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Microbial electrosynthesis (MES) from CO2 provides chemicals and fuels by

driving the metabolism of microorganisms with electrons from cathodes

in bioelectrochemical systems. These microorganisms are usually strictly

anaerobic. At the same time, the anode reaction of bioelectrochemical

systems is almost exclusively water splitting through the oxygen evolution

reaction (OER). This creates a dilemma for MES development and engineering.

Oxygen penetration to the cathode has to be excluded to avoid toxicity and

efficiency losses while assuring low resistance. We show that this dilemma

derives a strong need to identify novel reactor designs when using the OER as

an anode reaction or to fully replace OER with alternative oxidation reactions.

KEYWORDS

carbon dioxide valorization, microbial electrosynthesis, microbial electron uptake,
extracellular electron transfer, oxygen stress

Introduction

Microbial electrochemical synthesis (MES) is the execution of microbially catalyzed
electrochemical reactions to transform a substance into the desired product (Schröder
et al., 2015). In simple words, MES is the generation of valuable extracellular multicarbon
materials using electric energy based on combining microbial and electrochemical
transformations (Zhang et al., 2013). MES can be based on anodic as well as cathodic
reactions and covers the production of a variety of chemicals (refer to also Table 1)
(Schröder et al., 2015). One highly interesting carbon substrate for cathodic MES is
carbon dioxide (CO2).

Strategies to utilize CO2 as feedstock for the production of chemicals and fuels are of
general high interest. Using CO2 shall allow creating sustainable carbon neutral (or even
carbon negative) production routes and thus set the foundation for a circular biobased
economy. CO2 is chemically stable; therefore, its utilization for chemical as well as
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(abiotic) electrochemical transformations requires large
activation energy, respectively, overpotential (Gawel et al.,
2022). In addition to chemical, biological synthesis from
CO2 is also intensively researched, including photobiological
synthesis or gas fermentation, which has been proven to yield
multicarbon products from CO2 (Kondaveeti et al., 2020).
These biological CO2 capturing methods possess benefits
such as being based on widely available materials, ambient
working conditions, being free of hazardous compounds,
and being sustainable (Bajracharya et al., 2016a). In this line,
MES that is using CO2 as carbon feedstock at cathodes was
most deeply investigated. Hereby, electrons are supplied via
a cathode to reduce carbon dioxide into products mainly by
obligate anaerobic microorganisms that are capable of using
the Wood-Ljungdahl CO2 fixation pathway (Nevin et al., 2011;
Igarashi and Kato, 2017).

Among the most common products gained from CO2

via MES are acetate (CH3COOH) and ethanol (C2H5OH)
(Table 1). Sporomusa ovata, Sporomusa silvacetica, Sporomusa
sphaeroides, Clostridium ljungdahlii, Clostridium aceticum, and
Moorella thermoacetica (Table 1) are among the autotrophic
microorganisms that have been observed to generate acetate
from CO2 through this pathway (Nevin et al., 2011). Another
important group of autotrophic biocatalysts fixes CO2 via MES
to methane, with the methanogens Methanobacterium palustre
and Methanococcus maripaludis being most investigated
(Enzmann et al., 2019). All these autotrophic biocatalysts or
bioelectrocatalysts have in common that they are obligate
anaerobic. Obligate anaerobes cannot sustain oxygen as they
depend on low-potential flavoproteins for their respiration
(Buckel and Thauer, 2018). Any exposure to oxygen can result
in the biochemical and electrochemical formation of superoxide
and hydrogen peroxide that are leading to oxidative stress and
cell damage (Imlay, 2002). Thus, even small traces of oxygen in
the MES setup can strongly hamper bioproduction. This means
that most microorganisms suitable for performing MES from
CO2 require (strictly) oxygen-free that is anoxic conditions to
grow well and unravel their full performance.

To overcome or avoid this threat of oxygen toward the
biocatalysts, many MES systems are operated with undefined
mixed cultures at the biocathode (Gildemyn et al., 2015; Patil
et al., 2015; Bajracharya et al., 2016b). However, a number
of competitive microbial reactions happen in these MES, and
therefore, the product (usually acetate) concentration profile
fluctuates strongly. In a pure culture biocathode; in contrast,
the production profile is more stable and reliable, indicating
that no or only few competitive processes are present. In a
direct comparison of pure and mixed culture MES, the highest
production rate of a mixed culture biocathode was 1.35 mM/day,
corresponding to 50% current efficiency, meanwhile, for a
pure culture biocathode, the maximal production rate was
2.4 mM/day, corresponding to 89% current recovery between
days 11 and 12 (Bajracharya et al., 2015). However, while the

product spectrum was more stable for the pure culture, the
overall operation was more unstable, likely due to the higher
performance sensitivity of the pure culture catalyst, and this
maximal performance was held only for 2 days of operation.
Working with mixed cultures also greatly limits the perspectives
to diversify the product spectrum since the community driving
force is going toward thermodynamically stable products such
as methane or acetate when methanogenesis is suppressed. The
target production of diverse biochemicals or the application of
molecular engineering for production pathways is not possible
with mixed cultures.

The reactors used for MES are termed bioelectrochemical
systems (BESs). A whole plethora of BES architecture is
currently used when performing MES from CO2 (Table 1).
Thereby, two fundamentally different types of reactors can
be distinguished, namely, one-chambered and two-chambered
BES. In one-chambered BES, anodic and cathodic reactions
proceed in the same electrolyte solution that is the microbial
medium, whereas in two-chambered reactors, cathode and
anode are physically separated but ionically connected. It
is commonly considered that in one-chambered reactors,
compounds formed at one electrode may hamper the reaction
at the other one and vice versa, whereas in two-chambered
reactors, this is not the case, but resistance induced by the
membrane separator may limit the overall performance (Krieg
et al., 2018). For BES, very often reactor designs are used
that are deduced from classical (abiotic) electrochemical cells.
Furthermore, BESs are often not only inadequately described in
terms of bioprocess engineering but they are also unsuitable for
process development and scale-up (Rosa et al., 2019).

Bioelectrochemical systems for MES from CO2 using
autotrophic microorganisms are commonly operated with the
oxygen evolution reaction (OER) as counter-reaction at the
anode (vide infra). Considering the strictly anaerobic nature
of the discussed cathodic microbial biocatalysts, the evolved
oxygen might more than likely hamper the MES performance.

The challenges of designing
bioelectrochemical systems for
microbial electrosynthesis create a
dilemma

Bioelectrochemical systems consist of an anode where
oxidations take place and a cathode where reductions take
place. In the case of two-chambered BES, a membrane is placed
between the electrodes. When performing MES from CO2 at
the cathode, the most common anode reaction is an electrolytic
splitting of water by the OER (Eq. 1):

2H2O→ O2 + 4H + 4e − (1)
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TABLE 1 Collection examples of cathodic microbial electrosynthesis studies using CO2 substrate.

Microorganisms Product of
cathodic MES

Cathode
material

Anode material Anode reaction BES design/ use
of membrane

References

Mixed culture Acetate NanoWeb-
Reticulated Vitreous
Carbon (RVC) &
unmodified RVC

Platinum wire 2H2O→
O2 + 4H + + 4e−

Two chamber/ CEM
Cationic Exchange
Ultrex CM17000,
Membranes
International

Jourdin et al., 2014

Sporomusa ovata Acetate,
2-oxobutyrate.

Unpolished graphite
rods

Unpolished graphite
rod

2H2O→
O2 + 4H + + 4e−

Two chamber/
Nafion CEM (No
specification)

Nevin et al., 2010

Enriched brewery
WW sludge

Acetate Graphite granules Graphite rod under
graphite granules

2H2O→
O2 + 4H + + 4e−

Two chamber/
Nafion 117

Marshall et al., 2013

Anaerobic digester/
Retention basin

Acetate Granular graphite
and graphite rods

Granular graphite
and graphite rods

2H2O→
O2 + 4H + + 4e−

Two chamber/ CEM
CEM (CMI-7000,
Membranes
International)

Batlle-Vilanova et al.,
2016

Clostridium aceticum
Sporomusa
sphaeroides
Clostridium
ljungdahlii,
Moorella
thermoacetica

Acetate,
2-oxobutyrate
Acetate
Acetate

Acetate

Graphite rod Graphite rod 2H2O→
O2 + 4H + + 4e−

Two chamber/
Nafion 117

Nevin et al., 2011

S. ovata Acetate Graphite rods Graphite rod 2H2O→
O2 + 4H + + 4e−

One chamber/
Membrane-less
reactor, with anode
on the top

Giddings et al., 2015

Enriched acetogenic
culture

Acetate RVC foam Mixed metal oxide
(IrO2/Ta2O5)

2H2O→
O2 + 4H + + 4e−

Two chamber/ CEM
(CMI-7000,
Membranes
International)

LaBelle and May,
2017

Enriched mixed
culture

Acetate, n-butyrate,
n-caporate

Three carbon felts
stacked together

Pt/IrO2 coated Ti 2H2O→
O2 + 4H + + 4e−

Two chamber/
CMI-7000,

Jourdin et al., 2018

Enriched mixed
culture

Acetate, Butyrate,
Caproate

Graphite granules,
Carbon felts stacked
together

Pt/IrO2 coated Ti 2H2O→
O2 + 4H + + 4e−

Two chambers/
CEM (Fumasep FKS,
Fumatech BWT)

Jourdin et al., 2019

Enriched mixed
culture

Acetate, carboxylic
acids and Ethanol

Carbon cloth (CC)
and stainless steel
mesh (SS), and
CC-SS with activated
carbon (AC)

Plain graphite plate Wastewater+Glucose
→ Treated
wastewater+ CO2

Two chamber/ CEM
(No Specification)

Annie Modestra and
Venkata Mohan,
2019

Raw+ acclimated
activated sludge

Capraoate, volatile
fatty acids

Carbon felt Ti mesh coated with
Ir and Ru

2H2O→
O2 + 4H + + 4e−

Two chamber/ CEM
(Shanghua Water
Treatment Materials
Co. Ltd.,
Shanghai, China)

Jiang et al., 2020

S. ovata Acetate Chitosan on carbon
cloth

Graphite rod 2H2O→
O2 + 4H + + 4e−

Two chamber/
Nafion 117

Zhang et al., 2013

Enriched mixed
culture

Acetate 3D RVC with
multi-walled carbon
nano-tubes
(MWCNT)

Platinum wire 2H2O→
O2 + 4H + + 4e−

Two chamber/
Ultrex CM17000,

Jourdin et al., 2015

Enriched mixed
culture

Acetate MWCNT-RVC Platinum wire 2H2O→
O2 + 4H + + 4e−

Two chamber/
Ultrex CM17000

Jourdin et al., 2016

S. ovata adapted on
Methanol

Acetate CC-rGO-TEPA Graphite rod 2H2O→
O2 + 4H + + 4e−

Two chamber/
Nafion 115

Chen et al., 2016

S. ovata Acetate 3D-Graphene
carbon felt
composite

Graphite rod 2H2O→
O2 + 4H + + 4e−

Two chamber/
Nafion 115

Aryal et al., 2016

S. ovata Acetate Graphene paper Graphite rod 2H2O→
O2 + 4H + + 4e−

Two chamber/
Nafion 115

Aryal et al., 2017

(Continued)
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TABLE 1 (Continued)

Microorganisms Product of
cathodic MES

Cathode
material

Anode material Anode reaction BES design/ use
of membrane

References

S. ovata Acetate Carbon cloth coated
with poly(3,4
ethylenedioxythiophene):polystyrene
sulfonate
(PEDOT:PSS)

Graphite rod 2H2O→
O2 + 4H + + 4e−

Two chamber/
Nafion 115

Aryal et al., 2018

S. ovata Acetate Graphite rod -Ni
Nano wire

Graphite rod 2H2O→
O2 + 4H + + 4e−

Two chamber/
Nafion 117

Nie et al., 2013

S. ovata Acetate 3D Iron oxide
modified carbon felt

Graphite rod 2H2O→
O2 + 4H + + 4e−

Two chamber/
Nafion 117

Cui et al., 2017

Mix culture from
MFC

Acetate, n-butyrate,
iso-butyrate,
n-caproate, volatile
fatty acids and their
alcohols

3D Graphene
Ni-foam

Pt wire 2H2O→
O2 + 4H + + 4e−

Two chamber/ CEM
CEM (CMI-7000T,
Membranes
International)

Vassilev et al., 2018

S. ovata Acetate Porous Ni-hollow
fiber

IrO2-coated carbon
cloth

2H2O→
O2 + 4H + + 4e−

Two chamber/
Nafion 117

Bian et al., 2018

A. woodii
S. ovata
M. maripaludis

Acetate CoP
MoS2
NiMo

Platinized titanium
mesh

2H2O→
O2 + 4H + + 4e−

Two chamber/
Nafion 117

Kracke et al., 2019

Engineered
Clostridium
ljungdahlii

Acetate
Butyrate
Ethanol

Ni-P-modified
carbon felt

A titanium mesh
with iridium and
ruthenium coating.

2H2O→
O2 + 4H + + 4e−

Two chamber/
Nafion 117

Wang et al., 2020

Oxygen Adapted
S. ovata

Acetate Carbon felt Carbon felt 2H2O→
O2 + 4H + + 4e−

Two chamber/
Nafion 115

Shi et al., 2021

Anaerobic sludge Methane Carbon cloth Carbon cloth coated
with platinum
powder

HS− oxidized to
SO4

2−
Two chamber/
Nafion EC–NM–211

Dinh et al., 2022

Acetobacterium
dominated mixed
culture
And
pure culture of
Clostridium
ljungdahlii

Acetate Graphite plate Metal oxide coated
titanium plate

2H2O→
O2 + 4H + + 4e−

Two chamber/
Nafion 117

Roy et al., 2021

Enriched mixed
culture

Butyrate Carbon cloth
connected to a
stainless
steel wire

Ti-MMO 2H2O→
O2 + 4H + + 4e−

Two chamber/
Tubular cation
exchange membrane
CMI-1875Tl

Batlle-Vilanova et al.,
2017

Enriched mixed
culture

Ethanol, butyrate Two pieces of
graphite felts with a
graphite rod
sandwiched.

Titanium with an
Iridium coated
dimensionally stable
anode (DSA)

2H2O→
O2 + 4H + + 4e−

Two chamber/ 117
Nafion 117

Bajracharya et al.,
2017

Clostridium
ljungdahlii

Heptanoic acid,
heptanol, caproate
and hexanol

Round carbon cloth Round stainless
mesh plate

2H2O→
O2 + 4H + + 4e−

Two chamber/ PEM
PEM (No
Specification)

Jabeen and Farooq,
2016

Methanococcus
maripaludis

Methane Graphite
rod

Graphite
rod

2H2O→
O2 + 4H + + 4e−

Two chamber/
Nafion 117

Enzmann et al., 2019

The oxygen formed at the anode can penetrate into the
cathode chamber. It can have a strong impact on the reactions
in the BES, as recently illustrated for cathodic microbial
electrochemical sulfate reduction (Dai et al., 2022). The presence
of oxygen at the cathode is very intuitive for one-chamber
BES. Yet, also in two-chamber BES, penetration of oxygen
from the anode chamber cannot be completely circumvented
with a separator like a cation or a proton exchange membrane
(Harnisch and Schröder, 2009; Rahman et al., 2018). If oxygen

from the anode as well as from the reactor environment
is reaching the cathode (Figure 1), this will have several
detrimental effects on the cathodic MES performance. First,
and very importantly, oxygen can be reduced by abiotic
or biotic cathode reactions (Eq. 2a) and thus decrease the
coulombic efficiency (CE) (Dessì et al., 2021). The CE is the
overall share of electrons being used for the target reaction,
which in this study is the formation of products from CO2.
Thus, any cathodic electron reacting directly or indirectly with
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FIGURE 1

Microbial electrosynthesis in an H-type reactor as the archetype of a two-chambered bioelectrochemical system and often used for microbial
electrosynthesis (MES) from CO2 (refer also to Table 1): the two chambers are separated by an ion-exchange membrane. As indicated, this
setup provides more entry points for oxygen affecting the performance of the obligate anaerobic biocatalyst at the cathode with the main entry
point being the membrane interface. Image created with BioRender.

oxygen is a lost electron in terms of production (Kocha et al.,
2006). Second, as discussed above, oxygen is toxic for the
most dominating MES biocatalysts and will reduce biocatalytic
activity. Furthermore, the oxygen reduction reaction in addition
to water can also yield hydrogen peroxide (Eq. 2b), which
also leads to oxidative stress for the microorganisms (refer to
above).

O2 + 4H + 4e− → 2H2O (2a)

O2 + 2H+ + 2e− → 2H2O2 (2b)

Thus, the oxygen evolution in multiple ways is directly
affecting the performance of MES in terms of yields
and rates. At the same time, it is without question that
ionic contact between the anode and cathode chamber is
required for operating any BES (Harnisch and Schröder,
2009). This contact has to be established with the high
ionic conductivity of the separator at low resistance to
the entire BES to limit energetic losses. Yet, separator
materials providing high ionic conductivity usually also
show a low resistance for penetration of oxygen: It is a
dilemma!

Ways out of the dilemma

It is a strong imperative to establish technical solutions for
BES that shield the cathode compartment from O2 for successful
MES. Different strategies that are briefly introduced below can
help counteracting or resolving the above-described dilemma.
In case the OER cannot be replaced as an anode reaction (refer
to (b)), we proposed technical solutions to prevent or at least
minimize O2 penetration to the cathode (refer to (c) to (g)) for
lab-scale but also for scale-up applications.

a) Use of microbial collaboration to
scavenge away oxygen

In this study, the reported dilemma with oxygen toxification
mainly applies to MES with defined microbial catalysts,
especially pure cultures. However, many research groups
successfully operated MES with undefined mixed cultures
(Jourdin et al., 2014; Jourdin et al., 2015; Jiang et al., 2020). Using
mixed cultures or reactor microbiomes intrinsically resolves
the oxygen toxicity dilemma by immediate consumption of
oxygen through aerobic microbial community members. While
these systems are operating fairly robust, they create different
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limitations and challenges to upscaling MES. With undefined
mixed cultures, highly efficient MES processes will stay limited
to very few stable end-products such as methane, while other
target products such as acetate or ethanol require a very good
balance of the community activities to avoid their subsequent
(re-consumption and conversion to unwanted side-products
such as methane). Additionally, pure culture MES processes
in the future might allow for the production of new, higher-
value target compounds through genetic engineering of the
biocatalysts, increasing the scope and impact of this technology.
This important route of development is not at all available
for mixed cultures. Most importantly, however, the oxygen
dilemma regarding efficiency losses by oxygen reactions with
cathodic components is just as pronounced for mixed cultures
than for pure cultures. Thus, all the following strategies might
also be suitable and advisable to improve the efficiency of MES
with mixed microbial catalysts.

b) Replacement of the anode reaction

The most effective strategy to avoid any harm of oxygen
to the cathodic reaction certainly is its avoidance. An anode
reaction that does not generate oxygen (Eq. 2a) or hydrogen
peroxide (Eq 2b) is not affecting the cathodic microorganisms
in general. On several anode materials, the OER (Eq.1) requires
a remarkable overpotential. Therefore, oxidation of chemical
compounds at lower overpotential in these materials seems very
attractive, e.g., the oxidation of glycerol to formic acid (Eq. 3), or
to glyceraldehyde (Eq. 4), or the oxidation of glucose to gluconic
acid (Eq. 5). It was shown that this anode reaction can be more
energetically and economically favorable than water oxidation
(Jourdin and Burdyny, 2021).

C3H8O3 + 3H2O→ 3CH2O2 + 8H+ + 8e− (3)

C3H8O3 → C3H6O3 + 2H+ + 2e− (4)

C6H12O6 + 1H2O→ C6H12O7 + 2H+ + 2e− (5)

Alternatively, chemical electron donors such as ferrocyanide
(Yang et al., 2021) or anaerobic microbial oxidations could
replace OER at the anode (Xiang et al., 2017). However, for
the first, sustainable and complete recycling of the generated
ferricyanide is currently not established and would lead to high
economic and ecological costs. The latter approach comes with
the intrinsic limitation that in this case also the anode potential
needs to be carefully controlled to avoid toxic redox stress to
the anodic microbial biofilm. As another option, Dinh et al.
(2022) used the anodic oxidation of sulfide to sulfate as a
counter-reaction for their cathodic electromethanogenesis.

c) Purging inert gas in the cathode
chamber

Purging inert gas such as nitrogen (N2) or CO2/N2 mixtures
to the cathode chamber can be an option for small-scale
laboratory experiments to assure anoxic conditions like it is used
for other obligate anaerobic bioprocesses (Valdez-Vazquez et al.,
2005). A continuous low stream of the CO2 feed supply might
not be sufficient for oxygen removal, but higher gas fluxes come
with some challenges. Already at the laboratory scale, we have
to care about mechanical stress to microorganisms and in the
case of pure N2, about removing the carbon source CO2 with
the inert gas stream by outgassing. As water evaporation in the
cathode has to be avoided, humidifying the gas is required at
the lab scale (Wiegmann et al., 2018). Yet, purging high-volume
streams of inert gas in the cathode chamber is no solution
at technical scale and beyond. Apart from the environmental
footprint that comes with using gaseous N2, the operational
expenditures (opex) would be significant.

d) Adapting the bioelectrochemical
systems design

By changing reactor design, the share of O2 that is
instantaneously removed from the anode solution can be
decisively influenced. For example, a straightforward approach
is the placement of the electrode. For instance, placing the
anode on top of the cathode and in close vicinity to the
water/gas interface will increase the mass transfer of O2 to
the gas phase (Giddings et al., 2015). Thus, a lower amount
of oxygen will penetrate into the anode chamber and thus
less O2 is likely to penetrate the cathode. Thereby, it is
important to keep a close distance between the cathode and
anode. In the mentioned study, the electrode spacing was
not changed. In any case, fluid dynamics and redox potential
modeling approaches are recommended to obtain estimates on
the impact of configurational changes on reactor performance
(Rosa et al., 2019).

e) Operating bioelectrochemical
systems with oxygen scavengers

Using oxygen scavengers, i.e., materials that chemically bind
or physically fix O2, seems highly promising but may come at
higher costs for chemicals and at an additional overpotential.
For instance, metal-organic frameworks (MOFs) could become
of interest (DeCoste et al., 2014). Yet, the application of
MOFs in aqueous solutions is challenging (Kavoosi et al.,
2018), but tailoring the material may allow creating MOFs
with specific properties needed for a certain MES. Thereby,
a combination of improving the BES design and using a
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scavenger, for instance being placed close to the membrane,
seems most promising. This means that the majority of oxygen
would directly leave the anode solution, e.g., as bubbles, and
only the O2 molecules close to the membrane would need
to be scavenged away before penetrating to the cathode. For
sustainability reasons, scavenger materials have to be recyclable
for use in multiple MES operations.

f) Using tailored membranes

As mentioned earlier, the membrane has to provide high
ionic conductivity while minimizing O2 penetration. Therefore,
tailoring membrane materials is required. Today, mainly
polymer materials that are optimized for application in abiotic
chemical reactors are used (Koók et al., 2019). In addition to
these, ceramic membranes are promising, albeit they face the
same dilemma of requiring to be repellant to oxygen at low ionic
resistance. Apart from very few uses for fundamental research,
due to the high resistance, the application of salt bridges for
MES is not an option. Albeit having some application relevance,
the use of advanced bipolar membranes currently does not
seem to be a technical solution for scale-up, as well. Using
bipolar membranes comes with increased opex and a loss of
system efficiency, as the cell potential has to provide sufficient
driving force for water splitting at the membrane (Harnisch and
Schröder, 2009). Yet, using bipolar membranes can also come
with a case-specific benefit of lowering the potential needed for
the cathode reaction by a pH gradient across the membrane.
This can partly outbalance the need for an external driving
force for water splitting, which is, however, highly case-specific
(Pärnamäe et al., 2021).

g) Microbial strain adaptation to
oxygen

A stepwise adaptive laboratory evolution (ALE) strategy
can be used to increase the tolerance of anaerobic acetogens.
Shi et al. (2021) developed two Sporomusa ovata strains
that are adapted to 5% oxygen by a stepwise ALE. The
adapted S. ovata strains showed better performance in
autotrophic conditions in the presence of 5% oxygen
where the OD reached 0.17 and 0.19 ± 0.02 for the
adapted strains compared with the wild-type strain,
which was not able to grow at all at this oxygen
concentration. In addition, the adapted strains were 1.5-
fold more active for acetate production in BES, which
emphasizes the importance of solving the oxygen dilemma to
overcome limitations.

As illustrated in this prospective study, there are several
ways out of the oxygen dilemma for strict anaerobic MES.
We are convinced that there is no silver bullet to solve this,

and since there is no “one-fits-all” solution and MES concepts,
target scales and economic boundaries will play great roles
in choosing a certain route to mitigate the problem. All the
above-mentioned strategies (Use of microbial collaboration
to scavenge away oxygen) to (Microbial strain adaptation
to oxygen) and even further options have to be considered,
integrated, and investigated for finding solutions to enhance
the function of pure culture MES. Independent of what
the technical approaches are specifically, they need to be
environmentally sustainable, biocompatible, feasible for scale-
up, and economically sound. Intuitively, the option to avoid
the problem by choosing alternative anodic reactions seems to
be most appealing; however, if scalability or rate limitations
greatly lack behind the anodic performance of OER, all the
other options might be more feasible in the end. Therefore,
only a very targeted and integrated solution will help to pave
the way for defined MES from CO2 from the lab bench to
biotechnological plants.
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