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A vectorial tree distance measure
Avner Priel1,2* & Boaz Tamir3*

A vectorial distance measure for trees is presented. Given two trees, we define a Tree-Alignment 
(T-Alignment). We T-align the trees from their centers outwards, starting from the root-branches, to 
make the next level as similar as possible. The algorithm is recursive; condition on the T-alignment 
of the root-branches we T-align the sub-branches, thereafter each T-alignment is conditioned on 
the previous one. We define a minimal T-alignment under a lexicographic order which follows the 
intuition that the differences between the two trees constitutes a vector. Given such a minimal 
T-alignment, the difference in the number of branches calculated at any level defines the entry of the 
distance vector at that level. We compare our algorithm to other well-known tree distance measures 
in the task of clustering sets of phylogenetic trees. We use the TreeSimGM simulator for generating 
stochastic phylogenetic trees. The vectorial tree distance (VTD) can successfully separate symmetric 
from asymmetric trees, and hierarchical from non-hierarchical trees. We also test the algorithm as a 
classifier of phylogenetic trees extracted from two members of the fungi kingdom, mushrooms and 
mildews, thus showimg that the algorithm can separate real world phylogenetic trees. The Matlab 
code can be accessed via: https:// gitlab. com/ avner. priel/ vecto rial- tree- dista nce.

A distance measure between two trees can be calculated based on several approaches. One can compare the 
two adjacency matrices by evaluating the eigenvalues or eigenvalue  gaps1. Alternatively one can compare graph 
properties, such as centrality, density, etc. A well known distance measure is the Tree Edit Distance (TED)2–4. In 
the TED we look for the optimal set of editing actions (e.g., insertion, deletion) transforming one tree into the 
other. One can cut any of the two trees at any level, where an edge can be inserted. There are several distance 
measures for phylogenetic trees. Each phylogenetic tree comes with a set of labels (taxa) attributed to the leaves. 
In the Robinson–Foulds  measure5 two operations are defined, a contraction where an edge is deleted and the 
labels on the leaves are rearranged, and an inverse operation, a de-contraction where an edge is added, and a 
corresponding new partition of the labels is set. The minimal sequence of such operations leading one tree into 
the other defines the distance measure.  In6 a tanglegram is defined by comparing the two sets of labels, counting 
the minimal number of crossings of lines joining the corresponding labels.  In7 a score was computed to each 
pair of edges, based on the partition of labels defined by each edge, next an alignment of the trees was calculated 
to maximize the sum of scores. Recently, several software tools for the presentation of trees were  suggested8.

Another approach was suggested more recently, where one uses machine learning kernel methods to compare 
two trees. In kernel  methods9,10 one maps the original data space into some feature space to compare two trees 
by computing their scalar ‘dot product’ . The feature space could be of high dimension, however we can use the 
‘kernel trick’11 to compute such dot products. Two trees are considered similar if their normalized scalar product 
in the feature space is close to 1, and orthogonal or different if this product is 0. The question remains: which 
feature space is appropriate for the task? There are several families of known feature spaces for trees, making the 
following list of kernel methods:

• Convolutional Kernels, where kernels on the tree set are induced from kernels on subsets, such as  subtrees12 
or subset  trees13,14. Similarly  in15 an approximate tree kernel was discussed in the context of NLP. Partial tree 
kernel were suggested  by16. Elastic tree kernels were discussed  in17, Grammar Driven tree  kernels18, Semantic-
Syntactic tree kernels  in19. All of the above methods, being applied by a mapping into some feature space, lose 
some of the information. For example two trees could have several subset trees in common, however their 
differences are not accounted for. Adding several nodes while keeping the same number of subset trees in one 
of the trees may yield the same kernel ‘dot product’. The same applies to most of the kernel methods above. 
More flexible kernels like Elastic kernels or partial tree kernels are even worse in that sense, they allows the 
identification of edges that our Vectorial Tree Distance (VTD) method presented here will not allow.

• Spectrum  kernels20 identify trees by searching for q-grams on the trees, these are patterns of predefined 
structure, possibly even  labeled21. Q-grams are identified without respect to their position in the tree. Our 
VTD is highly dependent on the distance from the root.
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• Fisher kernel is based on the generative stochastic model from which trees are drawn. Therefore different 
trees having the same statistical parameters are considered the same. Our VTD distance measure yields a 
distance between two specific trees.

• Self-Organizing Map of  trees9,22 uses non-supervised learning by competitive networks, and is effectively a 
clustering method. It identifies trees in the same cluster and thereafter uses kernel methods. In that sense it 
could measure the similarity of clusters, but not of trees.

To end this short review we mention some recent developments in phylogenetic tree distance measures:
In23 it was shown that one can cluster phylogenetic trees into meaningful groups using the spectral decom-

position of the Laplacian matrices. Moreover, eigenvalues’ gap were identified with modes of division within 
a tree, such as rates of diversification.  In24 a new tree distance was presented for rooted trees. For each pair of 
leaves, the most recent common ancestor (MRCA) was identified, then the distances of the MRCAs to the root 
was computed in two ways, either by summing the lengths of the edges or by summing the number of edges. 
Each tree was therefore given a weighted sum of  two vectors. The distance between two trees was defined to be 
the Euclidean distance of the trees’ vectors. The new distance was successful in identifying different gene trees 
such as Ebolavirus.  In25 a new measure of tree imbalance was suggested based on Suckin’s statistic. The authors 
compared the frequency of clades as computed under the Yule (the symmetrical) model with their empirical 
frequency in the data. This was done for clades of any size, yielding a vector of distances. The measure was tested 
on a simulated biased data against a null hypothesis of a Yule distribution. It was found that counting the number 
of ‘cherries’ is the most efficient way for detecting departure from the Yule model.

The algorithm presented here depends on the tree roots, and on the distance of the branches from the roots, 
therefore it is not allowed to swap nodes having different levels. This is the main reason why some of the above 
mentioned edit algorithms and their variants are different in  principle26. Our algorithm resembles the tree align-
ment distance algorithm  in27 restricted to the case where all labels are the same, trees are unordered and having 
bounded degree, a trivial cost function is defined on the labels, and the output is a scalar function; moreover we 
do not allow the insertion of internal ‘space’ nodes, only new boundary nodes are allowed. The time complexity 
 of27 is of the order of |T|2 where |T| is the number of vertices.

Our algorithm is more simplistic in the sense that it ignores all labels and therefore processes weaker infor-
mation. Having no taxa we can permute sub-branches or use other symmetries and therefore some information 
such as in gene trees or species trees are lost. We can use the algorithm to cluster families of trees, different in 
their generating probability distribution, see “Clustering of simulated phylogenetic trees: comparing VTD to 
other methods” section, for example we can differentiate families of gene trees by the distance of their generating 
distributions from the Yule model. Having waved some of the information the algorithmic time complexity is 
reduced as we shall discuss later, see  “Discussion” section. We therefore trade information capacity with time 
complexity. We can get fast results on weak information. Note however that the algorithm was desiged as a general 
mathematical tool. Indeed its application for clustering phylogenetic trees is most natural, however we expect to 
find yet other fields of research in need for such a tool . In the following we assume each tree has a root (center), 
the existence of which is well  known28, anyhow our version of the TDV package (see the discussion below for 
details) includes a simple function to find such a root.

Intuitively, given two trees and their corresponding centers, we will say that the trees are similar if there is 
a mapping taking one tree into the other, which is covariant with respect to distances from the center and with 
respect to descendancy. Covariance with respect to distance from the center means that for all R, a shell of radius 
R (from the center) of tree 1 is mapped into a shell of radius R of tree 2. Covariance with respect to descendancy 
means that whenever branch a of tree 1 is mapped into branch a′ of tree 2, the descendants of a are mapped 
into descendants of a′ . If such a mapping exists we can say the two trees are similar, modulo a permutation or 
a naming of the branches.

Below we develop the above mentioned mapping and measure the residual difference after applying it. Origi-
nally two trees might look different, and only following the suggested mapping one can recognize their similarity. 
For example, consider the following two simple trees (Fig. 1), which seem different. However, if one permutes 
the main branches mapping (a, b, c, d, e) into (a′, b′, c′, d′, e′) she will find that the only difference is two extra 
leaves on the right tree at the 4th level from the center, which is the difference between branch b and branch b′.

Having recursively T-aligned two trees (see detailed description in “The vectorial tree distance algorithm” 
section), we define the Vectorial Tree Distance as:

the vector whose entries are the differences in the number of branches at each level.

 Here is the algorithm in a nutshell (a detailed description is given in “The vectorial tree distance algorithm” 
section). Suppose we are given two trees, each with its center point. We T-align the trees from their centers 
outwards, starting from their stumps. We attach an n-ary vector to each of the centers, where n is the number 
of branches in the stump, and each entry is the number of sub-branches, i.e. descendants of that branch, see 
Fig. 2. For example, we attach the vector (2,3,4,5) to node O since it has 4 branches: 2 sub-branches for node A, 
3 for node B, 4 for node C, and 5 for node D. This ‘one step look ahead’ weighting method is similar to the one 
suggested by the ‘k-shell’ decomposition algorithm,  see29 and references therein. The ‘look-ahead’ method is 
defined as follows: Let O be the root of a tree, and V(O) = (n1, ..., nk) be the weight vector of O, where k is the 
outgoing degree of O, and nk is the number of outgoing branches of the kth branch of O (we do not count the 
edge between O and its kth branch). Similarly we define the weight vector for any node, using the same direc-
tion, defined by the root. Next, we align the two stumps to minimize the L1 difference of the vectors. This is the 
‘weighted matching problem’30, and there can be several such matchings. This minimal L1 difference will be the 
first entry of the VTD. Freezing this alignment we will force an alignment of the next level, i.e. their sub-branches. 
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Thus if branch a in the first tree’s stump is paired with branch a′ in the second tree, then the descendants of a 
will be aligned with the descendants of a′ . For the current level we use the same look-ahead method and attach 
n-ary vectors to each node at distance 1 from the center (for example nodes A and A′ in Fig. 2), where n is the 
number of sub-branches for the corresponding branch, and the entries are the number of sub-sub-branches for 
each sub-branch; for example, we attach the vector (3,2) to node A since it has 2 descending branches, one with 
3 sub-branches, the other with 2 sub-branches. The set of all L1 minimal distances at that level (the level of nodes 
A, B, C and D) defines an alignment of the sub-branches, and their sum will be the next entry of the VTD. This 
process is continued recursively. In case there is more than one minimal alignment at any level, the above process 
is continued with all those alignments in parallel.

Here is the definition of our ‘look-ahead’ method: Let O be the root of a tree. Let V(O) = (n1, ..., nk) be the 
weight vector of O, where k is the outgoing degree of O, and nk is the number of outgoing branches of the kth 
branch of O. Implicit in the definition is a direction from the root O outwards (in computing nk we do not count 
the edge between O and its kth branch). Similarly we define the weight vector for any node, using the same 
direction, defined by the root. We can use a simple Breadth First Search to find the nodes’ weights vector. When 
comparing two weight vectors, in case they have different lengths, we pad the shorter one by adding zeroes.

A remark concerning computational complexity. We assume the degree of each vertex in both trees is bounded 
by some integer k. Then for random trees the complexity of the VTD is O(k|V|) where |V| is the number of ver-
tices (the maximal), see the discussion below, “Discussion” section.

In the next section we present some definitions and preliminaries. In “The vectorial tree distance algorithm” 
section we elaborate on the algorithm along with detailed examples. In “Clustering of simulated phylogenetic 
trees: comparing VTD to other methods” section we compare our algorithm to other known methods in the task 
of clustering sets of phylogenetic trees generated by the TreeSimGM  simulator31,32. In Sect. “Clustering strains of 

Figure 1.  The above trees look very different; however if one maps the main branches (a, b, c, d, e) into (a′, b′, 
c′, d′, e′), it becomes apparent that the trees differ only by two extra leaves on the right hand tree, which is the 
difference between branches b and b’ at the 4th level from the center.

Figure 2.  Simple example of trees’ alignment.



4

Vol:.(1234567890)

Scientific Reports |         (2022) 12:5256  | https://doi.org/10.1038/s41598-022-08360-4

www.nature.com/scientificreports/

fungi phylogenetic trees” we test the VTD on real data; phylogenetic trees extracted from two members of the 
fungi kingdom, mushrooms and mildews.

The Matlab code can be accessed via: https:// gitlab. com/ avner. priel/ vecto rial- tree- dista nce.

The vectorial tree distance algorithm
We start with some definitions and notations to be used later.

Definitions and preliminaries. Definition 1  A Tree-alignment (T-alignment) of two trees: Given two 
trees Tr1 and Tr2 and their corresponding centers C1 and C2 , we will say that a mapping Al is a T-alignment of 
the trees if for every level R from both centers, Al maps the branches of one tree in that level to the branches of 
the other tree in the same level (with possible zero-padding into ghost branches), conditioned on the constrains 
that if branch a of tree Tr1 is T-aligned with branch a′ of Tr2 , then all descendants of a will be aligned with all 
descendants of a′.
Definition 2  Minimal T-Alignment: Given two trees Tr1 and Tr2 and a T- alignment Al of the trees, we say that 
Al is minimal if for every level R, going over all possible T-alignments at level R, Al is such that the difference 
between the number of descendants of any two T-aligned branches, summed over all pairs of T-aligned branches 
in that level R is minimal.

Definition 3  Vectorial Tree Distance: Given two trees Tr1 and Tr2 and a minimal T-alignment Al, then the 
VTD of the two trees is the vector whose R-entry is the minimal difference given by the minimal T-alignment 
Al for the level R. We let D denotes the distance vector.

Note that the first two definitions above are recursive, namely, the constrains must be fulfilled for all levels R. 
At each level R, the sum of all minimal L1 differences is the R entry of the distance vector.

In the following section, we elaborate on the algorithm. After describing the main steps of the procedure, we 
focus on the details via two specific examples.

T-Alignment and comparison. Given a pair of trees and center nodes we follow the trees from these 
nodes outwards. At level 0 we simply compare the number of edges of the stumps. The difference is the 0th 
entry of the distance vector. Suppose one stump has m edges the other stump has k edges, such that m ≥ k ≥ 0 
(without loss of generatlity), then the 0-entry of the distance vector is m− k . At level 1, there are several ways to 
T-align the m edges onto the k edges. We attach an n-ary vector to the center of each tree, where n is the number 
of branches in the corresponding stump, and each entry is the number of sub-branches, i.e. descendants of that 
branch, see examples below. The T-alignment problem is thus reduced to a ’weighted matching problem’30. We 
search for a T-alignment such that the L1 norm distance between the two weight vectors is minimal. The mini-
mal difference of weights will be the 1-entry of the distance vector. It could be that more than one T-alignment 
has the same minimal difference; in that case, all such T-alignments are kept for the next step(s). At level 2 we 
T-align the edges at distance 2 from the center, conditioned on the T-alignment(s) of the previous step. For that, 
we attach weight vectors to the nodes at level 1, looking ahead, the same way as above. At this stage we have 
several instances of the ’weighted matching problem’, and we sum all L1 norm distances at that level. The 2-entry 
of the distance vector will be the minimum over all such sums of L1 distances, going over all good (minimal) 
T-alignments of the previous level. This process is recursively continues until all nodes are exhausted. The fol-
lowing examples elaborate on the first few steps of the procedure.

Example 1 Consider the trees in Fig. 3. The 0-entry of the distance vector D(0) = 3− 2 = 1 , which is the dif-
ference in the number of branches of the stumps. Attach the vector (2,3) to node O, corresponding to the two 

Figure 3.  Detailed T-alignment of two trees.

https://gitlab.com/avner.priel/vectorial-tree-distance
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sub-branches stemming out of node A and 3 sub-branches stemming out of node B. Similarly we attach the vector 
(3,2,2) to node O′ of the second tree. We fix the right tree and map the branches a and b of the left tree into the 
branches a′ b′ and c′ of the right tree at level 1. There are 6 such mappings, each is denoted by a permutation of 
the weight vector (2,3,0) (while the vector (3,2,2) of the left tree fixed). The table in Fig. 4 show all possible map-
pings, where we zero-pad the vector at O i.e. v(O) = (2, 3, 0) , to allow permutations of two vectors with different 
sizes. The 3’rd column of the table includes the minimal L1 differences, and the 4’th column gives the explicit 
mappings between the nodes. Observe that the 2’nd and 4’th mappings (see the third column of the table) both 
have L1 minimal difference that equals 2. Therefore the 1’st entry of the distance vector D(1) = 2 , and there are 
2 minimal T-alignments at that level. How can we tell which of the two T-alignments is preferred? For that we 
will have to take a look at the next level T-alignments.

At the next level T-alignments we first attach vectors to the nodes at distance 1 from the centers; for the first 
tree we set v(A) = (3, 3, 0) and v(B) = (2, 2, 3) , and for the second tree we set v(A′) = (2, 2, 3) , v(B′) = (2, 3, 0) 
and v(C′) = (3, 4) . Next we T-align the branches of level 2 conditioned on the two minimal T-alignments 
from the previous step. If we follow T-alignment number 2 of the first level (see the table in Fig. 4), then b is 
mapped to a′ and we have to align the descendants of b with the descendants of a′ . Therefore, we have to match 
v(B) = (2, 2, 3) with v(A′) = (2, 2, 3) which has 2 possible minimal matchings (where we permute the sub-
branches with two leaves) with both L1 difference equals 0. Similarly, since a is mapped to b′ we have to match 
v(A) = (3, 3) with v(B′) = (2, 3) which has 2 possible minimal matchings, and a minimal difference equals 1. 
To this L1 difference at level 2 we have to add the number of (ghost) branches at level 2 which are the descend-
ants of c′ , i.e. 7. Therefore, if we follow the 2’nd T-alignment at level 1 we end with a sum of differences equals 
0 + 1 + 7 = 8 at level 2, which is the sum of 3 L1 differences. Alternatively, if we follow the 4’th T-alignment at 
level 1 (4’th line on the table), we have to map b into a′ , and therefore we have to match v(B) = (2, 2, 3) with 
v(A′) = (2, 2, 3) which again has 2 possible minimal matchings and difference equals 0. Additionally, we map a 
into c′ and therefore match v(A) = (3, 3) with v(C′) = (3, 4) , which has 2 possible minimal matchings with dif-
ference equals 1. To this L1 difference we have to add the number of branches at level 2 which are the descendant 
of b′ , i.e. 5. Therefore if we follow the 4’th T-alignment at level 1 we end with a difference of 0 + 1 + 5  = 6. The 
4’th T-alignment at the first level is therefore better and hence the 2’nd entry of the distance vector D(2) = 6 . To 
summarize, the first 3 entries of the distance vector D are: D = (1, 2, 6)

In Fig. 5 we present the procedure describing the set of all mappings for the above example. An open circle 
denotes a T- alignment and a closed one denotes a T- alignment with minimal distance value. At the first level 
we had 6 possible T-alignments (see the table in Fig. 4), 2 were minimal with L1 distance equals 2, and the other 
4 with L1 distance equals 4. At the second level we extend only the minimal T-alignments of the first level. To 
each minimal T-alignment of the first level we had 4 sub T-alignments. The 2’nd T-alignment of the first level 

Figure 4.  First level matching table.
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had 4 sub T-alignments with L1 distance 8, whereas the 4’th T-alignment of the first level had 4 sub T-alignments 
with L1 distance 6.

The following example is more complex, however we will not go into too much details, having in mind the 
previous example.

Example 2 In this example (see Fig. 2) the distance at level 0 is 0 since both stumps have 4 branches. Next we 
attach the weight vector (2,3,4,5) to the center node O, and the weight vector (3,4,5,6) to the center node O′ of 
the second tree. We now look at the set of all matches between the two weight vectors, having minimal L1 sum. 
An optimal match would be to T-align a with a′ , b with b′ , c with c′ , and d with d′ . This would T-align the weights 
(2,3,4,5) with (3,4,5,6) having an overall distance equals 4. Therefore the first level distance coefficient is 4.

If we T-aligned a with a′ at the first level we will have to T- align the descendants of a with the descendants 
of a′ . We attach a 2-tuple weight vector to A, (3,2), and a 3-tuple weight vector to A′ , (3,2,3), and compute the 
minimal T-alignment between the two weight vectors. One of the branches of a′ will be left non T-aligned (ghost) 
and all the descendants of that branch will add a corresponding difference at each of the next levels. Similarly 
we attach weight vectors to B and B′ , C and C′ , D and D′ . For each of the above pairs we compute the minimal 
T-alignment. Finally, we sum all the above minimal L1 differences to obtain the entry for the distance vector. In 
case both weight vectors have 0 entries (as in this example for B and B′ , C and C′ , and D and D′ ), we can pick any 
T-alignment and the L1 difference will be 0.

At level 1 we could T-align the branches a with d′ , b with a′ , c with b′ , and d with c′ , i.e. (2,3,4,5) with (6,3,4,5), 
where the minimal L1 distance also equals 4 as above. If we map a to d′ we should T-align the descendants of a 
with the descendants of d′ , therefore we should look at the 6-tuple weight vector for d′ , and find its best match 
with the 2-tuple vector for a. We should also find the other minimal matches between the 3-tuple of b and the 
3-tuple of a′ , the 4-tuple of c and the 4-tuple of b′ , and the 5-tuple of d and the 5-tuple of c′.

We will now compare the sum of L1 differences of the 2’nd level we computed, conditioned on the first level 
T-alignment of (2,3,4,5) with (3,4,5,6), with the alternative sum of L1 differences of the 2’nd level conditioned 
on the first level T-alignment of (2,3,4,5) with (6,3,4,5). In general, we will minimize the sum of L1 differences 
of the 2’nd level going over all minimal T-alignments of the first level. It is easy to see that the VTD distance is 
(0,4,3). We leave the rest of the details to the reader.

Let us now provide the general formulation of the process in terms of ‘Dynamic-Programming’:
Let −→X = (x1, ..., xk) , 

−→
Y = (y1, ..., yk),

define

where Sym(k) is the Symmetric group on k elements. Let

denote the set of permutations in Sym(k) satisfying the above minimum. In case the two vectors are not of the 
same length we pad the shorter one with zeroes.

Let D = D(O,O′) be the tree distance vector computed from the two centers outwards; O for tree 1, O′ for tree 
2. Given a root O, let V(O) = (n1, ..., nk) be the weight vector for node O, where k is the degree of O and nk the 
number of sub-branches of O that are branches of the kth branch of O. Let Vk(O) denotes the kth weight nk and 

(1)L1(
−→
X ,

−→
Y ) =

k
∑

i=1

|xi − yi|;

(2)M(
−→
X ,

−→
Y ) = minσ∈Sym(k)L1(σ (

−→
X ),

−→
Y )

(3)Mσ (
−→
X ,

−→
Y ) = argσ (minσ∈Sym(k)L1(σ (

−→
X ),

−→
Y ))

Figure 5.  The set of possible mappings.
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Vk(O) the corresponding node. Let D1

V(O)k ,V(O′)j
 be the tree distance vector for the two subtrees stemming out-

wards of vertices V(O)k and V(O′)j each computed from its first coordinate outwards. Let z be a predetermined 
length of the measurement vector D. The vectorial tree distance can be computed by the following recursive 
process:

The first coordinate (level) of D = D(O,O′) satisfies:

and the (2,..., z) coordinates (levels) satisfy:

Namely, to compute the distance vector from any two root points, we look-ahead to the neighboring vertices, 
having computed the distance vectors for the corresponding pairs of sub-trees (paired by one minimal T-align-
ment of the root branches), we sum the vectors point-wise. We now compute the minimal sum under the lexi-
cographic order, going over all minimal T-alignments of the root branches. To compute D1

V(O)i ,V(O′)σ(i)
 we need 

to re-use the above formula with V(O)i and V(O′)σ(i) as the new roots. The zero coordinate of D is the difference 
of the root’s degrees.

Clustering of simulated phylogenetic trees: comparing VTD to other methods
In this section we demonstrate our VTD measure on the problem of clustering families of phylogenetic trees 
generated by the TreeSimGM  package31,32. “TreeSimGM,” is an R-package simulation tool for generating sto-
chastic phylogenetic trees under a general Bellman and Harris  model33. The package allows the user to specify 
any desired probability distribution for the waiting times until speciation and extinction. Trees generated by the 
TreeSimGM have basic and simple parameters and can be considered as representing possible natural trees. We 
also compared our VTD with known tree distance measures; Robinson  Foulds34, SPR  distance35, KF  distance36, 
and path  distance37. We took 3 families of 60 trees each. On each family we tested a different property. We used 
k-means algorithms (k = 2) on the distance matrices to cluster each family according to the property tested. 
For the VTD measure we built a k-means algorithm anew, denoted vectorial k-means (VKM). This variant 
defers from standard k-means in the following aspects. First, the cluster-center in the VKM is a representative 
tree chosen to be the closest to all other members (trees) of the cluster. Although this ’closeness‘ measure can 
be obtained in many ways, for our analysis we simply used the root-mean-square of the VTD between pairs of 
trees. Second, the association stage, i.e. tree-to-cluster assignment is also done in the vector sense, i.e., the cluster 
chosen for each tree is obtained by calculating the VTD to any of the clusters’ representatives and selecting the 
one with the minimal root mean square. This process is repeated iteratively.

Here are the details followed by a table of the results:
a) Symmetric trees versus asymmetric trees—A set of 60 trees was generated. A sub-set of 30 was generated 

by a symmetric process, the other by a-symmetric generator. We used the same taxa 10 for all trees to allow the 
comparison with classical tree distance measures. In all trees a Weibull(3,0.1) was used as the waitsp (waiting 
time for speciation) distribution and an exp(0) as the waitext (waiting time for extinction) distribution.

b) Hierarchical versus non-hierarchical trees—A set of 60 trees was generated. A sub-set of 30 was generated 
by an hierarchical process, the other by a non-hierarchical generator. To construct hierarchical trees we used 
Weibull(4,0.1) as the waitesp distribution, and Weibull(1,0.1) for the non-hierarchical case. Otherwise all trees 
had taxa 15 and waitext distribution of exp(0). All trees were asymmetrically generated.

c) Trees of different taxa - in this case the classical measures are harder to use for measuring the distance 
between trees. We demonstrated the fact that the VTD measure can easily separate between different specia-
tion parameters. We compared trees having waitsp distribution exp(0.5), with trees having waitsp of exp(0.2). 
Otherwise all trees had waitext distribution of exp(0.3). All trees were asymmetrically generated with the same 
age parameter, sim.age equals 10.

The table in Fig. 6 summarizes the details of the experiments. The table in Fig. 7 summarizes the details of the 
results. In separating symmetric versus asymmetric trees the VTD measure showed better results than the RF 
and path distance measures. In separating hierarchical versus non-hierarchical trees the VTD measure showed 
better results than all the above methods. The VTD distance could also well separate trees having different waitsp 
(exponential) distributions with different taxa.

Clustering strains of fungi phylogenetic trees
To demonstrate the power of the VTD measure, we analyzed two sets of trees derived from two members of the 
fungi kingdom, mushrooms and mildew. The data is taken from  TreeBASE38,39, and consists of sets of species 
trees. The set consists of 21 (res. 27) phylogenetic trees of mushrooms (resp. mildew). Initially we combine the 
two sets and create a set of 48 trees. Next, we calculate the VTD for each pair of trees, hence obtaining a 3D matrix 
of dimension [N x N x L] where N is the total number of trees and L is the depth (level) for which the distance 
is calculated. We apply the vectorial k-means algorithm (described in "Clustering of simulated phylogenetic 

(4)D(O,O′)(1) = M(V(O),V(O′))

(5)

D(O,O′)(2, ..., z) =

= lexminσ∈Mσ (V(O),V(O′))

{

D1

V(O)1,V(O′)σ(1)
+

+ D1

V(O)2,V(O′)σ(2)

...+ D1

V(O)k ,V(O′)σ(k)

}
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trees: comparing VTD to other methods" section) and obtain the centers of the two clusters (assuming k = 2). 
We also apply the k-medoids  algorithm40 with similar results. In order to use a scalar distance value for each 
pair (rather than a vector), we simply sum the distance values of levels 2–5. Figure 8 depicts the results of this 
partition. Once the algorithm converges to the k = 2 trees that are the centers (medoids), we pick the distances 
of all trees from these centers. The x-axis is simply the running index of the tree, where the circles (1–21) belong 
to the mushroom set, the triangles (22–48) to the mildew set. The y-axis is the difference of distances of each 
tree i from the two centers, (Di,1 − Di,2) . Hence, negative value means the tree is closer to the first center. The 
horizontal black dashed line is at D = 0 for reference, as well as the vertical dashed line separating the two sets 
of trees. As can be seen, 16/21 of the trees in the first set (mushroom) are closer to the first center, and 21/27 
of the trees in the second set (mildew) are closer to the second center. The confusion matrix representing the 
results is [0.7619 0.2380; 0.2222 0.7777]. The results clearly show that it’s possible to differentiate between sets 
of phylogenetic trees generated from different sources or distributions.

Discussion
In this manuscript we present a new vector distance measure for a pair of trees, denoted VTD. The distance vector 
is calculated following a T-alignment process of the trees, applied from a given pair of center points outwards. 
We describe the algorithm in details.

To compare the VTD to other well known tree distance measures we simulated several families of phy-
logenetic trees using the TreeSimGM R-package. In separating symmetric versus asymmetric trees the VTD 
measure showed better results than the RF or path distance measure, and in separating hierarchical versus non-
hierarchical trees it was found better than the RF, KF, Path, or SPR distance measure.

Some remarks concerning computational complexity. We assume the degree of each vertex in both trees 
is bounded by some integer k. At each vertex we compute a weighted matching on two k-dimensional integer 
vectors. The ‘weighted matching problem’ is known to have polynomial complexity (in k)30. Furthermore, find-
ing all minimal solutions to the weighted matching problem is also polynomial (in k)41. Denote by |M(k)| the 
complexity of finding all minimal matchings of two k dimensional integer vectors, let #M(k) be the number of 
such minimal alignments. Consider now the process of T-alignment, going from the center outwards. At each 
level, and for each T-alignment we compute the matching between the nodes aligned. Therefore the complexity 

Figure 6.  Details of TreeSimGM simulations.

Figure 7.  Confusion matrices for the above experiments.
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will be the product of |M(k)| by the number of vertices at that level by the number of T-alignments at that level. 
Multiple equivalent T-alignments at any level could have been originated at a previous level, or could have been 
originated at that level by equivalent mathcings. For random trees multiple T-alignments from both sources are 
rare. We can therefore characterize the tree of T-alignments described in Fig. 5. Having all that in mind it is easy 
to see that for random trees the complexity of the VTD is O(|(M(k)| |V|) where |V| is the number of vertices 
(maximal). The exact proof is left for future research.

Most algorithms for the alignment of pairs of trees have higher time complexity of the order of O(|V1||V2|) 
(see Table 1  in2), however these algorithms align trees with labels. Our algorithm is more simplistic in the sense 
that it ignores all labels and therefore processes weaker information, however its time complexity is lower.

Our algorithm can be used to gain some insights in several areas, such as game theory, decision-making 
processes, genetics, communication networks and more. For example in the area of decision making, assuming 
it is possible to map the decision processes into trees. Then one can define a distance measure between two such 
processes, each may occur in different organizations, or situations. This could also be applied in crisis manage-
ment cases where complex scenarios can be mapped into a corresponding tree and further analyzed against 
other scenarios or use cases.

In immunology, currently it is possible to obtain the repertoire sequencing of various immune cells, e.g. B/C 
 cells42,43 from peripheral blood. This means that different subjects, or even the same subject at different time 
points, exhibit different repertoires. One of the major hurdles is to infer useful insights from this vast informa-
tion. We suggest that applying the vector distance measure, it is possible to compare repertoires after they have 
been mapped to their network representation.
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