algorithm. To
determine the positions of the fluorescent molecules, two fits were performed: first, the
data were fit to a continuous ellipsoidal Gaussian. The center position, amplitude, and
width were determined in the second fit step, where the data were fit to a rotationally
symmetric Gaussian function. Finally, the total number of counts collected in the peak was
calculated to obtain the number of photons detected. Next, a set of filtering criteria was
applied to remove peaks corresponding to multiple activated fluorophores, which are very
close to each other and appear as a single peak. Finally, peaks in time-contiguous frames
that appear with a relative displacement of one pixel or less are grouped together [70].

When present, drift was corrected using the method of Mlodzianoski, which is integrated
into the software package ThunderSTORM [68] with 5 bins and a magnification of 5.0×.

4.6.3. Nanocluster/STED Analysis Using STORMGraph

The STORM single-molecule coordinates were merged using a weighted arithmetic
mean with the number of photons of each individual localization as weight [13]. The STOR-
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MGraph [18] automated quantitative clustering analysis of SMLM images was applied
next; initial parameters were configured using the following values: K = 10, minimum
cluster size = 15, and α = 0.05, the maximum probability of a completely randomly dis-
tributed localization being classified as clustered, with a value of 0.05. The parameter that
avoids multiple blinking was disabled. STORMGraph first determines the ROI-specific
length scale (ro) using a heuristic method or kNN distances. The graph was constructed
using the formula shown in Figure S3. Then, non-clustered nodes were removed, and the
graph regenerated with a new ro. A hierarchy of node clusters was found next using the
multi-level community detection algorithm [54], followed by a merging algorithm that
combines concepts of both symmetric kNN and mutual kNN graphs. STORMGraph only
merges clusters if they remain connected after the random removal or displacement of
any node. Finally, the localization data with the cluster labels allowed the extraction of
metrics pertaining to the nAChR supramolecular array, i.e., the nanocluster, such as single
nanocluster area, number of molecules per nanocluster, nanocluster centroids, as well as
metrics related to the supra- distribution of the nanoclusters, such as the inter-centroid
distances and other parameters related to the mesoscopic topography of the clusters in the
cell membrane.

Though ThunderSTORM and STORMGraph are, as their name indicates, intended for
STORM data, the key parameters (intensities, local maxima, cluster area, distance between
centroids) are applicable to STED data. The output of the ThunderSTORM-processed STED
data with the (x,y) localization coordinates was subjected to STORMGraph [18] analysis.
Key parameters set as start values included MinCluSize, the pixel size, the expected number
of nanoclusters, and the parameter K (the number of nearest neighbors required to perform
the kNN analysis). The output of the STORMGraph analysis containing information on the
area, centroids, etc., was then used as input to a script to calculate statistical parameters
associated with the image data. Relative fluorescence intensities of clustered and non-
clustered STORM localizations and STED spots are listed in Table S2 and Figure S5, and
their probability density distributions shown in Figures S6–S10.

4.6.4. Nanocluster Analysis Using the Combination of STORMGraph + ASTRICS

The STORM single-molecule coordinates were merged, and STORMGraph [18] was
applied, as mentioned above. We also combined STORMGraph with ASTRICS, an inter-
cluster similarity algorithm based on α-shapes and triangulation [19]. To this end, we
used the second level of the hierarchy of clusters generated by STORMGraph followed
by a merging algorithm that uses ASTRICS as a similarity measure skipping the CS step,
as described in Supplementary Material Figures S11–S13. Once ASTRICS establishes the
similarity of each cluster pair, clusters are merged if and only if they have the maximum
ASTRICS similarity over all clusters, and this value differs from zero. This process is
repeated until no mergeable clusters are found. Finally, all those clusters that do not pass
a minimum threshold number of 15 localizations are discarded. Metrics such as single
nanocluster area, number of molecules per nanocluster, nanocluster centroids, and other
parameters shown in Results were extracted from the remaining clusters.

4.6.5. Cluster Shape Analysis Using an Elliptic Fitting Algorithm

Upon application of clustering algorithms, one can analyze the shape of the resulting
clusters. One way to accomplish this is by using direct least-squares fitting on the clusters’
boundaries. A least square fitting specifically designed for ellipses was employed [71].
However, when the number of experimentally observed clusters is relatively low, as in
STED experiments, axis lengths that disproportionally exceed cluster dimensions were
observed using this method. To consider cluster geometry and not just cluster boundaries,
we implemented a method that includes the farthest point of a given cluster, moves it to
the origin, and rotates the cluster until both points are horizontally aligned. The short axis
of the resulting ellipse is calculated next as the vertical distance between the maximum and
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minimum points on the y-axis. The implemented algorithm is described in Supplementary
Material Figure S14.

4.6.6. Inter-Particle Distance Using Delaunay Triangulation

The most straightforward way to establish distances between points in a dataset is, of
course, to measure the distance between every point. However, this has the drawback that
it includes distances so great as to make them biologically irrelevant. Another approach
is to measure the Euclidean distance between a particle and its neighbors. To reduce the
number of distances considered, we employed the Delaunay triangulation. The output was
a graph whose weights are the distances between linked particles. Delaunay triangulation
conforms to the dual graph mode of a Voronoi diagram, in which two particles are linked
if they are close to each other in the Voronoi diagram partition (Figure 9). This method-
ology, previously used to analyze the distributions of the distances between localized
fluorophores [72], was applied to both STED and STORM data.
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4.6.7. Nearest Particle Distance Analysis

Planar point pattern analysis was conducted to determine if the particle distribution
in samples from both techniques constituted clusters and, if so, up to which distance.
We used the PySAL [73] submodule pointstat that includes an “event-to-event” nearest
neighbor distance function G(d) = ∑n

i=1 I(dmin(pi) < d)/n such that dmin(pi) is the nearest
particle distance of the particle pi and I is the indicator function fulfilling the condition
if dmin(pi) < d is true, I returns 1 [73]. Otherwise, it returns a value of 0. G(d) is the
proportion of nearest particle distances that are less than d and is a cumulative distribu-
tion function.

We also used PySAL to simulate random patterns (n = 99) for each STED and STORM
sample having the same size and density to extract a 95% confidence interval (CI) from
Complete Spatial Randomness (CSR) patterns in order to determine the presence of clusters
in the samples and, if so, the distances up to which the clustering extended. As shown in
Figure S15, if G(d) is greater than the upper limit of the CI, there is clustering. The meaning
of the G(d) function with the confidence intervals is shown in Figure S17, and two examples
of STORM and STED are in Figure S18. Figures of G(d) functions in STORM, and STED
samples are found in Supplementary File S1.

4.6.8. Statistical Analyses

The one-sample Kolmogorov–Smirnov test was applied to assess whether the data
were normally distributed or not. To compare two distributions, we used the Kolmogorov–
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Smirnov (KS) test for two samples. The experimental procedures (cell cultures, immuno-
cytochemistry, STORM imaging) and the statistical analyses were performed by different
individuals. The median ± 95% confidence interval is shown unless otherwise stated.
Cluster parameters were computed with MATLAB v9.10.0 (R2021a) using, in the case of
areas, its boundary function. Statistical Analyses were conducted with GraphPad Prism 8.
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