
RESEARCH ARTICLE

Mitochondrial Analysis of the Most Basal
Canid Reveals Deep Divergence between
Eastern and Western North American Gray
Foxes (Urocyon spp.) and Ancient Roots in
Pleistocene California
Natalie S. Goddard1¤, Mark J. Statham1, Benjamin N. Sacks1,2*

1 Mammalian Ecology and Conservation Unit, Veterinary Genetics Laboratory, School of Veterinary
Medicine, University of California-Davis, Davis, California, United States of America, 2 Department of
Population Health and Reproduction, School of Veterinary Medicine, University of California-Davis, Davis,
California, United States of America

¤ Current address: Department of Biology, San Diego State University, San Diego, California, United States
of America
* bnsacks@ucdavis.edu

Abstract
Pleistocene aridification in central North America caused many temperate forest-associated

vertebrates to split into eastern and western lineages. Such divisions can be cryptic when

Holocene expansions have closed the gaps between once-disjunct ranges or when local

morphological variation obscures deeper regional divergences. We investigated such cryp-

tic divergence in the gray fox (Urocyon cinereoargenteus), the most basal extant canid in

the world. We also investigated the phylogeography of this species and its diminutive rela-

tive, the island fox (U. littoralis), in California. The California Floristic Province was a signifi-

cant source of Pleistocene diversification for a wide range of taxa and, we hypothesized,

for the gray fox as well. Alternatively, gray foxes in California potentially reflected a recent

Holocene expansion from further south. We sequenced mitochondrial DNA from 169 gray

foxes from the southeastern and southwestern United States and 11 island foxes from

three of the Channel Islands. We estimated a 1.3% sequence divergence in the cytochrome

b gene between eastern and western foxes and used coalescent simulations to date the

divergence to approximately 500,000 years before present (YBP), which is comparable to

that between recognized sister species within the Canidae. Gray fox samples collected

from throughout California exhibited high haplotype diversity, phylogeographic structure,

and genetic signatures of a late-Holocene population decline. Bayesian skyline analysis

also indicated an earlier population increase dating to the early Wisconsin glaciation

(~70,000 YBP) and a root height extending back to the previous interglacial (~100,000 YBP).

Together these findings support California’s role as a long-term Pleistocene refugium for

western Urocyon. Lastly, based both on our results and re-interpretation of those of another

study, we conclude that island foxes of the Channel Islands trace their origins to at least
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3 distinct female founders from the mainland rather than to a single matriline, as previously

suggested.

Introduction
Zoological systematics has historically relied on morphological variation to designate taxa.
More recently, molecular data have revealed many cases where highly divergent species were
not recognized as such [1]. These findings, in turn, greatly enhance our ability to understand
evolutionary processes by visualizing better the texture of evolutionary products. In particular,
vertebrate populations of North America are frequently split into eastern and western lineages
that diverged in isolation during past glacial periods [2]. This general phylogeographic pattern,
which has many variations, has been confirmed or discovered in several mammalian carnivores
using mitochondrial sequences. More ancient splits that predate the Illinoian (penultimate)
glaciation (190–130 KYA) typically have resulted in distinct sister species, such as the swift fox
(Vulpes velox) and kit fox (Vulpes macrotis), and American marten (Martes americana) and
Pacific marten (M. caurina) [3,4]. Other, more recent splits, tracing to the late Illinoian or Wis-
consin glaciation, include bobcats (Lynx rufus) and red foxes (Vulpes vulpes) [5–6]. Secondary
contact between long-separated lineages can be a source of novel gene combinations that can
fuel future evolution, particularly when refugial populations evolved in distinct environments
or were separated for long periods of time [7]. Thus, estimating divergence times and identify-
ing Pleistocene refugia have important implications for understanding evolutionary distinc-
tiveness and potential of contemporary populations.

In the present study, we sought to improve our understanding of the continent-wide
phylogeography of the gray fox (Urocyon cinereoargenteus) and its congener, the island fox (U.
littoralis), which together represent the most basal clade within the extant Canidae [8,9]. The
lineage leading to Urocyon diverged from other canids during the Miocene, 8–12 million years
(MY) ago [10]. Fossil Urocyon has been present in North America since the early Pliocene (~5
MY) and contemporary Urocyon represents the only extant canid with a natural range span-
ning both North and South American continents [11]. Contemporary gray foxes have been
classified into 15 subspecies based on morphology (in additional to 6 subspecies of island fox)
[12]. However, high local variability can also serve to obscure deeper evolutionary distinctions.
Thus, depending on range dynamics throughout the past 2 million years of climatic fluctua-
tions of the Quaternary period, very ancient splits within this genus seem likely, and should be
most evident between eastern and western extents at the northern end of the range.

Second, we were interested in evaluating the role of the California Floristic Province (hereaf-
ter, California) as a Pleistocene refugium for western Urocyon. California served as an impor-
tant Pleistocene refugium for many species and is among the most biodiversity-rich regions on
earth [13–15]. Because of its high diversity of habitat and microclimate, California is thought
to have been an important engine of evolutionary diversification on multiple time scales [13].
Many endemic California vertebrates, including those in the northern portion of the state,
trace their ancestry in-situ several million years into the past [16] and even vagile carnivores,
such as the coyote (Canis latrans), are thought to trace their California ancestry at least well
into the Pleistocene if not further back in time [11,15]. Thus, we hypothesized that contempo-
rary California gray foxes also reflect a long-standing lineage that diversified in-situ.

Alternatively, recent evidence suggests the possibility of a much more fluid scenario
whereby western gray fox expanded and contracted their ranges over hundreds of kilometers
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in response to climatic fluctuations in California. In particular, Hofman et al. [17] found island
foxes inhabiting the Channel Islands off southern California to share a more recent common
ancestral matriline with gray foxes sampled in northern than in southern California, leading
them to hypothesize that western gray foxes shifted their ranges significantly southward
around the last glacial maximum and northward during the Holocene in response to shifting
habitats [17]. Because that study’s focus was on the island foxes, only a small number (n = 25)
of gray foxes was sequenced, which precluded an in-depth analysis of phylogeography in main-
land gray foxes. However, both hypotheses entail several predictions that can be readily tested
with a larger sample. First, if gray foxes in northern California were established (or significantly
augmented) through a recent expansion, we would expect to find low genetic diversity and low
geographic structuring among matrilines (e.g., [18–20]). Second, we should observe character-
istic signatures of demographic expansion in terms of the haplotype and nucleotide diversities
[5,19,20,21]. Conversely, if northern California gray foxes reflect long-standing in-situ evolu-
tion, we predict relatively high diversity and localization of recently derived subclades and no
signal of expansion [15,18,22]. Additionally, a decline in population size could potentially
explain the apparent loss (or reduced frequency) of island fox-like haplotypes from southern
California gray foxes, as population declines accelerate loss of matrilines through random
genetic drift.

Our first objective was to estimate the divergence separating eastern and western gray (and
island) foxes. Although gray foxes today occur at least as far north as Canada in the east and
northern Oregon in the West, we focused our sampling in the southeast (Georgia) and south-
west (California), which were either shown [20] or hypothesized [15] to represent Pleistocene
refugia for gray foxes and other temperate carnivores (Fig 1). Our second objective was to test
the latter hypothesis and investigate the phylogeography and historical demography of Uro-
cyon in California, including to re-evaluate the timeline for diversification of western Urocyon
presented previously [17].

Materials and Methods

Samples
For this study we used 169 gray fox and 11 island fox samples collected during 1998–2014
from throughout California and vicinity (n = 141) and Putnam County, Georgia (n = 38), as
well as a sample fromWashington state (Yakima County); to our knowledge, this was the first
record of gray fox north of the Columbia River (Fig 1). Gray fox samples from California (or
just outside) were distributed as follows: Central Coast (n = 10), Western Cascades (n = 16),
North Coast (n = 35), Southern California (n = 2), Western Sierra Nevada/San Joaquin Valley
(n = 14), Sacramento Valley (n = 32), and the Eastern Sierra Nevada (n = 12). We also sampled
11 island foxes from Santa Cruz (n = 4), San Nicholas (n = 5), and San Clemente (n = 2)
Islands. Samples included 40 whole blood, 26 tissue, 5 hair, and 109 scat samples. The noninva-
sive samples (hair, scats) were drawn from an archive of DNA extracts from scats collected by
trained students or staff as part of many unrelated studies targeting various mesocarnivores
(e.g., [23, 24]); in all cases, scat sample preservation involved submersion of ~2 g of scat in>4
times that volume of 95–100% ethanol. All archived noninvasive DNA samples had been cate-
gorized to species via mitochondrial sequencing as described previously (e.g., [23, 24]) prior to
inclusion in this study. No animals were harmed for this study and all samples were covered by
appropriate permits and permissions. All field collection procedures were approved by the
University of California, Davis, Animal Care and Use Committee (IACUC No. 17860) and the
California Department of Fish and Wildlife through scientific collecting permits and memo-
randa of understanding. Permission also was secured for all field collections on private and
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public lands. Field collections did not involve endangered or protected species. Blood samples
were collected in the field by B. N. Sacks via venipuncture after cage trapping and immobiliza-
tion with ketamine HCl (10 mg/kg) and xylazine HCl (2 mg/kg); all foxes were released
unharmed. We also used samples that had been previously deposited in institutional collections
at the University of California, Davis Veterinary Medical Teaching Hospital and Mammalian
Ecology and Conservation Unit, covered by the appropriate state and federal permits.

Laboratory Procedures
To avoid contamination of noninvasive samples with DNA from tissue samples, laboratory
procedures were performed for noninvasive samples in a separate dedicated space. We

Fig 1. Approximate range of the gray fox (Urocyon cinereoargenteus). Dashed line indicates hypothetical northern boundary at the last glacial maximum
and arrows denote hypothetical post-Pleistocene expansion [11]. Filled circles represent approximate locations of gray and island (U. littoralis) foxes used in
the present study from the southwestern (n = 131 gray fox; 11 island fox) and southeastern (n = 38) portions of the range. Southeastern samples were from a
300 km2 region, represented by a single large filled circle.

doi:10.1371/journal.pone.0136329.g001
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extracted DNA using Qiagen DNeasy blood and tissue kits (Qiagen Inc.) for blood and tissue
samples and QIAamp DNA stool kits for scats, following manufacturer’s protocols. For hair
extractions we digested the follicles overnight, followed by DNA purification using phenol/
chloroform, and cleaned up using Amicon Ultra centrifuge filters (Millipore ltd; [24]).

We performed polymerase chain reaction (PCR) to amplify a 441 bp (including primers)
portion of mitochondrial cytochrome b using primers (RF14724, RF15149; [25]), PCR chemis-
try, and cycling conditions described by Aubry et al. [5]. After trimming primers and an addi-
tional 34 bp from the 3’ end that could not be consistently sequenced from the forward
direction, we obtained a 363 bp fragment. We also performed PCR to amplify a portion of D
loop using the same primers (H16498 and L15910; [26]) and thermoprofile used by Bozarth
et al. [20] and the PCR chemistry described by Aubry et al. [5]. After primer trimming, we
reduced this 428–432 bp fragment to 422 bp by excising a 4–10-bp cytosine homopolymer that
was highly variable and of ambiguous alignment. We also used a second trimming to the 406
bp used by Bozarth et al. [20] to facilitate direct comparisons to that data set of 229 gray foxes
from the southeastern and northeastern United States. (Although Bozarth et al. [20] reported
using a 411 bp fragment, 5 bp of primer sequence apparently were included on the 3’ end.)

We sequenced fragments as previously described [19] in both directions for D loop and
only in the forward direction for cytochrome b. We did not deem it necessary to sequence cyto-
chrome b in the reverse direction as we observed high consistency and base-quality in the first
363 bp and a low frequency of novel substitutions.

We used Basic Local Alignment Search Tool (BLAST) to verify novel sequences against hap-
lotypes accessioned in the nucleotide database in GenBank [27], and additionally compared D
loop sequences manually to those reported by Bozarth et al. [20], prior to depositing novel
sequences in GenBank. We estimated haplotype and nucleotide diversity using Arlequin
3.5 [28].

We based analyses on our sample using both the 363 bp portion of cytochrome b and the
422 base-pair portion of D loop. We concatenated these linked mtDNA sequences into a 785
bp fragment.

Data Analysis
We constructed phylogenetic trees from the 785 bp haplotypes using both maximum likeli-
hood and Bayesian approaches with trees rooted to red fox and coyote outgroups (GenBank
Nos. AB292747, KF661096). The most appropriate DNA substitution model (HKY [29]) was
determined in MEGA 6.06 [30] and used to construct maximum likelihood trees with boot-
strap support evaluated based on 500 replicates in MEGA 6.06. For the Bayesian tree, we parti-
tioned the cytochrome b character set by codon position. We used the HKY DNA substitution
model for cytochrome b and the HKY+Γmodel for D loop, as determined by jModelTest
(0.1.1; [31]). We computed Bayesian trees using MrBayes 3.1.2 [32], running the model for 107

generations, with four MCMC simulations running simultaneously. Sampling included one
tree every 1,000 generations. Based on inspection of MrBayes output trace values using Tracer
v1.5 (Rambaut A, Drummond AJ, 2007, http://beast.bio.ed.ac.uk/Tracer), we determined that
convergence occurred during the first 10% of generations, which we discarded as burn-in.

To convert scaled estimates to time, we assumed the same mutation rates as previously for
red and eastern gray foxes, specifically 2.8% per million generations for cytochrome b and
17.75% per million generations for D loop [5,20]. Averaging these estimates (weighted by
sequence length) resulted in an estimated mutation rate for the total 785 base pair sequence of
10.8% per million generations or 8.51 x 10−5 mutations per generation. Although these previ-
ous studies have based divergence times in foxes conservatively on a generation time of 1 year,
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this is the absolute minimum theoretically possible for a monestrous canid (and which would
imply semelparity!). Therefore, we present estimates in terms of generations to enable direct
comparisons with these studies, but also interpret estimates in terms of a more realistic genera-
tion time. To obtain such an estimate, we utilized a dataset for the ages of 435 gray foxes from
the southeastern US [33]. We regressed the natural logarithm of the number of individuals in
each adult year class on year class, constraining the intercept to zero, and then exponentiated
the estimated slope to produce the annual adult survival estimate. We then estimated from this
distribution the average adult age at 1.72 years [34]. Because fecundity tends to be slightly
higher in older canids (e.g., [35]), the generation time (i.e., average age of all newborns’moth-
ers) was likely closer to 2 years.

To estimate the divergence time separating eastern and western Urocyon, we used MCMC
simulations in the program IMa2 [36]. We used the HKY model of DNA substitution and the
generational substitution rate indicated above to run our analysis. We performed multiple ini-
tial runs parameterized to allow for migration (isolation with migration model), but migration
values consistently approached zero. Therefore, we only report results for the isolation-only
model, which best described the data. We completed multiple short runs in MCMCmode to
evaluate mixing and narrow the parameter space. We then ran five independent runs (different
random number seeds) of 2 x 106 steps in MCMCmode, with a burn-in of 250,000 to confirm
consistency. We estimated joint distributions and computed final parameter estimates and
95% highest posterior densities (HPD) using “LoadTree”mode.

To assess the historical demography of western Urocyon, we tested for population growth
by calculating Fu’s FS [21] and comparing to a distribution of the same statistic calculated from
coalescent simulations under from null expectations (i.e., no population growth) in DnaSP
4.50 [37]. We then constructed a Bayesian skyline plot, a nonparametric Bayesian coalescent-
based approach utilizing MCMC sampling to estimate the posterior distribution of effective
population size through time, in the program BEAST 1.75 [38,39]. We used a HKY substitution
model for cytochrome b (partitioned into first, second, and third positions) and a HKY+ Γ for
the D loop, with 10 skyline groups, and a strict molecular clock. We assumed a mutation rate
of 10.8% per million generations (as above). We ran 100 million cycles sampling every 10,000
cycles. We visualized the results in Tracer 1.5 (provided with BEAST). We combined the results
of two independent runs (ESS values>200) and discarded the first 10% as burn-in using the
program Logcombiner 1.75 (provided with BEAST).

For genetic structure analyses in the western foxes, we visualized the relationships among
western haplotypes using a median-joining network [40] produced within Network (v 4.613).
To interpret patterns with respect to ancestor-descendent relationships, we used the eastern
gray foxes and outgroups (coyote, red fox) to root the network. However, to avoid having to lit-
erally interpret a particular rooting point with low statistical support, we relied primarily on
“tip” versus “interior” placement on the network to assess polarity [22]. We estimated time to
most recent common ancestor of nested clades (or haplogroups) based on the average number
of mutations (rho) separating ancestral and descendent haplotypes and converted to time esti-
mates assuming the same mutation rate indicated above [41,42]. We used SAMOVA (2.0) to
evaluate population structure using FST based on pairwise differences [43–45]. We ran 100
iterations at each number of geographical groupings (K) ranging from 2 to 7. We evaluated iso-
lation by distance using Mantel tests between geographical distances and pairwise FST values
computed in Arlequin 3.5 with 1,000 permutations.

Using 406 bp of D loop sequence common to our study and that of Bozarth et al. [20], we
pooled samples to construct an unrooted maximum likelihood tree of all known eastern and
western Urocyon haplotypes. We then separated our 406 bp D loop sequences into samples of
southeastern gray foxes, mainland western gray foxes, and island foxes, as well as regional
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subsamples of the western gray foxes, and estimated haplotype and nucleotide diversity for
direct comparison to the southeastern gray foxes and northeastern gray foxes (known to reflect
a Holocene expansion) analyzed by Bozarth et al. [20].

We compared our findings to those based on the mitogenome data set of Hofman et al. [17]
(GenBank accession numbers KP128924- KP129108, NC_026723) as follows. First, we aligned
their 185 western Urocyon (and one eastern gray fox) sequences to our 785 bp data set to
retrieve the orthologous bases, which we combined with our concatenated sequences. We then
constructed a network from this combined dataset to enable a direct comparison of haplotypes
between studies. Next, we generated a Bayesian skyline plot using the whole mitogenomes
from the 26 western mainland gray foxes of Hofman et al [17]. We also generated a Bayesian
skyline plot combining our concatenated (785-bp) sequences with those of the 26 western gray
foxes of Hofman et al. [17], but found no qualitative difference from the one estimated solely
from our data and therefore did not report results here. Lastly, we re-constructed a network
composed of the 185 whole mitogenomes of Hofman et al. [17] (i.e., essentially identical to
theirs) from which we calculated rho estimates (as described above) for comparison to time
estimates based on our 785 bp sequences.

Results
We obtained 180 cytochrome b sequences representing 13 distinct haplotypes (GenBank
Accession Nos. KP888884–KP888896), 8 of which had been previously observed in western
Urocyon [17]. Haplotype diversity was slightly higher in the west (0.70, SD = 0.032) than east
(0.63, SD = 0.063), but nucleotide diversity was similar between the west (0.0028,
SD = 0.00023) and east (0.0030, SD = 0.00044).

We also sequenced 145 of these samples at the D loop fragment, producing 25 haplotypes, 16
of which were novel. Otherwise, 7 of our 19 western Urocyon haplotypes [17] and 2 of our 6 east-
ern Urocyon haplotypes [20] had been previously reported. We deposited all 19 western and
the 4 novel eastern haplotypes named in this study in GenBank (Accession Nos. KP888858–
KP888879), retaining the names provided by Bozarth et al. [20] for the two previously reported
eastern haplotypes (Uci 22, Uci 23).

We produced full concatenated (785 bp) sequences for the 145 foxes, which, unless other-
wise mentioned, were used for subsequent analyses (Table 1). As with cytochrome b alone,
concatenated haplotype diversity was higher in the west (0.90, SD = 0.017) than east (0.85,
SD = 0.027). However, nucleotide diversity was higher in the east (0.0086, SD = 0.00075) than
west (0.0058, SD = 0.00023).

Eastern versus western foxes
The maximum likelihood and Bayesian trees were ambiguous with respect to the basal versus
derived positioning of putative clades and neither tree had sufficient resolution to evaluate
reciprocal monophyly. However, the maximum likelihood tree provided moderate to high
bootstrap support (78%) for the monophyly of a clade composed solely of all eastern haplo-
types (Fig 2), whereas the Bayesian tree provided a similar degree of support (0.92 Bayesian
Posterior Probability) for the monophyly of a clade composed solely of all western fox haplo-
types (Fig 3).

The sequence divergence between eastern and western samples (2.93%) minus the average
sequence divergence within samples (i.e., nucleotide diversity, 0.72%) yielded a net sequence
divergence of 2.2%. However, the cytochrome b fragment alone (n = 180 sequences) yielded a
sequence divergence of 1.3% (adjusted as above for within-population sequence divergence)
between western and eastern Urocyon. (We also estimated sequence divergence for the
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Table 1. Occurrence of 29 concatenated 785 bp cytochrome b and D loop haplotypes among 10 gray fox and 3 island fox sampling locations.

Sample location n A-4 A-7 A-23 A-5 A-6 B-2 B-3 C-13 C-14

1—Western Cascades 14 - - - 7 1 - - - -

2—North Coast 34 - - - 1 - - 2 - -

3—Central coast 10 - - - - - - - - -

4—Southern California 2 - - - - - - - - -

5—Western Sierra/San Joaquin Valley 13 - - - - - - - 5 1

6—Sacramento Valley 27 - - - 1 - 2 4 5 -

7—Eastern Sierra Nevada 5 - - - - - - - - -

Nevada 1 - - - - - - - - -

Washington 1 - - - - - - - 1 -

8—Island foxes 11 4 5 2 - - - - - -

Santa Cruz Isl. 4 4 - - - - - - - -

San Nicolas Isl. 5 - 5 - - - - - - -

San Clemente Isl. 2 - - 2 - - - - - -

Georgia 27 - - - - - - - - -

Total 145 4 5 2 9 1 2 6 11 1

Sample location C-16 D-2 D-9 D-10 D-11 D-12 D-15 D-16 D-17 E-1

1—Western Cascades - - 3 - - - 3 - - -

2—North Coast - - 21 2 3 4 1 - - -

3—Central coast 1 - 1 - - - - 6 - -

4—Southern California - - - - - - - - - -

5—Western Sierra/San Joaquin Valley - - - - - - 4 - - 3

6—Sacramento Valley - 1 5 - - 1 5 - - 3

7—Eastern Sierra Nevada - - - - - - - - - -

Nevada - - - - - - - - 1 -

Washington - - - - - - - - - -

8—Island foxes - - - - - - - - - -

Santa Cruz Isl. - - - - - - - - - -

San Nicolas Isl. - - - - - - - - - -

San Clemente Isl. - - - - - - - - - -

Georgia - - - - - - - - - -

Total 1 1 30 3 3 5 13 6 1 6

Sample location J-13 K-15 L-18 M-8 F-21 G-Uci22 H-19 H-20 H-Uci23 I-22

1—Western Cascades - - - - - - - - - -

2—North Coast - - - - - - - - - -

3—Central coast - 1 - 1 - - - - - -

4—Southern California - - 2 - - - - - - -

5—Western Sierra/San Joaquin Valley - - - - - - - - - -

6—Sacramento Valley - - - - - - - - - -

7—Eastern Sierra Nevada 5 - - - - - - - - -

Nevada - - - - - - - - - -

Washington - - - - - - - - - -

8—Island foxes - - - - - - - - - -

Santa Cruz Isl. - - - - - - - - - -

San Nicolas Isl. - - - - - - - - - -

San Clemente Isl. - - - - - - - - - -

Georgia - - - - 6 2 3 6 5 5

(Continued)
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concatenated D loop and cytochrome b fragments using the Kimura 2 parameter models, but
which extended the estimates only slightly,<4%.) If both fragments had accumulated muta-
tions linearly with time since divergence, we would expect sequence divergence in the D loop

Table 1. (Continued)

Sample location n A-4 A-7 A-23 A-5 A-6 B-2 B-3 C-13 C-14

Total 5 1 2 1 6 2 3 6 5 5

Haplotype names follow the convention that the cytochrome b fragment haplotype is named before the dash (by letter) and the D loop fragment haplotype

is named following the dash (e.g., Sacks et al. 2010). All our D loop haplotypes were named with numerals, but the previously published D loop

haplotypes use “Uci” in the name in keeping with previously assigned names (Bozarth et al. 2011). Numerals to left of sample names were for mapping

purposes.

doi:10.1371/journal.pone.0136329.t001

Fig 2. Maximum likelihood tree of concatenated 785 bp cytochrome b and D loop sequences. Tree was constructed using a HKY+ Γmodel of DNA
substitution. Bootstrap values >75 are shown at nodes, although values on inner nodes are shown only on the Urocyon clade expansion. Asterisks denote
haplotypes of island foxes.

doi:10.1371/journal.pone.0136329.g002
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to be 5 to 7 times that of the cytochrome b portion, based on the relative substitution rates of
these fragments observed on more recent time frames (e.g., [5,20]). Consistent with this expec-
tation, within the western clade, we observed that nucleotide diversity of the D loop fragment
(0.0184) was 6.1 times higher than that in the cytochrome b fragment (0.0030). Thus, we con-
clude that the rapid mutation rate of the D loop over the long time period of interest rendered
it an inappropriate marker for assessing divergence between eastern and western Urocyon.

The coalescent analysis of the 180 cytochrome b sequences in IMa2 indicated estimates of
splitting time (mean posterior) between eastern and western Urocyon at 575,168 YBP (95%
HPD = 174,144–1,041,913) (Fig 4A). The contemporary effective population size of the west-
ern Urocyon (215,171, 95% HPD = 122,983–368,949) was estimated to be larger than the east-
ern population (138,085, 95% HPD = 24,597–319,756), although HPD intervals overlapped
estimates (Fig 4B). The posterior distribution for the ancestral population size was relatively
flat and, therefore, uninformative.

Fig 3. Bayesian phylogeny of concatenated 785 bp cytochrome b and D loop haplotypes. Tree was constructed using HKY (cytochrome b) and HKY+Γ
(D loop) models of DNA substitution. Bayesian posterior probability values >0.75 are shown at nodes. Asterisks denote haplotypes of island foxes.

doi:10.1371/journal.pone.0136329.g003
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Comparison of Fu’s FS statistics to those simulated under constant-population size models
(based on the entire concatenated sequences) indicated no statistically significant evidence of
recent population expansions in either the (south)eastern (FS = 5.07, P = 0.96) or the (south)west-
ern (FS = -4.07, P = 0.14) population, consistent with long-term stability (or population declines)
in both portions of the continent. A Bayesian skyline plot using the western sample, however,
indicated a gradual increase in abundance beginning around 70,000 YBP (35,000 generations),

Fig 4. Coalescent analysis of mitochondrial cytochrome b sequences of 180Urocyon in IMa2, providing (A) an estimate of splitting time
separating eastern and westernUrocyon and (B) estimates of effective population sizes (Ne) of western, eastern, and ancestralUrocyon spp.

doi:10.1371/journal.pone.0136329.g004
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stabilizing long before the last glacial maximum (20,000 YBP), and remaining relatively stable
through the first half of the Holocene, but followed by a decline over the past several thousand
years (Fig 5). This analysis also generated an age estimate of 96,760 YBP (95%HPD: 55,318–
144,274 YBP) for the root height, i.e., coalescence time, of western Urocyon sequences.

Phylogenetic structure of western Urocyon
Two phylogeographic patterns were evident in the western sample (Fig 6). First, several tip
haplogroups (used here to indicate, collectively, closely related haplotypes with unresolved
topology and well-supported nested clades) had localized distributions, suggesting that lineages
had been geographically stable long enough for mutations to accumulate in those locations
without diffusing over long distances (within haplogroups). For example, the “white” hap-
logroup (as per color-coding in Fig 6) was found solely along the Central Coast and the “red”
haplogroup was found primarily in the Sacramento Valley and vicinity. Second, despite the
geographic and phylogenetic concordance within haplogroups, there was little phylogenetic
concordance among haplogroups. Most notably, the “pink” haplogroup was at opposite end of
our study region from the “green” haplogroup (island foxes). Conversely, the distantly related
“pink” and “yellow” haplogroups had similar distributions. Moreover, there was a notable lack
of interior haplogroups, i.e., many missing links among haplogroups, consistent with antiquity.

Fig 5. Bayesian skyline plot illustrating Pleistocene increase and Holocene decline in population size
of westernUrocyon based on 785 bp of concatenated cytochrome b and D loop sequence data. The
black line represents the median population size, while the lines above and below represent the 95% highest
posterior density (HPD). Dashed lines indicate glacial-interglacial boundaries and the blue shaded rectangle
indicates the last glacial maximum (LGM) for reference to the population sizes. The estimated root height
(coalescence time) was 96,860 years (95%HPD: 55,318–144,274 years) or 48,380 generations (assuming a
2-year generation time).

doi:10.1371/journal.pone.0136329.g005

Deep Cross-Continent Split and Ancient California Roots of Gray Foxes

PLOS ONE | DOI:10.1371/journal.pone.0136329 August 19, 2015 12 / 21



The accumulation of substitutions within haplogroups provided an indication of time-
frames corresponding both to the local accumulation of mutations in-situ and the age of the
entire western lineage as rooted to the eastern lineage (Table 2). The six tip haplogroups ranged
in estimated age from ~4,700 to 33,700 generations, translating to 9,400 to 67,400 YBP, with
most estimates falling prior to the last glacial maximum. The age estimated for the entire west-
ern clade (including island foxes) was ~61,000 generations (within the 95% HPD for root
height estimated from the Bayesian skyline analysis above), with successively nested subsets of
this clade estimated similarly at 46,000 to 50,000 generations, all corresponding approximately
to the Sangamon interglacial period (125,000–85,000 YBP).

Lastly, we wished to preliminarily investigate the geographic patterns of connectivity among
sampling locations. Assuming one split among western sampling locations (i.e., K = 2), the
SAMOVA identified the Eastern Sierra Nevada sampling location as distinct from all other
western locations, including Island foxes, although the model was not statistically significant

Fig 6. Median-joining network of 785-bp composite cytochrome b and D loop haplotypes. Haplogroups are color-coded for reference to map.
Numbered samples correspond to those listed in Table 1. Haplotypes in green correspond to island foxes from Santa Cruz Island (A-4), San Nicholas Island
(A-7), and San Clemente Island (A-23). All others represent gray foxes from the mainland. Dashed ellipses on network enclose nested tip clades and dotted
arcs denote nesting clades according to the Bayesian tree (Fig 3), with Bayesian Posterior Support indicated with numerals in italics. Positioning of the root is
in reference to the eastern haplotypes as indicated on the Bayesian tree (Fig 3). Nodes are approximately proportional to samples size for n < 10 (i.e., circle
size was the same for n = 10–30). Inferred, unsampled haplotypes are marked with black and red circles.

doi:10.1371/journal.pone.0136329.g006
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(Table 3). The lowest number of groupings that was statistically significant was K = 3, which
split out both the Eastern Sierra Nevada sample and island foxes as distinct groups relative to
other western gray fox sampling locations. Although FCT also were statistically significant for
K = 4–6 groupings, their values did not increase substantially with higher K nor were models
nested hierarchically. A Mantel test based on the five California sample sites that clustered
together at K = 3 in the SAMOVA indicated a significant pattern of isolation by distance (Man-
tels r = 0.62, P = 0.034).

Combining our D loop sequences (406 bp) with those of Bozarth et al. [20], we constructed
an unrooted tree including all known D loop haplotypes, which strongly supported the mono-
phyly of an eastern clade (99% bootstrap support) relative to a western clade (S1 Fig). We then
compared statistics of our 406 bp D loop dataset to the corresponding data set of Bozarth et al
[20]. Western gray foxes (i.e., mainland) exhibited higher haplotype diversity than Island foxes
or northeastern gray foxes, both founded during the Holocene, and similar haplotype diversity

Table 2. Average (and standard deviation, SD) numbers of mutations separating descendent haplotypes from ancestral nodes (rho) and corre-
sponding estimates of time to most recent common ancestor (TMRCA) assuming an average substitution rate of 10.8% per million generations in
the 785 bp concatenated cytochrome b and D loop fragment.

Ancestral
node1

Descendent haplotypes Rho
estimate
(SD)

TMRCA (SD) in
generations

Colors in network2

Basal MV Island fox haplotypes (A-4, A-7, A-23) 1.5 (0.729) 17,625 (8,566) Green

Basal MV All western Urocyon (A-4, A-5, A-6, A-7, A-23, B-2, B-3, C-13, C-14, C-
16, D-2, D-9, D-10, D-12, D-15, D-16, D-17, E-1, J-13, K-15, L-18, M-8,
N-9)

5.22 (1.538) 61,335 (18,072) All

Interior MV B-2, B-3, C-13, C-14, C-16, D-2, D-9, D-10, D-12, D-15, D-16, D-17, E-
1, J-13, K-15, L-18, M-8, N-9

3.95 (1.237) 46,413 (14,535) Yellow, black, gray,
stippled, blue, white, red

Interior MV B-2, B-3, C-13, C-14, C-16, D-2, D-15, D-16, D-17, E-1, J-13, K-15 4.26 (1.5) 50,055 (17,625) gray, stippled, blue,
white, red

Interior MV D-9, D-10, D-12, M-8 1.2 (0.968) 14,100 (11374) Yellow

Interior MV C-13, C-14 1.08 (1.003) 12,725 (11,785) Gray

D-15 D-16, C-16 0.4 (0.354) 4,700 (4,160) White

A-4 A-5, A-6 1 (0.914) 11,750 (10,740) Pink

Interior MV B-2, B-3, D-2, E-1 2.87 (1.187) 33,723 (13,947) Red

1Ancestral nodes for rooting were median vectors (MV) corresponding to the basal node identified in the Bayesian tree (Fig 3) or the one immediately

interior to the descendent haplotypes, or were the sampled haplotype immediately interior to the descendent haplotypes.
2Colors correspond to those in Fig 6.

doi:10.1371/journal.pone.0136329.t002

Table 3. Best population groupings for K = 2–6 for combined cytochrome b and D loop sequences and statistical results from SAMOVA.

Sampling location K = 2 K = 3 K = 4 K = 5 K = 6

Western Cascades A A C E E

North Coast A A D D D

Central Coast A A A A F

Western Sierra/San Joaquin Valley A A A A A

Sacramento Valley A A A A A

Eastern Sierra Nevada B B B B B

Island foxes A C C C C

ΦCT 0.21 0.22 0.20 0.23 0.26

P 0.13 0.05 0.01 0.02 0.05

doi:10.1371/journal.pone.0136329.t003
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to the older (refugial) southeastern gray foxes (Table 4). Similarly, breaking up the western
mainland sample according to locality resulted in consistently higher haplotype diversity esti-
mates than were observed in the northeastern US. Coastal sites tended to have lower diversity
than inland sites but there was no latitudinal pattern. Indeed, the highest haplotype diversity
estimate was in the Sacramento Valley in northern California. Nucleotide diversity estimates
were more variable, but nevertheless showed similar values between our large samples of west-
ern mainland gray foxes (this study) and southeastern gray foxes [20]. Similarly to the South-
east sample of Bozarth et al. [20], none of our samples had statistically significant Fu’s Fs
estimates.

Comparison of our sequences to those of Hofman et al. [17] indicated most major western
Urocyon clades and haplogroups, and internal haplotypes in particular, were represented in
both datasets (S2 Fig). An exception was the “red” haplogroup of the present study (Fig 6),
which was not represented in the Hofman et al. [17] sample. The much larger sample of island
foxes by Hofman et al. [17] increased the number of concatenated (785 bp) haplotypes from
the three we observed in our sample to a total of six in the combined sample. Thus, it appears
that the sampling schemes of the two studies, one of which emphasized island foxes and the
other, mainland gray foxes, were both adequate to capture the majority of the basal mitochon-
drial diversity of western Urocyon. The Bayesian skyline plot based on the 25 western gray fox
whole mitogenomes [17] showed the same Holocene decline, but not the earlier expansion, as
our larger sample of 785 bp sequences (S3 Fig, Fig 5).

Computation of rho estimates from a network constructed from the whole mitogenomes of
Hofman et al. [17] indicated an average of 37.04 mutations (i.e., rho = 37.04, SD = 4.09)
between ancestral and descendent haplotypes within the western gray fox clade (excluding
island fox haplotypes). Applying the same mutation rates of coding and noncoding DNA as we
assumed for those portions of the 785 bp of sequence implies an age of approximately 60,000
generations or 120,000 years for the western gray fox clade, in agreement with inferences from
our data. Specifically, we assumed 2.8% per million generations in the coding DNA (in this
case, 15,478 bp) and 17.75% per million generations in the D loop portion (in this case, 982
bp), i.e., averaging 3.7% per million generations or 1.85% per MY in the entire mitogenome
(e.g., as estimated for other canids [2,8]). Applying the same mutation rates to the island fox
clade, along with two standard deviations to either side produced an estimated time to most
recent common ancestor of approximately 35,000 to 67,000 years for the entire island fox clade

Table 4. Estimates of haplotype and nucleotide diversity in western gray foxes (mainland), island foxes, and eastern gray foxes from the present
study, compared to those from Bozarth et al. (2011) for reference using 406 bp of D loop sequence common to both studies.

Sample Subsample n Putative age Haplotype diversity (SD) Nucleotide diversity (SD) Reference

Island foxes 11 Holocene 0.691 (0.086) 0.049 (0.0011) This study

Western 107 Pleistocene 0.865 (0.019) 0.0083 (0.0003) This study

W. Cascades (14) 0.703 (0.095) 0.0057 (0.0010) This study

North Coast (34) 0.606 (0.091) 0.0036 (0.0010) This study

Central Coast (10) 0.644 (0.152) 0.0180 (0.0046) This study

W. Sierra/SJV (13) 0.756 (0.070) 0.0110 (0.0047) This study

Sacramento V (27) 0.892 (0.025) 0.0085 (0.0004) This study

Southeast 27 Pleistocene 0.846 (0.027) 0.0134 (0.0010) This study

Southeast 158 Pleistocene 0.887 0.0099 Bozarth

Northeast 71 Holocene 0.527 0.0020 Bozarth

Local estimates are also provided for 5 sampling locations within the western mainland population.

doi:10.1371/journal.pone.0136329.t004
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and 7,300 to 19,700 years for the subclade associated with the northern islands (S4 Fig). The
subclade associated with the southern islands, however, was a similar age as the entire island
fox clade, ranging 25,400 to 56,600 years since descending from a common ancestor (S4 Fig).
Even the clade nested within this one corresponding to two of the southern islands was esti-
mated to be 9,000 to 35,000 years old.

Discussion

Divergence between eastern and western Urocyon
Our results demonstrate that gray foxes in the eastern and western United States were highly
divergent. First, our estimate based on the coalescent simulations performed in IMa2 indicated
an estimated split time of 575,168 YBP (95% HPD = 1,041,913–174,144 YBP), which provided
robust statistical support for the general timeframe. The simplest measure of this split, how-
ever, was in terms of the sequence divergence between eastern and western Urocyon in the
cytochrome b fragment. This sequence divergence can be compared directly to interspecific
branching points among other foxlike canids. In particular, the 1.3% cytochrome b divergence
we observed between eastern and western Urocyon was>162% that observed between kit and
swift foxes (0.8%), 72% as much as that between the latter two and arctic foxes (Vulpes lagopus;
1.8%), and 15% that between these three foxes and red foxes [2,8]. The branching points for
these taxa have been independently calibrated to nuclear DNA and fossil evidence or more
extensive mitochondrial DNA [2,8,10], indicating divergence times of 0.5 MY, 0.8 MY, and 2.9
MY, respectively, translating to a 1.6 to 3% sequence divergence per MY (see also [46]). Using
this range to bracket cytochrome b sequence divergence between eastern and western gray
foxes implies divergence dating from 813,000 to 433,000 YBP, consistent with our IMa2 esti-
mate. Thus, it appears that eastern and western Urocyon trace their divergence back to the late
Irvingtonian (Middle Pleistocene), and well within the range of distinct sister taxa.

The fossil record is poor for Urocyon prior to the Wisconsin glaciation, but the earliest spec-
imens identified as U. cinereoargenteus were from Arkansas and further east [11]. However,
nominal Urocyon galushai were identified in Irvingtonian sites in southern California and U.
citrinus from the Irvingtonian in Florida [47]. During the Sangamon interglacial (~125,000–
85,000 YBP), U. cinereoargenteus specimens were known from Florida and Mexico. During the
Wisconsin glaciation (85,000–11,000 YBP), fossils designated U. cinereoargenteus were distrib-
uted essentially throughout the southern portion of the current range, including California,
Arizona, New Mexico in the west and Florida, Georgia, and Pennsylvania (northern extent) in
the east [11]. Thus, one possibility is that U. cinereoargenteus expanding fromMexico replaced
U. galushai in the west and U. citrinus in the east during the late Irvingonian or early Wiscon-
sin. Alternatively, in light of our genetic findings, which put the split between contemporary
eastern and western Urocyon back to the Irvingtonian, it seems plausible that contemporary
western U. cinereoargenteus stems from the previously identified Irvingtonian species, U.
galushai and U. citrinus, respectively.

The prospect of such deep phylogenetic divergence between western and eastern Urocyon is
complemented by the possibility of adaptive differentiation associated with evolution in dis-
tinct environments. Today, Urocyon of the east are associated closely with mesic hardwood for-
ests, whereas those of California are primarily associated with arid scrub habitats [12]. In
general, the southeast and California bioregions were composed similarly to the present during
the late Pleistocene [11]. Nuclear genetic data are needed to confirm the divergence observed
in the mitochondrial gene tree between of eastern and western Urocyon and to assess popula-
tion history as evidenced throughout the entire genome. Samples from intervening
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geographical regions as well as further south are also needed to assess gene flow, discrete
breaks, and relationships to Urocyon in Mexico, Central America, and South America.

Antiquity of gray and island foxes in California
Related to the splitting time between eastern and western Urocyon was the age of Urocyon in
the western portion of its range and the divergence time between extant (or at least sampled)
gray and island fox matrilines. Our estimates of these timeframes based both on our data set
and reanalysis of that of Hofman et al. [17] were in close agreement. Specifically, we estimated
the coalescence time for western Urocyon to be on the order of 100,000 YBP or more and esti-
mated the time to most recent common ancestors of the island fox clade at 35,000 to 51,000
YBP. Additionally, the topology based on whole mitogenomes (e.g., Figs 2 and 3 in [17]; S4
Fig) implies a similar timeframe (35,000 to 51,000 YBP) for the divergence of all extant island
fox matrilines from all gray fox matrilines, including the most phylogenetically proximate gray
fox haplotypes sampled from northern California ([17], this study), placing this event prior to
the last glacial maximum.

However, these timeframes were significantly deeper than the corresponding estimates by
Hofman et al. [17], which, in turn, was due to differences in assumptions about mitochondrial
mutation rates in Urocyon. Whereas we assumed that substitution rates (and generation times)
of Urocyon were similar to those of other canids (and substitution rates appear to be similar
throughout the Carnivora [46]), Hofman et al. [17] assumed that the most recent common
ancestor to extant island foxes coincided closely (~9,200 years ago) with the first known occur-
rence of foxes on the islands 7,100 years ago (as independently determined via radiocarbon-
dated specimens). The latter assumption seems unlikely to us based on the shapes of the island
fox networks, both from whole mitochondrial sequences [17] and our concatenated sequences
(Fig 6, S4 Fig). In general, networks were more reticulated than star-shaped (as would be
expected if these foxes arose from a recent common ancestral matriline), and had multiple
missing links, which also seems implausible on such a short timeframe (despite population
fluctuations due to epizootics, etc.). These networks therefore seem inconsistent with expan-
sion from a single founder (see, for example, patterns in Australian dingoes, which arose
~8,000 to 5,000 years ago [48,49]).

Given that island foxes apparently did not arrive on the Channel Islands until 9,200 to 7,100
years ago (reviewed by [17,50]), we suggest that contemporary island foxes must trace to a min-
imum of three or four distinct founder matrilines. One founder associated with the northern
islands potentially rooted the corresponding subclade, which did appear star-shaped (see Fig 2
in [17]) and which we dated at 7,300 to 19,700 YBP (S4 Fig). Another founder likely corre-
sponded to the highly divergent haplotype cluster unique to San Clemente Island, and one or
two founders potentially explain the haplotypes currently observed on San Nicolas and Santa
Catalina Islands (excluding the haplotype also found on Santa Cruz Island). Whether multiple
founders were used to start a single founding population (i.e., on one of the islands) that subse-
quently gave rise to populations on other islands or as independent mainland founders of dis-
tinct island populations cannot be inferred from mitochondrial DNA alone.

Regardless, however, the question remains: What happened to the immediate, mainland
maternal ancestors of island foxes in the time since the ancestral island foxes were brought to
the islands? Because all island fox matrilines derive from this monophyletic clade, we agree
with Hofman et al. [17] that the apparent disappearance of island fox-like haplotypes from the
adjacent mainland must reflect events of the Holocene. One possibility is that the clade was
present but rare in the southern California mainland and, consequently, not sampled there.
Alternatively, island foxes might never have occurred in the Southern and Central California
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mainland, but, rather, could have been imported from a distant location such as northern Cali-
fornia or Mexico. Barring these scenarios, the descendants either died out or, as hypothesized
by Hofman et al. [17], moved to the north before being replaced. The late Holocene population
decline indicated by our Bayesian skyline analyses supports one of the former possibilities (that
the lineages were reduced in frequency or lost due to drift). As discussed below, it seems
unlikely that the island fox-like haplotypes (A-5, A-6) found today in the north signify a north-
ern range shift by these ancestors.

Northern California gray foxes: Recent expansion or ancient roots?
Up to now, we have discussed our age estimates for the coalescence of California and Island
fox groups and interpreted our findings to show clear support for a generally ancient age and,
therefore, supporting the hypothesis that California as a whole served as a Pleistocene refugium
for Urocyon. However, we also wished to assess whether northern California, in particular, was
part of this refugium (e.g., [15]) or, as hypothesized by Hofman et al.[17], the recipient of a
Holocene range expansion from southern California. Notwithstanding the presence of the
“island fox-like” haplotypes in northern California, our findings provided no meaningful evi-
dence to support the Holocene range expansion hypothesis in northern California. On the con-
trary, our findings were consistent with a long-standing, stable population in the area. For
example, foxes had high haplotype diversity that was regionally phylogeographically structured
and the Bayesian skyline plot showed evidence of a Holocene decline rather than increase. The
rho estimates further indicated ancient ages of multiple haplogroups composed of localized
haplotypes. The pattern as a whole was in stark contrast to that observed in the northeastern
U.S., where gray foxes across a broad area shared primarily two haplotypes, which also were
found within the much higher diversity southeast [20]. Gray fox faunal remains were identified
in twoWisconsin-age sites from the mountains south of Mount Shasta, Samwell Cave, Potter
Creek Cave, confirming the presence of gray foxes in northern California during the late Pleis-
tocene [51]. Conversely, as discussed above, the “island fox-like” haplotypes found in northern
California apparently diverged from the actual island fox haplotypes prior to the last glacial
maximum.

The landscape of California also could be very important in shaping patterns of migration
more so than simple geographic distance. For example, in coyotes, there is high gene flow from
north to south along the Pacific Crest and down to the Tehachapi Mountains and the trans-
verse ranges [15]. If gray foxes exhibit a similar pattern, the ecological distance between Mount
Lassen and the mountains most proximate to the Channel Islands could be considerably less
than that suggested by their Euclidean separation distance. Thus, future analyses of more foxes
and using finer resolution markers such as microsatellites can potentially shed further light on
the historical and contemporary population genetic structure of gray foxes in California.

Supporting Information
S1 Fig. Unrooted maximum likelihood tree of all 56 D loop haplotypes in this study and
that of Bozarth et al. [20]. Topology and branch lengths based on the Kimura 2-Parameter
model (+Γ) with bootstrap support based on 500 replicates using 56 distinct D loop haplotypes
(406 bp) from the present study and from Bozarth et al. [20]. Haplotypes described for the first
time from the present study were indicated by a numeral only; those found by Bozarth are indi-
cated, and those found in both studies are marked with (�). Tree was based on 395 sites that
had no deletions in any haplotypes (i.e., only substitutions).
(TIF)
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S2 Fig. Median-joining network of 785-bp composite cytochrome b and D loop haplotypes
from Hofman et al. [17] superimposed on the network structure from the present study.
Inset shows magnified copy of island fox haplotypes color-coded in terms of island where sam-
pled as per the adjacent legend. Nodes are approximately proportional to samples size in both
figures. GenBank accession numbers for Hofman et al. [17] haplotypes were KP128924-
KP129108.
(TIF)

S3 Fig. Bayesian skyline plot of 27 western gray fox whole mitogenomes from Hofman
et al. [17], illustrating mid- to late-Holocene decline. The black line represents the median
population size, while the lines above and below represent the 95% highest posterior density
(HPD). Dashed lines indicate glacial-interglacial boundaries and the blue shaded rectangle
indicates the last glacial maximum (LGM) for reference to the population sizes.
(TIF)

S4 Fig. Reconstruction of the network of Hofman et al. [17] from their 185 western Uro-
cyon whole mitogenomes (GenBank accession Nos. KP128924-KP129108), in particular
illustrating 159 island fox haplotypes and associated rho estimates (and standard devia-
tions). Rho estimates were translated to ages in years assuming a 2-year generation time and
substitution rates of 2.8% per million generations in coding DNA and 17.75% per million gen-
erations in noncoding DNA (see main text for additional explanation). The small white node
corresponds to gray foxes from northern California.
(TIF)
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