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Abstract
Trichinella infection results in formation of a capsule in infected muscles. The capsule is a residence
of the parasite which is composed of the nurse cell and fibrous wall. The process of nurse cell
formation is complex and includes infected muscle cell response (de-differentiation, cell cycle re-
entry and arrest) and satellite cell responses (activation, proliferation and differentiation). Some
events that occur during the nurse cell formation are analogous to those occurring during muscle
cell regeneration/repair. This article reviews capsule formation with emphasis on this analogy.

Introduction
Parasites alter physiology and/or morphology of hosts in
order to survive in a new environment. It is remarkable
how some parasites make a new architecture in the host
tissue, by morphological remodeling. Trichinella spiralis is
a typical example. Parasites build their own home in the
infected muscles. The home is a capsule which is com-
posed of a collagenous wall and cellular components. The
wall provides some protection to the parasite and the cel-
lular component that takes care of the parasites in terms
of metabolism. Because of its function, the name "nurse
cell" has been given to the cellular components. Both the
wall and nurse cell are of host, not parasite origin. Some
parasitologists prefer the term nurse cell complex or cap-
sule rather than the term cyst, because the term cyst is used
for cells of parasite origin.

The capsule is prominent in the infected muscle; even an
untrained pathologist will not overlook it during micro-

scopic examination. The question that first comes to mind
is how does Trichinella alter host cells and construct such
unique place for living? Does Trichinella have some
unknown specific tools?

This has been an enigma in spite of extensive studies. As
early as 1966, Maier and Zaiman commented on the sim-
ilarities between some of the changes which occur during
nurse cell formation and those in muscle cell regeneration
[1]. Steward and Read [2] presented a detailed compari-
son of ultrastructural and biochemical changes that occur
during the two processes mentioned above and found
them to be remarkably similar. They introduced the
hypothesis that process of regeneration plays a significant
role in the initial development of nurse cell. A series of
recent studies provide more evidence to strengthen their
ideas that Trichinella utilizes a repairing process of muscles
cells to construct the capsule. In other words, after injury
induced by parasite invasion, muscle cells start going
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through the process of repair, just like after any trauma.
Trichinella borrows only the initial part of this repair proc-
ess to construct its own home.

Despommier [3] has already elegantly reviewed the proc-
ess of capsule formation with emphasis on nurse cell for-
mation. The present review article deals with the whole
process of capsule formation but puts more emphasis on
the analogy between nurse cell formation and muscle cell
repair.

The analogy between nurse cell formation and muscle cell 
repair
There are many similarities between the processes of nurse
cell formation after Trichinella infection and regeneration
of muscle cells after injury.

A skeletal muscle cell is susceptible to injury by direct
trauma or indirect causes such as neurological dysfunc-
tion or innate genetic defects. Due to its remarkable ability
of regeneration, an injured muscle cell initiates a finely
orchestrated set of cellular responses, resulting in the
regeneration of a well-innervated, fully vascularized and
contractile muscle apparatus. The process of regeneration
includes four stages, as reviewed by Wozniak et al. [4]: 1)
satellite cell activation; 2) satellite cell proliferation; 3)
differentiation and fusion; and 4) self-renewal of satellite
cell.

Invasion by Trichinella new born larvae also causes muscle
cell damage, which initiates the activation of satellite cells
undergoing proliferation and re-differentiation [5,6]. In
this case, the muscle cell affected by Trichinella infection
initiates de-differentiation, cell cycle re-entry and arrest
[7-11].

During this process, many events are similar in both nurse
cell formation and muscle regeneration, for example,
increase in the amount of sarcoplasmic matrix, the size
and number of nuclei which migrate to the center of mus-
cle fiber from the periphery, the size of affected myofibers,
the number of mitochondria, DNA and RNA content, and
increase in free ribosomes and intense proliferation of
rough endoplasmic reticulum and smooth sarcoplasmic
reticulum [2].

Muscle development and regeneration: an overview
A brief review on muscle genesis and regeneration process
will provide basic information for understanding of the
nurse cell formation process.

Muscle genesis
Skeletal muscles are derived from mesodermal precursor
cells which originate from the somites. During embryonic
development, mesodermal precursor cells are specific to

myogenic lineage (known as myoblasts). Proliferating
myoblasts withdraw from the cell cycle and terminally dif-
ferentiate to myocytes. Finally, mononucleated myocytes
specifically fuse to each other to form a multinucleated
syncytium, which eventually matures into muscle fibers
[12]. During the course of muscle development, a distinct
subpopulation of myoblasts fails to differentiate, but
remains associated with the surface of the developing
myofiber as quiescent muscle satellite cells [13-15].

Muscle repair
The early events following muscle injury are muscle cell
necrosis and accumulation of inflammatory cells within
the damaged site, which is a process of degeneration. The
activated mononuclear cells release factors that provide
chemotactic signals to other inflammatory cells [16-18].
Neutrophils are first to come, followed by macrophages
which phagocytose cellular debris and affect other aspects
of muscle regeneration by activating myogenic cells [19-
21].

Following muscle degeneration, the repair process of
muscle is activated. The activation and proliferation of sat-
ellite cells are important events necessary for muscle
regeneration. The proliferation of satellite cells provides a
sufficient source of new myonuclei for muscle repair. Sat-
ellite cells differentiate and fuse to each other or with
existing damaged fibers for repair to form new myofibers
[4,22]. The fundamental morphological characteristics are
that newly formed myofibers have small caliber with cen-
trally located myonuclei (Fig 1).

Capsule formation
Capsule formation (also known as cystogenesis) has been
extensively studied by many authors. It involves complex
steps and events which take place over a 20 day period
from the time of initial larval invasion to the completion
of the nurse cell [3].

Infection causes profound changes in host muscle cells,
some of which are, in the beginning, similar with those
involved in muscle regeneration. After new born larva
invasion, dissolution and complete loss of myofibrillar
organization occur [23]. A septum is formed to segregate
the affected area (basophilic cytoplasm) from the intact
area of the same muscle cell [5]. Infection causes the acti-
vation, proliferation and differentiation of satellite cells,
which develop into eosinophilic cytoplasm [5,6].

Recent molecular biological studies have shown that
many genes and signaling pathways are mobilized in
nurse cell formation, for example, mitochondrial pathway
mediated and death receptor pathway mediated apoptosis
signaling, TGF-β signaling pathway, as well as the genes
related to cell differentiation, proliferation, cell cycle con-
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Muscle cell regeneration: A: Normal muscle cell with myonuclei and satellite cells; B: Damaged muscle cellFigure 1
Muscle cell regeneration: A: Normal muscle cell with myonuclei and satellite cells; B: Damaged muscle cell. Muscle injury 
causes inflammatory response and mononucleated cells are mobilized; C: Necrosis occurs in the damaged site. Macrophages 
invade the damaged tissue for cleaning up cellular debris. Satellite cells are activated; D: Activated satellite cells proliferate, dif-
ferentiate and fuse to each other or with existing damaged muscle fibers; E: The regenerated new muscle cell in smaller caliber 
with centrally-located myonuclei and renewed satellite cells. The figure is modified from the textbook of MYOLOGY by Engel 
and Franzini-Armstrong. Nurse cell formation: F: Invasion of Trichinella larva causes dissolution and complete loss of myofibril-
lar organization; G: Satellite cells are activated. Basophilic transformation occurs in the infected muscle cell. A septum is 
formed to limit damaged area; H: Activated satellite cells proliferate, differentiate and fuse to each other or with the infected 
muscle cell, which provides eosinophilic cytoplasm. The infected muscle cell dedifferentiates, reenters cell cycle and arrests at 
G2/M. There are many hypertrophy nuclei; I and J: The eosinophilic cytoplasm (which is provided by satellite cells) increases in 
volume and the basophilic cytoplasm (which originates from infected muscle cell) decreases in volume; K: The mature nurse 
cell is formed. The cytoplasm of nurse cell is eosinophilic.
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trol, and apoptosis [6,9-11,24-27]. The terminally differ-
entiated muscle cells re-enter the cell cycle and then arrest
in apparent G2/M [7,8,23]. The developed nurse cell con-
tains as many as 100 greatly enlarged nuclei with well
developed nucleoli [28] and is surrounded by a collagen-
ous capsule wall and circulatory rete [29,30].

In the following paragraphs, each step of capsule forma-
tion is reviewed in detail in comparison with muscle cell
regeneration.

Dynamic changes in infected muscle cell cytoplasm
The muscle cell will disintegrate if the damage is so exten-
sive that cell can not be repaired, which is known as necro-
sis. This dead area is removed by scavenger cells such as
macrophages through the phagocytosis process. When the
damage is light, the muscle cell may undergo apoptosis or
recover from the damage by repairing itself. In the case of
Trichinella infection, the invasion itself does not seem to
cause severe damage to the muscle cell. As such, the
infected muscle cell does not undergo necrosis but it
undergoes apoptosis instead. In the following paragraph,
recent progress about the fate of infected and damaged
muscle cells is discussed, because such information seems
to be indispensable to better understand the process of
nurse cell formation.

First of all, during the process of nurse cell formation, the
existence of two kinds of cytoplasm within the nurse cell
should be recognized, basophilic and eosinophilic cyto-
plasm [5]. Basophilic cytoplasm is formed by the transfor-
mation of the infected muscle cell after newborn-larva
invasion ("basophilic transformation") [31,32]. The eosi-
nophilic cytoplasm is derived from satellite cells and joins
the nurse cell (This is discussed below). In the beginning
of nurse cell formation, the basophilic cytoplasm is dom-
inant, and as the nurse cell formation proceeds, the
basophilic cytoplasm decreases in size and the eosi-
nophilic cytoplasm increases in size with the ratio chang-
ing in a reciprocal manner. Consequently, the basophilic
cytoplasm disappears from the nurse cell (Fig 1).

As for the basophilic cytoplasm, morphological and
molecular biological data are available. The initial
changes include disintegration of sarcomeres, lysis of
myofilaments, increases in the amounts of rough and
smooth endoplasmic reticulum, and hypertrophy of
nuclei [31,32]. Morphological signs are identified as
apoptosis [5,24]. There are irregular shaped nuclei with
scattered and dense heterochromatin in basophilic cyto-
plasm. The mitochondria swelled and disappeared in the
early phase of infection, and were replaced by new mito-
chondria that were smaller in size than those in normal
muscle cells and had a hyper-density matrix, which was in
good agreement with features of mitochondrial pyknosis

in apoptosis [33,34]. TUNEL assay indicated that there
was DNA fragmentation in some of the enlarged nuclei
[27].

More light on the mechanisms of apoptosis in the
basophilic cytoplasm has been thrown by molecular
experiments, which showed that many apoptosis-related

Schematic illustration of the involvement of death receptor pathway (right half) and mitochondrial pathway mediated (left half) apoptosis in nurse cell formationFigure 2
Schematic illustration of the involvement of death receptor 
pathway (right half) and mitochondrial pathway mediated 
(left half) apoptosis in nurse cell formation. Upon binding 
with TNF-α, TNF-RI recruits TRADD which functions as a 
platform adapter that recruits several signaling molecules. 
The recruitment of TRADD and FADD results in autocata-
lytic activation of procaspase 8. Activated caspase 8 cleaves 
effector procaspase 3 which plays a role in apoptosis in the 
basophilic cytoplasm of Trichinella infected muscle cells. On 
the other hand, the binding of TNF-α and TNF-RI induces 
the sequential recruitment of TRADD, TRAF2 and RIP, 
which leads to the activation of NF-kB. The activated NF-kB 
acts for anti-apoptosis in the basophilic cytoplasm. In mito-
chondrial pathway, Bax induces apoptosis by forming the 
membrane pore in mitochondria from which cytochrome c is 
released. Cytochrome c activates caspase 9 which in turn 
activates caspase 3 to induce apoptosis in infected muscle 
cells. As a co-factor, Apaf-1 plays a role with caspase 9 in 
apoptosis in the basophilic cytoplasm. On the other hand, 
Akt plays an anti-apoptosis role in the eosinophilic cytoplasm 
by inactivating proapoptotic proteins such as Bad and caspase 
9. This figure referred the review by Gupta [35].
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genes were involved (Fig 2 and Table 1). There are two
principal pathways for apoptosis initiation, the mito-
chondrial pathway and the death receptor pathway [35].
The up-regulated expressions of mitochondrial pathway
mediated apoptosis factors (Bcl-2 associated protein X:
BAX, Apoptotic protease activating factor 1: Apaf-1 and
caspase 9) and death receptor pathway mediated apopto-
sis factors (tumor necrosis factor-alpha: TNF-α, TNF
receptor I, TNF receptor-associated death-damain:
TRADD, caspase 8 and caspase 3) were observed in the
basophilic cytoplasm of infected muscle cells, suggesting
that both signaling pathways are activated in the cyto-
plasm (Fig 2) [24-27].

The fate of basophilic cytoplasm is thus clear; it disappears
through the process of apoptosis in spite of the up-regula-
tion of the genes for anti-apoptosis (TNF receptor associ-
ated factor 2: TRAF2, and receptor interactive protein:
RIP). In fact, acid phosphatase activity was found to be
high in basophilic cytoplasm, suggesting the presence of
destructive processes [36]. On the other hand, the eosi-
nophilic cytoplasm seems to tell a different story. This
cytoplasm seems to be metabolically active, engaging in
some metabolic transportation, because alkaline phos-
phatase activity, not acid phosphatase activity, was
detected in the eosinophilic cytoplasm [36].

The eosinophilic cytoplasm is also exposed to stress from
the parasite, and apoptosis genes are up-regulated. Inter-
estingly, however, anti-apoptosis genes are also up-regu-
lated [24-26]. Thus, the eosinophilic cytoplasm is
characterized by co-existence of apoptotic and anti-apop-
totic mechanisms and retains its activity as a result of bal-
ance between apoptosis and anti-apoptosis.

cDNA microarray analysis indicated that some other
genes may be involved in the apoptosis occurred in
infected muscle cells, for example, Bcl6, clusterin (CLU),
Bcl2-interacting killer-like (Biklk), programmed cell death
protein 11 (Pdcd11), proline dehydrogenase 1 (Prodh1)
and Prodh2 [11]. These genes function in inducing apop-
tosis or prevent apoptosis, and are related with cell growth
and survival [37-46]. The up-regulated expressions of
these genes suggest that they engage in the apoptosis and
anti-apoptosis in infected muscle cell through different
mechanisms.

Satellite cell activation, proliferation and differentiation
Each myofiber is surrounded by a single sheet (basal lam-
ina). Within this sheet, there is another cell, the satellite
cell. As mentioned in the previous paragraph, satellite
cells are myoblasts which differentiate to a new muscle
cell when the muscle is injured. Muscle damage triggers
such activation and proliferation of satellite cells. Thus,
the satellite cells can continuously supply the new muscle

Table 1: Expression change of the genes related to apoptosis after Trichinella infection

Gene Name Description Expression change

Ts Tp a

tumor necrosis factor receptor 1 (TNFR1) TNF-medicated apoptosis ↑ ↑
proline dehydrogenase (oxidase) 2 (Prodh2) mitochondria-mediated apoptosis ↑ ↑
Bcl2-interacting killer-like (Biklk) Bcl family protein; induction of apoptosis ↑ ↑
B-cell leukemia/lymphoma 6 (Bcl6) apoptosis; caspase activation ↑ ↑
programmed cell death protein 11 (Pdcd11) hydrolase activity; apoptosis ↑ ↑
clusterin (CLU) anti- or proapoptotic activity ↑ ↑
nuclear protein 1 (Nupr1) induction of apoptosis; response to stress ↑ NC b

p53 apoptosis, DNA repair, cell cycle arrest ↑ ↑
p21 apoptosis, cell cycle arrest ↑ ↑
MDM2 apoptosis, negative regulator of p53 ↑ ↑
Bcl-2 associated protein X (BAX) mitochondria-medicated apoptosis ↑ ↑
Apoptotic protease activating factor 1 (Apaf1) mitochondria-medicated apoptosis ↑ ↑
Caspase 9 mitochondria-medicated apoptosis ↑ ↑
protein kinase B (PKB) promote cell survival and prevent apoptosis ↑ ↑
tumor necrosis factor-alpha (TNF) cell proliferation, differentiation, apoptosis ↑ UR c

TNFR1-associated via death domain (TRADD) adaptor of TNFR1 mediated apoptosis ↑ UR
Caspase 8 apoptosis ↑ UR
Caspase 3 apoptosis ↑ UR
TNF receptor-associated factor 2 (Traf2) mediator of anti-apoptotic in TNFR1 signal ↑ UR
Receptor interactive protein (RIP) mediator of anti-apoptotic in TNFR1 signal ↑ UR

a: Ts: Trichinella spiralis; Tp: T. pseudospiralis
b: NC: no change
c: UR: no result
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cells even if the muscle is damaged. Some of these events
are common with the myopathy provoked by Trichinella
infection.

1. Satellite cell in muscle regeneration
Activation of muscle satellite cells appears to be an impor-
tant step in the ability of muscle to regenerate. In the
course of muscle regeneration, satellite cells first exit their
normal quiescent state to start proliferating. After several
rounds of proliferation, a majority of the satellite cells dif-
ferentiate and fuse to form new myofibers or to repair
damaged ones [22,47]. The process of satellite cell activa-
tion and differentiation during muscle regeneration is
reminiscent of embryonic muscle development. In partic-
ular, the critical roles of the myogenic regulatory factors
(MRFs: MyoD, myogenin, Myf5 and MRF4) and paired
box genes (Pax 3 and Pax 7) are observed in both proc-
esses [48-50].

At the molecular level, activation of satellite cells is char-
acterized by the rapid up-regulation of two MRFs, Myf5
and MyoD. Following muscle injury, MyoD and Myf5 up-
regulation appears early, and the activation of expression
has been observed in various in vivo models for muscle
regeneration and in various types of muscle [15,51-55].
MRF4 likely plays a role in maturation of regenerated
myofibers. After the satellite cell proliferation phase, myo-
genin and MRF4 are up-regulated in cells beginning their
terminal differentiation program. This is followed by the
activation of cell cycle arrest protein p21 (cyclin-depend-
ent kinase inhibitor 1A) and permanent exit from the cell
cycle. The differentiation program is then completed with
the activation of muscle specific proteins, such as MGC,
and fusion to damaged muscle cells [56-59].

2. Satellite cell in nurse cell formation
Activation and proliferation of satellite cells occur in
Trichinella infected muscles. A linear alignment of satellite
cell nuclei is observed in the periphery of infected cells
along their long axis of myofibers [5]. Myogenic regula-
tory factors (MyoD and myogenin) were over-expressed in
infected muscle tissue of both T. spiralis and T. pseudospi-
ralis infection, and the MyoD factor is highly expressed in
the satellite cells of infected muscle cells [6].

cDNA microarray analysis has revealed that several other
genes important for differentiation of satellite cells are up-
regulated during nurse cell development, as shown in
Table 2, including Pax7, desmin, M-cadherin, Numb,
manic fringe homolog (Mfng), Deltex 1 (Dtx1), myocyte-
specific enhancer factor 2C (MEF2), pre B-cell leukemia
transcription factor 1 (Pbx1), and nuclear factor of acti-
vated T cells (NFAT) [9-11].

Pax7 and desmin are specifically expressed in quiescent
and activated muscle satellite cells and have been used as
a molecular marker of muscle satellite cell [60,61]. The
over-expression of Pax7 and desmin indicate that the sat-
ellite cells in infected muscle were activated and in prolif-
erating.

M-cadherin, a marker of satellite cells and expressed at the
cell surface of proliferating satellite cells, is highly
expressed during prenatal development in myogenic cells
of somatic origin, in myoblasts forming small muscle
bundles in developing limb bud, in myoblasts, and in
regenerating skeletal muscle [62,63]. An over-expression
of M-cadherin was observed in T. pseudospiralis, but not in
T. spiralis, thus suggesting the differential expression may
play a role in the pathology induced by T. pseudospiralis by
regulating the satellite cells of infected muscle cells.

Multiple mechanisms may involve in the regulation of
differentiation initialed by Trichinella infection. One of
those is the Notch signal pathway. Notch signaling plays
an important role in tissue morphogenesis both during
development and during postnatal regeneration of skele-
tal muscle [64]. Numb, Mfng and Dtx1, the regulators of
the Notch signaling pathway [64-67], were up-regulated
in both T. spiralis and T. pseudospiralis infected muscle tis-
sues, suggesting that this signaling pathway is likely to be
involved in the activation and differentiation of satellite
cells or infected muscle cells.

The factor MEF2 is involved in the activation of muscle-
specific gene expression, and acts in concert with MRFs in
muscle cell differentiation [12,68]. The factor NFAT plays
a role in regulation of MRFs expression in satellite cells
[69].

The factor MRF4 behaves differently. During muscle cell
regeneration, MRF4 plays a role in the maturation of
regenerated myofiber [58,68]. After trauma there is an up-
regulation of MRF4 after initiating a terminal differentia-
tion program. In Trichinella infection, no expression
change of MRF4 was observed during the nurse cell forma-
tion [6]. This difference may reflect the fact that the satel-
lite cell cannot be "matured" as a new muscle cell, but
instead de-differentiates to the nurse cell.

Roles of insulin-like growth factor (IGF) in satellite cell activation and 
differentiation
The IGF I signaling pathway in muscle biology has been
an interesting issue as a result of the fact that IGF I induces
both proliferation and differentiation via the type I recep-
tor [70]. As a key factor, IGF-I involves proliferation and
differentiation of satellite cells during muscle regenera-
tion [71-73]. There is over-expression of IGFs, for exam-
ple, IGF I, IGF I receptor, IGF binding protein 2 (IGFBP2),
Page 6 of 14
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IGFBP4 and IGFBP5 [9,11], in Trichinella infected muscle
tissue, which suggests that these factors likely play an
important role in nurse cell formation.

The binding of IGF-I to the IGF-I receptor induces phos-
phorylation of the receptor, which then mainly function
at 3 different levels.

First, IGF-I has been shown to activate myoblast prolifer-
ation through the mitogen activated protein kinase (MAP
kinase) signaling pathway, which activates cell cycle pro-
gression markers, such as cyclin D, cyclin-dependent
kinase 4 (CDK4), c-fos, c-jun [74-76]. It was found that in
Trichinella infected muscle, expression of IGF-I, IGF-I
receptor, IGFBPs, MAP kinase kinase, cyclin D2, cyclin
D3, CDK4 and c-jun were up-regulated [9,11], suggesting
that IGF-I likely plays role in the proliferation of satellite
cells and cell cycle reentry of infected muscle cell during
nurse cell formation through MAP kinase signaling (Fig
3).

Secondly, IGF induces differentiation of myoblast via the
phosphatidylinositol 3-kinase (PI3-K) pathway, which

activates Akt and subsequently modulates expression of
terminal muscle differentiation markers, such as p21,
MyoD, myogenin and MEF2 [74,75,77]. In Trichinella
infection, expression of Akt, MyoD, myogenin and p21
was greatly increased during 13–28 dpi [6,24-26]. Immu-
nostaining indicated that increased expression of Akt is
limited in the eosinophilic cytoplasm which originates
from satellite cells [24], and MyoD is limited in the satel-
lite cells of infected muscle cells [6]. The cDNA Microarray
analysis showed that the expression of MEF2 was up-reg-
ulated in the T. spiralis infected muscle tissues [9,11].
Therefore, through the PI3-K-Akt signaling pathway, IGF-
I is likely to play a role in the differentiation of activated
satellite cell after Trichinella infection (Fig 3).

Thirdly, through the PI3-K/Akt signaling pathway, IGF-I
also has an effect on cell survival by inhibiting proapop-
totic proteins of Bcl-2 family (Bax and Bad), and by induc-
ing anti-apoptotic proteins of Bcl-2 family (Bcl-X) [78,79].
In Trichinella infection, there was an increased expression
of Bax protein in the basophilic cytoplasm of infected
muscle cell at an early stage of infection (18 dpi), but the
expression decreased to an undetectable level at a late

Table 2: Expression change of the genes related to muscle development, myogenesis and regeneration after Trichinella infection

Gene Name Description Expression change

Ts Tp a

MyoD skeletal muscle development and differentiation ↑ ↑
myogenin skeletal muscle development and differentiation ↑ ↑
galectin 3 skeletal muscle development ↑ ↑
Casitas B-lineage lymphoma (CBL) suppressing transformation; muscle degeneration ↑ ↑
manic fringe homolog (Drosophila) (Mfng) promoting differentiation by repression of Notch signaling ↑ ↑
eyes absent 2 homolog (Drosophila) (Eya2) muscle development; myogenesis ↑ ↑
ski proto-oncogene; (c-ski) cell differentiation and transformation ↑ ↑
insulin-like growth factor binding protein 4 (Igfbp4) skeletal muscle development ↑ ↑
galectin 1 myoblast differentiation and fusion; myotube growth ↑ ↑
dickkopf homolog 4 (Dkk4) limb development ↑ ↑
bone morphogenetic protein 4 (Bmp4) skeletal development; angiogenesis ↑ ↑
T-box 15 (Tbx15) limb development of limb ↑ ↑
pre B-cell leukemia transcription factor 1 (Pbx1) embryonic development and differentiation; ↑ ↑
numb gene homolog (Drosophila) (Numb) cell proliferation and differentiation in muscle development ↑ ↑
paired box gene 7 (Pax7) development; organogenesis; cell differentiation ↑ ↑
myocyte enhancer factor 2C (MEF2C) regulation of transcription; myogenic differentiation ↑ ↑
nuclear factor of activated T cells (NFAT) transcriptional activator activity; cytokine production ↑ ↑
deltex 1 homolog (Drosophila) (Dtx1) myogenesis, muscle development and proliferation ↑ ↑
desmin cytoskeleton organization; muscle contraction ↑ ↑
homeo box, msh-like 1 (Msx1) organ morphogenesis; skeletal development ↑ ↑
myeloid leukemia factor 1 (MLF1) cell differentiation; development; hemopoiesis ↓ ↓
chordin-like 2 (Chrdl2) skeletal development ↑ NC b

paired box gene 3 (Pax3) cell migration and proliferation; muscle development ↑ NC
Transforming growth factor 2 controls proliferation, differentiation and transformation ↑ ↑
smad 2 Transducer of TGF signal pathway, cell proliferation and differentiation ↑ NR c

smad 4 Transducer of TGF signal pathway, cell proliferation and differentiation ↑ NR

a: Ts: Trichinella spiralis; Tp: T. pseudospiralis
b: NC: no change
c: UR: no result
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stage of infection (48 dpi) [24]. Kinetics of this gene
expression corresponded to the process of nurse cell for-
mation [24-26]. Therefore, IGF-I might be involved in
modulating apoptosis and anti-apoptosis, leading to the
survival of infected muscle cells (Fig 3).

Factors for cell cycle reentry and arrest
Following invasion of new born larvae, the infected mus-
cle cell withdraws from the G0 cell cycle and re-enters the
cell cycle [7]. The enlarged nuclei possess an approximate
4N complement of DNA. The increased DNA synthesis is
completed by 5 dpi, and then is suspended throughout
the course of infection, which indicated that cell cycle is
arrested at G2/M. The molecular mechanism of cell cycle
reentry and arrest during infection remains unclear, but
recent studies have provided further insight.

The phenomenon of cell cycle arrest may be unique to the
nurse cell formation because no comparative phenomena
were reported in muscle genesis or muscle repair proc-
esses, so far as the present authors are aware.

1. The genes related to regulation of cell cycle in nurse cell formation
As shown in Table 3, expression change of many cell cycle-
related factors was observed in Trichinella infected muscle
tissue, for example, retinoblastoma (Rb), CDK4, cyclin C,
cyclin B2, cyclin D2 and cyclin D3, CLU, G0/G1 switch
gene 2 (G0S2), inhibitor of DNA binding 2 (Id2), mye-
loblastosis oncogene (Myb), and N-myc downstream reg-
ulated gene 2 (Ndrg2) [9,11]. These factors have already
been elaborated by other authors. For example, different
cyclins bind specifically to different CDKs to form distinct
complexes at specific phases of the cell cycle and thereby
drive the cell from one stage of the cycle to another
[80,81]. Upon stimulation, D-type cyclins assemble
CDK4 and CDK6 to form complexes, which facilitate cells
to exit from the G0 phase and re-enter the cell cycle of G1
cell cycle phase [82-84]. Therefore, increased expression
of cyclin D2, cyclin D3 and CDK4 is probably involved in
the cell cycle reentry after infection.

On the other hand, up-regulated expression of retinoblas-
toma (Rb), p21, p27 (cyclin-dependent kinase inhibitor
1B) and p57 (cyclin-dependent kinase inhibitor 1C) may
be responsible for the cell cycle arrest of infected muscle
cell [9,26]. These kinds of factors are known to play an
important role in the growth arrest of differentiating cells,
because they specifically inhibit CDKs, which leads to the
withdrawal of cells from the cycle and differentiation [85-
87].

As a cyclin-dependent kinase inhibitor, p21 is a critical
factor in cell cycle arrest at G2/M [88]. Cells deficient in
p21 are unable to maintain stability of the cycle arrest
[89]. Introduction of non-functional p21 or a p21 anti-
sense oligonucleotide diminished the G2/M arrest pheno-
type in cells [90,91]. In Trichinella infection, expression of
p21 was up-regulated, which increased from 13 dpi,
reached a peak at 18 dpi and then decreased at late stage
of infection [25,26]. Therefore, p21 is an important factor
in cell cycle arrest during nurse cell formation.

The expression changes of several other cell cycle-related
genes were also observed in Trichinella infection, for
example, CLU and G0S2. The expression of CLU was up-
regulated, while the expression of G0S2 was down-regu-
lated [11]. It is known that, both genes play roles in regu-
lating the cell cycle. An over-expression of CLU resulted in
an increased accumulation of cells at the G0/G1 phases of
the cell cycles, accompanied by slow down of cell cycle
progression and a reduction of DNA synthesis [92]. High
level of CLU causes cell cycle arrest [93,94]. G0S2 is tran-
siently induced upon re-entry of cells into the G1 phase of
the cell cycle [95,96]. Therefore, UCL and G0S2 may be
involved in the arrest of infected muscle cells.

Schematic illustration of IGF-I signaling pathway in nurse cell formationFigure 3
Schematic illustration of IGF-I signaling pathway in nurse cell 
formation. The binding of IGF-I to IGF-I receptor induces 
phosphorylation of the receptor, which acts through MAP-
kinase kinase and/or PI3-K. Via the MAP kinase pathway, it 
activates cell cycle progression genes (cyclin D, cdc4, c-fos 
and c-jun) which proliferates satellite cells after Trichinella 
infection. Via the PI3-K/Akt pathway, it modulates the 
expression of muscle differentiation genes (p21, MyoD, Mef-
2 and myogenin) which involve in the redifferentiation of sat-
ellite cells and differentiation of infected muscle cells. Also 
the activation of PI3-K/Akt inhibits proapoptosis by Bcl-2 
family (Bax, Bad) and induces anti-apoptotic function by Bcl-2 
family (Bcl-X), which contributes to the survival of nurse 
cells. This figure referred the review by Mourkioti and 
Rosenthal [70].
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2. Involvement of TGF-β signaling pathway in cell cyclearrest
One of the important signaling pathways involved in cell
cycle arrest is the TGF-β (transforming growth factor) sig-
naling pathway. TGF-β is a ubiquitous cytokine that regu-
lates cell differentiation, proliferation, apoptosis and
morphogenesis [97]. Through a series of Smad proteins
(Smad 2, Smad 3 and Smad 4), the TGF-β signaling path-
way causes cells to cease proliferation and to down-regu-
lates the genes which promote cell cycle progression
though the S phase, leading to the arrest of the cell cycle
(Fig 4).

Recent studies indicated that the expression of the TGF-β
signaling pathway factor genes (TGF-β, Smad2 and
Smad4) and c-ski, the repressor of the signal pathway,
were up-regulated in Trichinella infected muscle cells [9-
11]. The analysis of expression kinetics showed that the
expression of these genes increased at 13 dpi, reached a
peak at 23 dpi and then decreased, which is correspond-
ing to the process of nurse cell development. Immunohis-
tochemical analysis indicated that in the early stages of
infection, the increased expression of the c-Ski protein was
limited to the eosinophilic cytoplasm, while at a later
stage of infection the c-Ski protein was limited to the
enlarged nuclei in the basophilic cytoplasm, rather than
the eosinophilic cytoplasm [10]. These findings provide
evidence that the TGF-β signaling pathway is involved in
the cell cycle arrest and transformation of infected muscle
cells.

De-differentiation of infected muscle cell and origin of hypertrophy 
nuclei
The invasion of new born larvae induces the de-differenti-
ation of infected muscle cell, with features of loss of mus-
cle cell characteristics, change in muscle gene expression
and up-regulated expression of cell differentiation related
genes (such as MyoD, myogenin, MEF2, Pbx1, Numb,
Pax7, Msx and NFAT) in infected muscle tissues [7,9,98-
100]. Upon stimulation of larva invasion, infected muscle
cells withdraw from the G0 cell cycle and re-enter the cell
cycle.

It is commonly thought that newly regenerated fibers are
produced by the fusion of activated satellite cells during
muscle regeneration. Studies, however, indicated that ter-
minally differentiated myotubes can de-differentiate and
Msx genes can be one of the factors to contribute to this
process [101-105]. The early event in the de-differentia-
tion of the infected muscle cell may follow the mecha-
nism of de-differentiation in muscle cell regeneration,
which was characterized by similar phenomena, for exam-
ple, the losing of myofibrillar structure, enlarged nuclei
and cell cycle re-entry [7,28,98,106-108]. The up-regu-
lated expression of Msx1 and Msx2 in infected muscle tis-
sue supports the proposal that de-differentiation of
infected muscle provides hypertrophic nuclei [9,11].

cDNA microarray analysis showed that some other genes
may be involved in the de-differentiation of infected mus-

Table 3: Expression change of the genes related to cell cycle regulation after Trichinella infection

Gene Name Description Expression change

Ts Tp a

retinoblastoma 1 (Rb1) negative regulation of cell growth and progression via cell cycle ↑ ↑
ring-box 1 (Rbx1) cell cycle regulation of G1/S transition ↑ ↑
cyclin-dependent kinase inhibitor 1A (P21) cell cycle arrest; negative regulation of cell proliferation ↑ ↑
cyclin-dependent kinase 4 (CDK4) cell cycle; cell proliferation; G1/S transition ↑ ↑
G0/G1 switch gene 2 (G0s2) regulation of progression through cell cycle ↓ ↓
Granulin Mitogen, cell cycle progression, cell motility ↑ NC a

cyclin A2 G1/S and G2/M transitions, regulator of CDC2 or CDK2 kinases ↑ NC
cyclin C regulation of cell cycle ↑ NC
Cyclin D3 cell cycle G1/S transition, regulator of CDK4 or CDK6 ↑ UR a

Cyclin D2 cell cycle G1/S transition, regulator of CDK4 or CDK6 ↑ UR
Cyclin B2 Cell cycle regulation, TGF beta-mediated cell cycle control ↑ UR
cyclin E1 G1/S transitions, regulator of CDC2 ↑ UR
myeloblastosis oncogene (Myb) regulation of cell cycle; G1/S transition of mitotic cell cycle NC ↑
CDC20 regulation of cell cycle ↑ UR
cyclin-dependent kinase inhibitor 1B (P27) controls cell cycle progression at G1, prevents activation of cyclin E-CDK2 or 

cyclin D-CDK4 complexes
↑ UR

Cullin 3 (Cul3) Cell cycle arrest, G1/S transition of cell NC ↓
Cell division cycle 5 (Cdc5) positive regulator of cell cycle G2/M progression NC ↓

a: Ts: Trichinella spiralis; Tp: T. pseudospiralis
b: NC: no change
c: UR: no result
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cle cells, for example, galectin 1 and galectin 3, Nanog
[11]. The expression of galectin 1 and galectin 3 were up-
regulated in Trichinella infection. Both genes induce a
non-committed myogenic cell within the dermis to
expression myogenic markers, increases the terminal dif-
ferentiation of committed myogenic cells and play a role
in skeletal muscle determination, differentiation and

regeneration [109-111], suggesting their potential
involvement in the de-differentiation of infected muscle
cells.

There are as many as 100 hypertrophic nuclei that are
located in the central part of basophilic cytoplasm. The
origin of the hypertrophic nuclei was suggested to be from
myonuclei, not from satellite cells [7,8]. Recent findings,
however, have demonstrated the presence of multipoten-
tial stem cells in various adult tissues. Adult stem cells iso-
lated from various tissues appear to differentiate into
multiple lineages depending on environmental cues [112-
116]. Adult muscle-derived stem cells have been shown to
differentiate into muscle cell in vitro and to contribute to
muscle regeneration in vivo [105,109,117]. These reports
suggest that the muscle derived-stem cells should be fur-
ther examined as an additional source of the hypertrophic
nuclei in infected muscle cell.

As a response of muscle cells to the damage by Trichinella
larva, de-differentiation occurs. However, the process of
muscle cell de-differentiation is not followed by the same
process as in muscle cell regeneration after trauma, but
results in creating the environment for larva to develop,
grow and survive. Trichinella larvae grow within the mus-
cle cell at astonishing speed, increasing its volume by
about 40% per day [23]. Therefore, this kind development
and growth require high consumption of nutrients. The
metabolism of protein, glucose and fat in the nurse cell is
increased during nurse cell formation [118]. Larvae utilize
the de-differentiation of muscle cell to create a suitable
environment to nurse it.

Collagen capsule
A capsule wall is a prominent non-cellular structure and,
as such, one may think it is unique only to Trichinella
infection, and not shared by the normal muscle cell. An
ultrastructural study, however, showed the capsule wall as
a sort of simple thickening of the basal lamina that nor-
mal muscle cells have. In normal muscles, cellular compo-
nents, muscle cells and their associated myoblasts
(satellite cell) are wrapped together with a single non-cel-
lular sheet, the basal lamina.

The capsule wall has two layers; the inner and outer. The
former is produced by the nurse cell and the latter is pro-
duced by fibroblasts around the capsule. The spatial rela-
tionship among the non-cellular structure and cellular
components remains the same before and after capsule
formation.

Parasites utilize cell-biological-systems of hosts to 
establish parasitism
In this review, the analogy between the processes of nurse
cell formation and muscle cell repair has been empha-

Schematic illustration of the involvement of c-Ski and TGF-β signaling pathway in nurse cell formationFigure 4
Schematic illustration of the involvement of c-Ski and TGF-β 
signaling pathway in nurse cell formation. Binding of TGF-β 
by the type II receptor on the cell surface initiates a cascade 
of signaling events. Activated type I receptor phosphorylates 
Smad2 and Smad3 in the cytoplasm, which forms a complex 
with Smad4. The Smad2/3/4 complex moves to the nucleus 
and functionally collaborates with distinct transcription fac-
tors to turn on or off transcription of many TGF-β-respon-
sive genes. C-Ski acts as a co-repressor to turn off the 
transcription, which results in the cell cycle arrest and trans-
formation of Trichinella infected muscle cells. This figure 
referred the review by Shi and Massague [97].
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sized. At least the earliest events mobilizing satellite cells
seem to be common, but the fate of the proliferated
myoblast cell is different. In the former case, the satellite
cell differentiates to the muscle cell, but it mis-differenti-
ates to the nurse cell in the latter case. The idea that comes
to mind is that Trichinella, in order to make its own home,
basically utilizes the cell-biological-system of the host
which is equipped for the purpose of muscle cell repair-
ing. Since the satellite cell is a progenitor cell located
within the capsule wall, a new cell can be continuously
supplied from the myoblast, even if the present nurse cell
dies. This explains why the nurse cell looks intact and
active for years in spite of intracellular parasitism. Thus
Trichinella can take advantage of the host for its own sur-
vival.

How the parasite takes advantage of the host cell biologi-
cal system to build its home is an interesting issue for par-
asitologists. Despommier [3] proposed "parakines" as
messengers to carry out the communication between par-
asite and host cells by molecular cross-talking in order to
provide life-long coexistence. It was hypothesized that the
parakines direct specific cellular behavior by effecting sig-
naling pathways, as cytokines are doing in mammalian
host cell.

Thus far, many efforts have been made to identify and
characterize the parakines, some of which have provided
indirect evidence in support of the hypothesis. Early stud-
ies indicated that Trichinella antigenic epitopes were
detected in the hypertrophy nuclei of infected muscle cell
[119,120]. Some nuclear antigens (for example, 79, 86
and 97 kDa proteins) which react with monoclonal anti-
body to Trichinella excretory-secretory (ES) products have
been identified and characterized, and their potential
effects in regulating nuclear function of the host cell have
been studied [121-123]. Vassilatis et al. [100] cloned a
specific 43 kDa glycoprotein of muscle larva ES which
belongs to the basic helix-loop-helix (bHLH) DNA-bind-
ing protein family. The bHLH family includes myogenic
regulatory factors, suggesting that the 43 kDa ES protein
may play a role in the differentiation of host cells. Mak
and Ko [124] found a novel DNA-binding protein from
ES products, which may function in host genomic repro-
gramming. Nagano et al. [125-127] cloned and character-
ized several ES proteins, including serine proteinase,
serine proteinase inhibitor and Rcd1 (Required cell differ-
entiation 1) – like protein which may involve in host mus-
cle cell differentiation. Tan et al. [128] and Wu et al. [129]
reported that Trichinella produces macrophage migration
inhibitor (MIF), a cytokine which may protect the parasite
from host immune attack.

Though many proteins of Trichinella ES products have
been cloned and characterized, their precise effects on

each step of nurse cell formation (activation, proliferation
and re-differentiation of satellite cell, de-differentiation of
infected muscle cell) is still unclear. Some of the ES pro-
teins of Trichinella are stage specific. Most of the investi-
gated proteins are those produced by late stage of larvae
(for example, over 30 days). More attention should be
paid to ES products from other Trichinella stages. Jasmer
and Neary [8] reported that full stichocyte development is
not required for host cell cycle re-entry, suggesting that the
products of parasitism genes responding to reprogram-
ming host genetic transcription are produced at a very
early stage of infection. The proteins shed by the parasite
at an early stage of infection seem to be more relevant for
determining the mechanism of nurse cell formation.

Conclusion
The process of nurse cell formation is complex. Many
aspects of it are still unknown. The response of infected
muscle cell at early stage is quite similar to that occurring
in myogensis and muscle regeneration, including the acti-
vation, proliferation and differentiation of satellite cell,
and cell cycle re-entry. Many genes that play important
roles in muscle myogenesis and regeneration are up-regu-
lated and have been proposed as candidate ones involved
in nurse cell formation. Some of these genes have been
confirmed to be responding to the process of nurse cell
development. At the late stage of nurse cell formation,
development of infected muscle goes along with the
demands of the larva: arrest of cell cycle, the change of
basophilic and eosinophilic cytoplasm, involvement of
apoptosis and anti-apoptosis and finally transforming
into nurse cell. It could be proposed that the process at the
beginning is a response of host cells to larval invasion,
while the process at a later stage it is reforming or restruc-
turing of host cell processes by larva. Therefore, the
present review gives an outline of nurse cell formation,
especially on the molecular mechanisms involved.
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