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Autism Spectrum Disorder (ASD) is a neurodevelopmental disorder with unclear

mechanisms of pathogenesis. Gastrointestinal microbiome alterations were found to

correlate with ASD core symptoms, but its specific role in ASD pathogenesis has not

been determined. In this study, we used a case-control strategy that simultaneously

compared the ASD gastrointestinal microbiome with that from age-sex matched

controls and first-degree relative controls, using a statistical framework accounting

for confounders such as age. Enterobacteriaceae (including Escherichia/Shigella) and

Phyllobacterium were significantly enriched in the ASD group, with their relative

abundances all following a pattern of ASD > first degree relative control > healthy

control, consistent with our hypothesis of living environment and shared microbial and

immunological exposures as key drivers of ASD gastrointestinal microbiome dysbiosis.

Using multivariable omnibus testing, we identified clinical factors including ADOS scores,

dietary habits, and gastrointestinal symptoms that covary with overall microbiome

structure within the ASD cohort. A microbiome-specific multivariate modeling approach

(MaAsLin2) demonstrated microbial taxa, such as Lachnoclostridium and Tyzzerella,

are significantly associated with ASD core symptoms measured by ADOS. Finally, we

identified alterations in predicted biological functions, including tryptophan and tyrosine

biosynthesis/metabolism potentially relevant to the pathophysiology of the gut-brain-axis.

Overall, our results identified gastrointestinal microbiome signature changes in patients

with ASD, highlighted associations between gastrointestinal microbiome and clinical

characteristics related to the gut-brain axis and identified contributors to the

heterogeneity of gastrointestinal microbiome within the ASD population.

Keywords: autism spectrum disorder, gut microbiome, biological pathway, gut-brain axis, multivariable omnibus

testing, predictive functional profiling
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INTRODUCTION

Autism Spectrum Disorder (ASD) is a complex
neurodevelopmental disorder (1). Although the etiology of
ASD is unclear and likely multifactorial, it likely involves an
interplay between genetic and environmental factors (2–4).
Recent studies suggest that the gastrointestinal microbiome may
play an important role in the pathogenesis of inflammation
both in the gastrointestinal and systemically and contribute to
dysregulation of the “gut brain axis” (5–10). Other studies point
to the potential utility of gastrointestinal microbiome features as
biomarkers in assisting ASD diagnosis and screening (11).

The clinical presentation of ASD is highly heterogeneous, and
current research points to the existence of multiple subtypes,
potentially caused by different routes of pathophysiology and
each with diverse comorbid psychiatric and medical conditions
(e.g., gastrointestinal symptoms, allergies, sleep disorders). This
heterogeneity is not addressed by the conventional DSM5-based
behavioral diagnostic criteria. Previously, studies have explored
microbiome correlation with GI symptoms in ASD (11, 12).
Kong et al. found decreased relative abundance of Bacteroides
and Roseburia, as well as increased relative abundance of Dorea
and Prevotella in ASD patients with abdominal pain (11).
Most recently, Plaza-Diaz et al. investigated gastrointestinal
microbiome in ASD patients with or without mental regression
and found microbiome signatures associated with different
psychiatric subtypes (13). In particular, Proteobacteria level was
increased exclusively in children with ASD who also present
with mental regression. However, previous studies have not
analyzed the association between ASD microbiome and clinical
factors/comorbidities in a systematic fashion that encompass
neuropsychiatric evaluation, dietary factors, immunological
indices, and gastrointestinal symptoms. Moreover, there has been
a recent explosion of literature on the roles of inflammation
and immune regulation on ASD pathogenesis and symptoms
presentations. Both clinical studies and ASD mouse models
demonstrated aberrations in important immune pathways such
as interleukin level, chemokine receptor signaling, and TIM-3
signaling (14–16).

Multiple factors contribute to the composition of the
gastrointestinal microbiome, including environmental influences
(such as home environment, diet, delivery methods, and
breast milk or formula feeding during infancy), age, metabolic
indices, gastrointestinal inflammatory state, and potentially host
genetic background to a smaller degree (17–19). Previous
published studies of the gastrointestinal microbiome in ASD
used either first degree relatives or healthy age- and sex-matched
individuals as controls (20). Studies have demonstrated that
there are differences in the composition of gastrointestinal
bacteria between patients with ASD and controls. For example,
certain intestinal bacteria are observed to be more abundant
in individuals with ASD and they may be involved in the
pathogenesis of ASD, which include members of the Clostridium
and Sutterella genus. On the other hand, certain probiotic
bacteria such as Bifidobacteria have been consistently found to
exist at a lower abundance in patients with ASD (20). However,
inconsistencies in study designs, small sample sizes, together with

heterogeneity of the ASDmicrobiome may be largely responsible
for the enormous inconsistency of the reported ASDmicrobiome
signatures in the literature.

In this study, we aimed to assess the ASD microbiome
with an optimized study design that addresses these potential
confounding factors by adopting a “double control” strategy: we
sampled stool microbiome in individuals with ASD as well as in
two parallel control groups including patients’ own first-degree
relative control and age- and sex-matched unrelated healthy
controls. We coupled this study design with a microbiome-
specific statistical framework, “multivariate analysis by linear
model” (MaAsLin2) recently developed by the Huttenhower
lab (21), for subsequent analysis. This approach allows us
to better identify core microbial signatures and metabolic
pathways unique to ASD, after controlling for age, gender
and environmental background and adjusting for age. We
hypothesize that the disease state, lifestyle factors and living
environment are major drivers of the ASD microbiome, and
host genetic background may play a minor role. Because
age sex matched healthy controls harbor more pronounced
environmental and genetic differences to the ASD patients, as
compared to a first-degree relative control group, a trend of
microbiome perturbations across groups of the pattern (with
age adjustment) of (ASD > first-degree relative control >

healthy control) or (ASD < first-degree relative control <

healthy control) would provide greater confidence for identifying
microbiome biomarkers specific to ASD.

A major knowledge gap in the field is identifying drivers of
symptom heterogeneity in patients with ASD, and it is unknown
to what extent core behavioral symptoms correlate with,
predict, or are predicted by the gastrointestinal microbiome.
This information will be crucial in developing strategies for
identifying subgroups of patients who may have dysregulation
of the gut-brain axis, and who may respond to therapies
targeting the gut brain axis. As a secondary goal of the
study, we explored microbiome heterogeneity within the ASD
group using clinical indices (including GI, dietary habits,
immunological functions, and birth history) and behavioral
assessments (e.g., ADOS and SRS) using multivariable omnibus
testing. We also performed subtype discovery within the
ASD microbiome, including clinical factors and behavioral
assessments. Focusing on this within-group heterogeneity may
offer an alternative path to search for candidate microbes or
microbial metabolic pathways that have pathogenic implications
for the autism core symptoms and underlying “gut-brain
axis” pathophysiology.

MATERIALS AND METHODS

Ethics and Consent
The Internal Review Board (IRB) and Ethical Approval were
issued from Shenzhen Maternity and Child Healthcare Hospital.
Written informed consent was obtained either from adult
subjects who were competent to provide consent or from the
parents or legal guardians of children and adults with cognitive
impairment. Assent was obtained from subjects who were unable
to give consent.
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Participants
Inclusion Criteria

ASD Group
• Meets the diagnostic criteria in DSM-5 for ASD by two

pediatric psychiatrists;
• Aged 3–6 years old;
• Able to complete the autism assessment as scheduled.

Healthy Age Sex Matched Control Group
• Typically developing children aged 3–6 years matched with the

same gender and age as the ASD group (the age difference does
not exceed 3 months).

First Degree Family Member Control Group
• Mother or sibling of enrolled ASD children.

Although we intended to enroll siblings as well as mothers, we
were only able to recruit mothers as controls due to the paucity
of siblings in our study population.

Exclusion Criteria
• Having congenital genetic diseases;
• Use of either antibiotics or probiotics within 1 month prior to

the study;
• Taking neurological drugs;
• Receiving other dietary supplements.

Basic Information Questionnaire
(Developed by Research Team and
Approved by IRB)
Included demographic data of the research subject, history of
antibiotic use, intestinal health, oral health, etc.

ASD-Related Clinical Assessment Tools
Gesell Development Diagnosis Scales
This is suitable for the development assessment of children
aged 0–6 (22). The assessment is divided into five subcategories:
adaptation, gross movement, fine movement, language, and
personal-social functions. The scores were omitted from
univariate analysis due to missing values.

Adaptive Behavior Assessment System-Second

Edition
ABAS-II provides a complete assessment of adaptive skills,
and behavior rating scale typically completed by parent or
primary caregiver (23). It is scored for the 10 Skill Areas—
norm-referenced scaled scores and test-age equivalents. For the 3
Adaptive Domains and the General Adaptive Composite (GAC)–
norm-referenced standard scores and age-based percentile ranks.
In addition, all scores can be categorized descriptively. The scores
were omitted from univariate analysis due to missing values.

The Childhood Autism Rating Scale
CARS is developed by E. Schopler and others and helps to identify
children with autism and determine symptom severity through
quantifiable ratings based on direct observation for children over
2 years of age (24). The 15-item rating scales are completed by
the clinician, and each item is graded on a 1–4 scale. The total

score ranges from 15 to 60; a score of below 30 is considered non-
autism, a score of 30–36.5 is considered mild to moderate autism,
and a score of 37 or more is considered severe autism based on
CARS scale.

The Autism Diagnostic Observation Generic
ADOS is a semi-structured standardized assessment of social
interactions, language and communication, repetitive, restricted
patterns of behavior and interest, and play and imagination.
There are four modules (25, 26). The evaluator selected the
appropriate module based on the age and language development
of the subject and administered it based on the standard protocol.
The assessment takes about 40min for each subject and the
cores are recorded on each authorized Chinese version booklet
from WPS (27). Raw scores from different ages are converted
to standard scores based on the diagnostic algorithm, and the
patient’s scores are then compared. Calibrated severity scores are
converted via standard formula. The evaluators are well-trained
and professionally certified in the operation.

Chinese Version of the Repetitive Behavior

Scale-Revised
The RBS-R is a 44-item self-report questionnaire that is used to
measure the breadth of repetitive behavior for ASD individuals
(28). It consists of 6 sub-categories: stereotyped behavior (6
items), self-injurious behavior (8 items), compulsive behavior
(8 items), routine behavior (6 items), sameness behavior (11
items), and restricted behavior (4 items) for a total score of 43
items. Behaviors are rated on a 4-point scale: 0-Behavior does
not occur, 1-Behavior occurs and is a mild problem, 2-Behavior
occurs and is a moderate problem, 3-Behavior occurs and is a
severe problem. Higher scores indicate more severe repetitive
stereotypes. Reliability and validity of the Chinese version of the
RBS-R was applicable to 2–7 years old and tested by Li and Jiang
in 2013 (29).

Social Responsiveness Scale
SRS is a 15-min questionnaire that measures the severity of
autistic social impairment from non-existent to severe across the
entire range of the autism spectrum (30). It is suitable for children
4–18 years old, with a total of 65 items. It is analyzed from
five dimensions including social perception, social cognition,
social communication, social motivation, and autistic behavior.
Each item has a rating of 0–3: 0 for “No,” 1 for “Sometimes,”
2 for “Often,” and 3 for “Always.” The total score is between
0 and 195 points. The higher the scale score, the more severe
the obstacle.

Intestinal Microbiome Sampling
Sample Collection Method
The stool samples were collected by the parents of the
subjects following the stool collection kit manufacturers’
protocol using the protocol described in Kong et al. 2019
(11). Sample were stored in room temperature for up to
2 days by patients and stored in −80◦C freezer in the
hospital before shipping to the Beijing Boao Medical Laboratory
for processing.

Frontiers in Psychiatry | www.frontiersin.org 3 October 2021 | Volume 12 | Article 682454

https://www.frontiersin.org/journals/psychiatry
https://www.frontiersin.org
https://www.frontiersin.org/journals/psychiatry#articles


Huang et al. Gastrointestinal Microbiome Modeling and ASD

Sample Collection Process

Autism Subject and Family Member Group
Eligible research subjects first signed informed consent and
completed relevant questionnaires. Researchers extracted the
results of ASD-related evaluations. The researchers distributed a
well-labeled stool sample collection tube [room temperature stool
collection kit from Precidiag INC (11)] and instructed the parents
on sample collection, date labeling, and sample characteristics
recording at home. Samples were kept at room temperature and
sent them back to the hospital within 2 days after collection.
Samples collected back to the hospital were stored in −80◦C
freezer before shipping to the Beijing Boao Medical Laboratory
for processing.

Healthy Control Group
After the sample collection of the ASD group was completed,
healthy control group subjects were recruited in a kindergarten
in Shenzhen, and the recruitment targets were filtered based
on the inclusion and exclusion criteria. Researchers went to the
kindergarten for parents to sign the informed consent form,
distribute stool collection tubes, instruct teachers and parents to
complete sample collection.

DNA Extraction and Amplicon Sequencing
Method for DNA extraction from stool is modified from
magnetic beads method for soil and stool DNA extraction
kit (TIANGEN Biotech, DP712). Following the manufacturer’s
standard operation procedure, 200mg stool sample was added
into 500 µL buffer solution SA (TIANGEN Biotech, DP712),
100 µL buffer solution SC (TIANGEN Biotech, DP712) and 0.2 g
zirconia beads (NIKKATO, YTZ-0.2). This was then placed in a
Tgrinder H24 tissue-grinding homogenizer (TIANGEN Biotech)
and oscillated at the speed of 6 m/s with 5 sessions of 30 s
intervals. DNA sample control was set as: DNA volume≥ 200 ng,
OD260/280= 1.8–2.1, andmain band fromDNA electrophoresis
> 2,000 bp.

V4-V5 segments were amplified with 515f-y/926r primer pair
via PCR (98◦C for 3min, followed by 27 cycles at 98◦C for
20 s, 55◦C for 30 s, and 72◦C for 30 s, and a final extension at
72◦C for 2min). PCR products were purified using AMPure XP
Beads (Beckman, A63880) and amplified with Illumina P7 and
P5 primer via PCR (98◦C for 30 s, followed by 6 cycles at 98◦C
for 20 s, 60◦C for 30 s, and 72◦C for 30 s, and a final extension
at 72◦C for 2min). The post PCR products were purified again
using AMPure XP Beads (Beckman, A63889). Library DNA was
mixed with fluorescent dye (Qubit dsDNA HS Reagent) for
quantitative quality control (concentration ≥ 2 ng/µL) using a
Qubit 3.0 fluorometer. Library fragment size was detected by 2%
agarose gel electrophoresis and the library was qualified with no
primer dimer contamination below 100 bp and librarymain band
around 500 bp. The DNA library was pooled and sequenced on
Illumina Miseq sequencing platform with PE 300 bp protocol
with overlapping reads.

Bioinformatics Processing of Amplicon
Data
Amplicon sequences were then bioinformatically processed
through the DADA2 workflow in R which had been wrapped

in the reproducible bioBakery workflow with AnADAMA (31,
32). Briefly, the sequences were demultiplexed and DADA2 run
with default parameters to denoise, filter, and trim Illumina
data. Next, the open-source R-package assessed the reads for
sequence error rates and corrected them on a base-by-base basis.
Chimera removal was carried out prior to grouping amplicons
into amplicon sequence variants (ASVs). Then, phylogenetic
trees were constructed after alignment of sequences using Clustal
Omega (33). Finally, ASVs were then taxonomically assigned
using SILVA and rRNA specific databases (34).

For functional inference, PICRUSt was run (with default
parameters) to predict gene family abundances from marker
gene surveys by “multiplying” observed abundances with genes
inferred by ancestral state reconstruction in a database of
reference genomes (35). Once the taxonomic and functional
profiles were constructed, the initial report from the bioBakery
workflow was used for basic QC, statistics, and visualizations of
the microbial profile data.

All raw data from 16s rRNA Illumina amplicon
sequencing have been deposited in The National Centre for
Biotechnology Information (NCBI) Sequence Read Archive
(SRA, PRJNA687773).

Statistical Analysis
Next, the Harvard T.H. Chan School of Public Health
Microbiome Analysis Core tested disease endpoints against the
bacterial communities’ alpha and beta diversities (InvSimpson
and Bray-Curtis dissimilarity, Unweighted and Weighted
UniFrac distances, respectively). Alpha diversity was calculated
using the built-in estimate diversity function in Phyloseq (29),
and differences in diversity were found using an ANOVA test on
a linear model. Beta diversities were calculated using the vegan
package in R, and significant differences in community
composition were tested using an omnibus univariable
PERMANOVA test. Next, we incorporated significant and
known influences of the microbiome in multivariable models.
Patients < 4 years of age were excluded whenever SRS was used
in the modeling, because SRS was only validated for patients ≥ 4
years of age.

Per-feature differences in the composition of the
gastrointestinal microbiome from children with autism were
explored with the MaAsLin2 tool (21), which used mixed linear
models to test for statistically significant associations determined
by testing each clade in a hierarchical manner after normalization
from counts to relative abundances and log transforming these
data. Within each independent response/predictor association
multiple comparisons over metadata factor levels were adjusted
using a Bonferonni correction, and multiple hypothesis tests
overall clades and metadata were adjusted to produce a final
Benjamini-Hochberg false discovery rate. MaAsLin2 thus
identified microbial organisms and predicted functions that
reach a statistically significant association with autism-specific
phenotypes. Additionally, we explored the correlations between
key microbiota abundances and microbial metabolism pathways
through the use of a correlation matrix based on Spearman’s
rank correlation, using a significance cutoff of α = 0.05.

We then ran Random Forest models to identify which features
of the microbiome might predict if a sample was sourced from
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a child with autism or the healthy controls (children of the
same age). Additionally, leveraging Random Forest models we
asked if any of the features of the microbiome could predict
worsening symptoms of autism among the children with autism
spectrum disorder. These models were 10-fold validated with
1,000 random trees, run with 80% of the data as a training
set and 20% as the testing set and validated on the full set
of data.

We leveraged the tool MMUPHIn (Meta-analysis Methods
with a Uniform Pipeline for Heterogeneity in microbiome
studies) to test for discrete community structures within these
microbiome populations. MMUPHin allowed for the analysis
of both known discretely clustered and continuously variable
population structures withinmicrobial data by leveraging ameta-
analytical approach to compare different PCs or distances within
the data to identify population-level structural differences in the
data. For all analyses other than alpha diversity, feature tables
(both taxonomy and metabolic pathways) were filtered requiring
a microbial feature to have at least 0.01% relative abundance in at
least 10% of all samples.

Microbiome co-abundance network analysis was performed
using the SparCC algorithm via MetagenoNets to elucidate
ecological interactions between bacterial features (34). Features
were filtered using a prevalence cutoff of 0.005 of maximum
prevalence and with occurrences in 10% of samples. After feature
filtration and normalization, 69 features remained from the
initial total 244 features. Taxa abundances were subsequently
normalized by Total Sum Scaling (TSS). All plotted network
correlations are significant at P < 0.01 based on bootstrapping
of 500 iterations.

RESULTS

A Microbiome Specific Statistical Model
Identities Autism-Associated
Gastrointestinal Microbiome Signatures
To characterize the gastrointestinal microbiota and relevant
clinical indices associated with ASD, we recruited 39 ASD
subjects, 36 first-degree relative controls, and 44 age-/sex-
matched healthy controls. The demographic characteristics and
selected baseline medical conditions and dietary behaviors of
the participants are summarized in Supplementary Tables 1, 2,
respectively. Overall, the ASD group showed higher trends in
GI severity total score, prevalence of food/skin allergy, as well
as scores related to restricted eating behavior, although the
differences did not reach statistical significance when compared
to other groups. The GI severity total score for children with ASD
is 1.77± 1.72 whereas the GI severity total score for theHC group
is 0.84 ± 1.33 (P < 0.01). The mother control group had a GI
severity total score of 1.46± 1.84.

Analysis of gastrointestinal microbiome alpha diversity
suggested no significant community-level differences between
ASD, healthy control, and first-degree family control groups
(Shannon index, Figure 1A), although Shannon index showed
strong inverse correlation with ADOS total score (Figure 1B, P
< 0.05, Spearman’s ρ = −0.3698). A univariate PERMANOVA

analysis of the group-wise differences of beta diversity (Bray-
Curtis dissimilarity matrix) showed significant p-value and it
explained 6% of the variation (df = 2, F-value = 4.0864, P <

0.05). There is a broader distribution of the first-degree relative
controls compared to the ASD or healthy group on the principal
coordinates analysis (PCoA) plot of beta diversity which most
likely reflects the older age and broader age range in the family
control group (Figure 1C).

Under the hypothesis that the environmental factors and
disease state are the key drivers of microbiome in addition to
age, we expect the ASD-specific taxa should show a differential
abundance compared to both family member controls and
healthy age sex matched control, with a greater difference
between ASD and healthy control than between ASD and
first-degree relative controls because environmental differences
are more pronounced in the healthy control group compared
to first-degree relative control group. Using MaAsLin2 mixed
linear modeling adjusting for age as a covariate, we found that
the relative abundance of Akkermansia was significantly lower
in ASD compared to first-degree relative controls (Figure 1D,
Q = 0.04117), and Phyllobacterium, Enterobacteriaceae, and
Escherichia/Shigella are increased in the ASD group as compared
to healthy controls (Figures 1E–G, Q = 0.1503, 0.06485, and
0.06950, respectively). We next searched for taxa with a pattern
of relative abundance that followed a gradient with the highest
(or lowest) level seen in the ASD group, intermediate level
seen in the first-degree relative control, and lowest (or highest)
seen in healthy controls (Figures 1E–G). These taxa included
Phyllobacterium, Enterobacteriaceae, and Escherichia/Shigella
(3/4 total number of differentially enriched taxa). The most
abundant gastrointestinal species within the Enterobacteriacae
family, Escherichia coli, also showed a similar trend (Figure 1H).

Next, random forest analysis (Supplementary Figure 1) was
used to identify genera important for differentiating between
ASD and healthy status. First-degree relative controls were
excluded from this analysis because the use of microbiome
for disease classification was more relevant for early screening
and diagnosis in the age cohort represented by the ASD group
and healthy controls. The results showed overlap with taxa
identified by mixed linear modeling, with the top discriminatory
index, Escherichia/Shigella, being also the most significant taxa
fromMaAsLin2.

Subjects With ASD Exhibit Alterations in
Biological Functions Related to the
Gastrointestinal Microbiota and Microbial
Network Compared to Controls
Next, we assessed the biological functions (predicted by
PICRUSt) associated with the gastrointestinal microbiome
by performing groupwise comparisons and visualization. We
identified significant differences in microbiome-associated
functions between ASD and healthy control groups, while
no significant results were found for such indices between
ASD and first-degree family controls after adjusting for
age (Figure 2). Bacterial metabolism functions that were
differentially enriched in patients with ASD include pathways
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FIGURE 1 | Overview of groupwise subject gut microbiome ecological diversity and differentially enriched gut microbiota that are most prevalent in ASD group

subjects, followed by healthy controls and first-degree relative controls, respectively. (A) Groupwise comparison of alpha diversity determined via Shannon index in all

groups. (B) Alpha diversity via the Shannon index displays significant inverse correlation with ADOS overall score. (C) PCoA of species after filtering (Bray-Curtis) with

95% confidence ellipses. ASD microbiota showed (D) a lower abundance of Akkermansia but a higher abundance of (E) enterobacteriaceae, (F) phyllobacterium, (G)

E. Shigella, and (H) E. coli when compared to first-degree relative controls and healthy controls.

such as Tryptophan metabolism, Tyrosine metabolism,
Lysine degradation, and fatty acid synthesis/metabolism.
Conversely, tryptophan, phenylalanine and tyrosine biosynthesis
(Figure 2; Supplementary Table 3) were deficient in the
ASD gastrointestinal microbiome. Interestingly, the age
of subjects and the age of the mothers were also strong
contributors to differences in some biological functions
(Supplementary Figure 2, top 50 enriched or deficient
predicted biological functions). Many of these pathways
were of pathophysiological relevance to ASD. Next, we
performed SparCC network on the genus level within each
group of subjects. Patients with ASD demonstrated the densest
network of co-occurring genera, compared to first-degree
relative controls or healthy controls (Supplementary Figure 3).

Furthermore, several differentially abundant microbiota are
significantly correlated with bacterial metabolism functions
(Supplementary Figure 4).

GIS Total Score and ADOS Social Affect
Scores Are Strongly Predictive of
Gastrointestinal Microbiome Alpha
Diversity in Patients With ASD
This study is the first to systematically investigate the
relationship between gastrointestinal microbiome and ASD
clinical presentations. Despite high prevalence of GI symptoms
or occult GI issues in ASD, invasive GI investigation remains
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FIGURE 2 | The ASD gut microbiota displayed significant differences in predicted metabolic pathways when compared to healthy controls. (A) ASD microbiota

expressed lower levels of D-Gln, D-Glu metabolism and higher levels of (B) Trp, (C) Tyr, and (D) fatty acid metabolism. (E) ASD microbiota displayed lower levels of

Phe, Try, and Trp biosynthesis and (F) higher levels of Lys degradation. Significant indices were chosen at a Q-value cutoff of 0.1.

challenging for this patient population and is frequently under-
performed. Sampling of the gastrointestinal microbiome, which
only requires stool collection, is relatively simple but financially
burdensome. Using an omnibus univariable and multivariable
ANOVA test, we asked whether clinical presentations and
comorbidities can predict gastrointestinal dysbiosis in ASD
patients. The goal was for clinicians to use existing clinical factors
to identify the subtypes of ASD patients in whom a greater
suspicion of GI abnormality should be raised and followed.

Features that are incorporated into the omnibus modeling
were selected from relevant clinical indices, including ADOS
and SRS scores (validated clinician assessment and parent
assessment for ASD symptoms and functionality, respectively),
other behavioral assessments such as CARS and RBS, as well
as indices from assessments of GI functions, immune functions,
and history of other medical or psychiatric comorbidities. Using
the Shannon index as a response variable for alpha diversity,
we identified multiple clinical factors, most notably GIS total
score, ADOS social affect score, ADOS repetitive and restricted
behavior (RRB) score, food refusal, nighttime awakening, and
weight, as significant predictors of the Shannon index under
a univariate model (P < 0.05, Table 1). Next, we attempted
to model Shannon index via multiple linear regression and
ANOVA to identify predictors based on significant indices from
the previous univariate analysis. Predictors included in the
multivariate linear model in response to Shannon index include

age, weight, GIS total score, “wake up at night,” “refuses food,”
ADOS social affect-CSS, ADOS-CSS, and ADOS total score.
GIS total score, ADOS SA standard score (CCS) and patient
weight were the most significant contributing features (P < 0.05,
multivariate analysis, Table 1).

Characterization of Gastrointestinal
Microbiota Biomarkers Associated With
ASD Core Symptoms
In an attempt to identify specific gastrointestinal microbial
taxa that may independently contribute to the severity of ASD
core symptoms, we explored associations between individual
bacterial taxa and ADOS scores using linear models. Mixed
linear modeling (MaAsLin2) was used to determine the
significance of taxa associated with specific clinical variables of
interest while adjusting and accounting for other potentially
confounding covariates such as age of subjects. The relative
abundance of the genus Erysipelatoclostridium is positively
associated with ADOS social affect (SA) score (Q < 0.1,
Figure 3). We also found that the genus Lachnochlostridium
was significantly associated with ADOS SA score, ADOS total
score, and ADOS calibrated severity score (CCS, Q < 0.1,
Figure 3), all of which displayed a direct correlation with the
bacterial relative abundance. The only bacterial taxa found to
be significantly associated with stereotypical behavior scores
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TABLE 1 | Summary of models and significant univariable model predictors of

Shannon alpha diversity with age as a covariate in individuals with ASD of all ages.

Predictors Univariate P-value Multivariate P-value

ADOS SA (CSS) 0.015 0.03478*

ADOS RRB (CSS) 0.047 NS

ADOS overall (CSS) 0.039 NS

ADOS SA 0.006 NS

ADOS overall 0.008 NS

Weight (kg) 0.027 0.02540*

GIS total score 0.043 0.04226*

Wake up at night 0.003 NS

Refuses food 0.024 NS

*P < 0.05.

is Tyzzerella (positive correlation, Q < 0.1, Figure 3). Next,
we asked if any of the features of the microbiome could
predict worsening symptoms of autism among the children
with autism spectrum disorder using Random Forest models.
Due to the relatively small sample size, the model yielded
high specificity but poor sensitivity in both the training (data
not shown).

Clinical Factors Contribute to
Gastrointestinal Microbiome Beta Diversity
Within the ASD Population
ASD is a highly heterogeneous condition, combining that with
highly personalized gastrointestinal communities can make
associations difficult. To explore the features contributing to
gastrointestinal microbiome diversity within the ASD group,
we modeled beta diversity with Bray-Curtis dissimilarity
and Weighted/Unweighted UniFrac distance using selected
clinical factors (e.g., immune, dietary, and GI conditions),
SRS scores (validated for 4 years and above) and ADOS
scores. Modeling Bray-Curtis dissimilarity using an omnibus
univariable PERMANOVA test showed both intestinal irritability
and SRS cognition score are strong predictors in the multivariate
model (Table 2, P < 0.05). Unweighted UniFrac, which
accounts for the phylogenetic relationship between the taxa
in generation of dissimilarity matrix, also identified SRS
cognition score as significant predictor of beta diversity in
a multivariate model, whereas weighted UniFrac identified
other gastrointestinal indices, including GIS total score,
abdominal pain (a subscale of GIS score), and fatigue (also a
subscale of the GIS score), as significant predictors (Table 2,
PERMANOVA, P < 0.05).

DISCUSSION

In this study, we took advantage of a double-control study
design to identify microbial taxa with potential relevance for
ASD pathophysiology. We found that the relative abundances
of the taxa Akkermansia, Escherichia/Shigella, Phyllobacterium,
and Enterobacteriaceae were significantly different in patients
with ASD as compared to first-degree relative controls or healthy

controls. Intriguingly, all the taxa that were enriched in the
ASD group, including Phyllobacterium, Enterobacteriaceae
and Escherichia/Shigella, followed a decreasing trend of ASD
> first-degree relative control > healthy controls. The fact
that the majority of differentially enriched taxa showed such
a trend further supports the importance of environmental
factors as major drivers in shaping the ASD gastrointestinal
microbiome. The Enterobacteriaceae family consists of multiple
genera of opportunistic pathogens, with E. coli being one of
the most abundant members in the stool. Escherichia/Shigella, a
putative proinflammatory bacteria and a potential opportunistic
pathogen, has been previously reported to be enriched in ASD
with constipation and positively associated with GI symptoms
(36, 37). Akkermansia, a genus known to secrete beneficial
short chain fatty acids and make positive contributions to
the gastrointestinal mucosal health, is deficient in ASD which
is consistent with previous studies (38, 39). In addition, the
ASD microbiome demonstrates the densest network of co-
occurring genera, with the majority of the core co-occurring
genera contain species of opportunistic pathogens or are
implicated in inflammatory conditions, such as Tyzzerella,
Haemophilus, Veillonella, and Enterobactor. Previous studies
have proposed possible mechanisms that altered bacteria can
trigger, modify or enhance ASD symptoms, such as through
neurotoxic microbial byproducts or intestinal inflammation as
a result of certain bacterial species or an altered microbiome
(3, 5, 7, 40). However, to causally link the differences in
relative abundance to ASD symptoms, further research
using animal models are required. From clinical studies
and animal models, the importance of inflammation in
ASD pathogenesis and disease presentation has been known
for a long time. Recent studies have started to unravel the
cellular and molecular mechanisms involving the functions of
different types of immune cells, ranging from transcriptional
factor signaling, cytokine signaling, to pathways involved
in cellular proliferation (16, 41, 42). Future studies should
investigate whether these mechanisms are involved in the
pro-inflammatory processes triggered by ASD-enriched
microbe species.

We performed the first comprehensive correlational analysis
between ASD microbiome and core clinical symptoms. It
is intriguing that only Tyzzerella (which belongs to the
Lachnospiraceae family and Clostridia class) was found to
positively associate with stereotypical behavior. Tyzzerella has
been associated with a number of human diseases, and a
previous study showed a striking enrichment of this taxa
in ASD patients with abdominal pain as compared to ASD
patients without abdominal pain (12). Multiple studies support
the positive relationship between behavioral and GI symptoms
in patients with ASD: those with significant GI symptoms
tend to exhibit higher levels of repetitive behavior (43). The
“motor function hypothesis” states that GI pain and discomfort
can be indicative of motor excitation in patients with ASD,
while stereotypical behavior can also be a manifestation of
abnormal motor function. The strong positive correlation
between Tyzzerella and both GI pain and restricted repetitive
behavior from two independent studies raises the hypothesis
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FIGURE 3 | ASD severity was associated with gut microbiota abundance. (A) Stereotypic behavior was positively correlated to Tyzzerella relative abundance.

(B–D,F–H) ADOS subscale scores (social affect, SA), total scores, and standard score (CSS) were correlated with relative abundance of bacterial taxa. (E) GI severity

index score was positively associated with Butyricicoccus abundance. Indices were chosen at a univariate Q-value (FDR-adjusted P-value) cutoff of 0.1.
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TABLE 2 | Summary of omnibus univariate PERMANOVA tests using features from beta diversity metrics and clinical indices in children with ASD aged older than 4 years.

Clinical index Univariate Univariate Multivariate Multivariate Multivariate

R2 (%) P-value F-statistic (df = 1) R2 (%) P-value

Bray-Curtis

CARS overall score 14.512 0.045 1.460 0.043 NS

Intestinal irritability 9.795 0.029 3.459 0.101 0.011*

Fatigue 8.143 0.050 1.841 0.054 0.095.

SRS cognition (range T) 13.311 0.015 5.388 0.158 0.004**

Restricted interests 8.215 0.048 1.1346 0.033 NS

Unweighted UniFrac

GIS total score 7.500 0.033 2.345 0.075 0.011*

Constipation 8.149 0.019 1.393 0.045 NS

Abdominal pain 11.257 0.001 3.313 0.106 0.002**

Fatigue 7.706 0.025 1.732 0.055 0.064

Weighted UniFrac

CARS overall score 14.830 0.039 0.902 0.032 NS

SRS cognition (range T) 9.131 0.038 2.783 0.099 0.015*

Restricted interests 8.013 0.039 1.464 0.052 NS

*P < 0.05; **P < 0.005.

that the gastrointestinal microbiome may be a “keystone” link
between GI symptoms and stereotypical behavior association.
ADOS total score and social affect score are significantly
associated with multiple bacterial taxa. For example, the
genus Erysipelatoclostridium and Lachnochlostridium showed
a positive correlation with ADOS social affect score and/or
total score (Q < 0.1). Erysipelatoclostridium is a part of
normal gastrointestinal microbiota. However, it could become
an opportunistic pathogen and it has been identified as
a gastrointestinal microbiota biomarker in human patients
suffering from Clostridium difficile infection and Crohn’s
disease (44).

ASD patients’ gastrointestinal microbiota are highly diverse,
which warrants investigation into the key determinants of
heterogeneity. This project is the first to systematically explore
factors contributing to ASD gastrointestinal microbiome
heterogeneity (beta diversity) and alpha diversity. Using a
multivariable omnibus modeling framework, we found that
SRS cognition score is a significant predictor of beta diversity
in the ASD patient cohort using two different beta-diversity
indices. This is the first report linking the clinical heterogeneity
(as assessed by SRS) with microbiome heterogeneity, in the
ASD population. Thus, our results provided further proof-
of-principle support of the importance of “gut-brain-axis” in
ASD phenotypic presentation. Leveraging machine learning
algorithms, we attempted to identify subtypes of ASD based on
microbiome and clinical profiles, but due to the relatively small
sample size, we did not identify discrete sub-communities in the
ASD cohort. Next, by asking whether clinical presentations and
comorbidities can predict individual ASD patient’s microbiome
alpha diversity, we showed a preliminary predictive model of
gastrointestinal dysbiosis based on clinical factors for patients
with ASD. Our multivariable analysis indicated that ADOS
SA standard score, GIS total score (reflecting gastrointestinal

discomfort/symptoms), and weight are the strongest predictive
factors for alpha diversity (Shannon index). Previous studies
have demonstrated association between BMI and alpha diversity
(45), but a predictive value of ADOS SA on the alpha diversity
has not been reported before. For clinicians, a higher degree
of suspicion of GI dysbiosis and occult GI symptoms may
be raised in patients who have higher ADOS SA scores and
greater degrees of GI discomfort. The clinical utility of this
predictive model awaits further validation using a larger sample
size and a prospective study design. Overall, this study and
others that investigate the underlying pathophysiology or
diagnostic biomarkers of the gut brain axis may help to identify
subgroups of patients who may benefit from therapies targeting
the gut brain axis through modifying the gastrointestinal
microbiome (46–48).

Lastly, our study demonstrated predicted abnormalities
in stool microbiome-mediated metabolic pathways that are
relevant to the functions of the gut-brain-axis in patients
with ASD compared to healthy individuals. Our stringent
statistical framework took into account patient age and
parental age as covariates and identified altered tryptophan
and tyrosine metabolism and biosynthesis. The “gut brain
axis” is hypothesized as an intricate interplay between the
gastrointestinal microbiome, mucosal immune system, enteric
nervous system, autonomic nervous system (ANS), and the
central nervous system receiving ANS input (40, 49). Recent
studies with rodent ASD models suggest that autistic symptoms
may be, at least in part, affected by microbial metabolites
and their interactions with host immune and neuroendocrine
pathways (50, 51). Tyrosine is a precursor to multiple
neurotransmitters of the central and enteric nervous system,
including dopamine and norepinephrine (52, 53). Consistent
with our finding of elevated tyrosine metabolism in the ASD
microbiome, previous studies also demonstrated significantly

Frontiers in Psychiatry | www.frontiersin.org 10 October 2021 | Volume 12 | Article 682454

https://www.frontiersin.org/journals/psychiatry
https://www.frontiersin.org
https://www.frontiersin.org/journals/psychiatry#articles


Huang et al. Gastrointestinal Microbiome Modeling and ASD

increased Tyrosine metabolism in children with ASD compared
to the control group (54). This raises the possibility of
altered balance of downstream products such as dopamine
and norepinephrine which may exacerbate ASD symptoms
or comorbid psychiatric conditions via the ENS/ANS and
systemic absorption. In addition, the abundant E. coli may be
responsible for the predicted elevation in Tryptophan (Trp)
metabolism in the ASD stool microbiome which is known to
produce many downstream bioactive metabolites (55–57). In
addition to the roles of these metabolites in neurotransmitter
signaling and inflammation, emerging literature suggests cross
talk between metabolism and transcriptional regulation. For
example, Tryptophan derivatives have been demonstrated to
regulate aryl hydrocarbon receptor (AhR) signaling, which
controls cell-specific transcription of important genes in
environmental responses and xenobiotic metabolism (58).
Future studies are required to further explore the roles
of downstream transcriptional signaling with alternations of
these key metabolites. Future studies performing stool and
serum metabolite profiling are necessary to further explore the
metabolic implications of stool microbiome changes.

CONCLUSION

This double-controlled study demonstrated that
Escherichia/Shigella, Enterobacteriaceae, and Phyllobacterium
are enriched in the ASD group, and their relative abundances
all follow a pattern of ASD > first degree relative control >

healthy age sex matched control. Furthermore, the microbial
biomarkers are significantly associated with ASD core symptoms
(measured by ADOS evaluation) and GI symptoms, among other
clinical factors. The microbiome-associated biological functions,
including Tryptophan and Tyrosine biosynthesis/metabolism
were found to be relevant to the pathophysiology of the gut-
brain-axis. These findings suggest that some signature changes
of microbiome and its associated bacterial metabolic pathways
could be of potential diagnostic and subtyping values for ASD.
However, future studies are needed to establish mechanisms
and causal relationships between the enrichment of pathogenic
microbes and ASD pathophysiology with attention to the
contribution of microbial metabolites. Larger scaled studies with
direct serum and gastrointestinal metabolite sampling would
provide further insights. A larger sample is also required to
explore the diagnostic and classification utility of the microbial
biomarkers identified in our study. The limitations of the current
study include: (1) exclusive use of Chinese subjects and the
results are not generalizable to other ethnic groups until further
studies are performed (2) The relatively high dropout rate and
small sample size, which most likely led to the small number
of ASD signature taxa identified and underperformance of
classification/subtyping by random forest modeling. (3) The
use of first-degree relative controls as family member controls,
despite accounting for age as a covariate in the statistical
analysis. Ideally, future studies can focus on only age-matched
sibling controls. (4) use of ADOS-G (Chinese version) instead
of ADOS-2.
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