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Abstract
We discovered high Na+ and water content in the skin of newborn Sprague–Dawley rats, which reduced ~ 2.5-fold by 7 days 
of age, indicating rapid changes in extracellular volume (ECV). Equivalent changes in ECV post birth were also observed 
in C57Bl/6 J mice, with a fourfold reduction over 7 days, to approximately adult levels. This established the generality of 
increased ECV at birth. We investigated early sodium and water handling in neonates from a second rat strain, Fischer, and 
an Hsd11b2-knockout rat modelling the syndrome of apparent mineralocorticoid excess (SAME). Despite Hsd11b2−/− ani-
mals exhibiting lower skin Na+ and water levels than controls at birth, they retained ~ 30% higher Na+ content in their pelts 
at the expense of K+ thereafter. Hsd11b2−/− neonates exhibited incipient hypokalaemia from 15 days of age and became 
increasingly polydipsic and polyuric from weaning. As with adults, they excreted a high proportion of ingested Na+ through 
the kidney, (56.15 ± 8.21% versus control 34.15 ± 8.23%; n = 4; P < 0.0001), suggesting that changes in nephron electrolyte 
transporters identified in adults, by RNA-seq analysis, occur by 4 weeks of age. Our data reveal that Na+ imbalance in 
the Hsd11b2−/− neonate leads to excess Na+ storage in skin and incipient hypokalaemia, which, together with increased, 
glucocorticoid-induced Na+ uptake in the kidney, then contribute to progressive, volume contracted, salt-sensitive hyper-
tension. Skin Na+ plays an important role in the development of SAME but, equally, may play a key physiological role at 
birth, supporting post-natal growth, as an innate barrier to infection or as a rudimentary kidney.
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Introduction

Increased sodium and water storage in skin (sub-clinical 
oedema) has been associated with aging and hypertension 
in humans [41]. However, it has not been investigated in 
very young or premature babies where it may impact on 
trans-epidermal water loss (TEWL) [27].

In adult rats the skin is recognized as a key organ for 
the sequestration of excess Na+, which may be stored with 
water [47] or osmotically inactive (free from water) and 
complexed with proteoglycans [50], and is involved in the 
maintenance of ECV and blood pressure homeostasis [49]. 
Natriuretic control of ECV on chronic exposure to high salt 
may also be coupled with metabolism-driven urine concen-
tration, involving concerted urea production by the liver and 
muscle, and urea recycling by the kidney, as a means to 
conserve body water [21]. Multiple additional pleiotropic 
systems, including the renin–angiotensin–aldosterone sys-
tem, sodium transport in the nephron, autonomic nervous 
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control, and steroid metabolism, all work in concert with 
appropriate adjustments to the vasculature and barorecep-
tors, to control extracellular volume (ECV) and maintain 
blood pressure [17].

Sensitivity to salt increases cardiovascular risk in both nor-
motensive and hypertensive cohorts [55] — a problem given 
the high salt intake in the Western diet — though the underly-
ing aetiology of salt-sensitivity is unclear [11]. Salt-sensitivity 
is thought to reflect altered pressure-natriuresis or up-regu-
lated Na+ transport, and subsequent defects in salt storage or 
kidney dysfunction may each play a critical role [35].

Hypertension may be irreversibly fixed or programmed 
early in development, and young rats are ideally sized (~ 30 g) 
to facilitate chronic measurements of blood pressure, meta-
bolic status, and kidney function, making it possible to dis-
cern which homeostatic control systems are causal and which 
effect the progression of hypertension. Critical early devel-
opmental stages include foetal development in utero, birth, 
suckling, and the introduction to solid food at weaning. At 
birth, the neonate experiences a brief surge in glucocorticoids, 
which stimulates lung development. Glucocorticoid levels 
then fall sharply and remain low until about 14 days of age, 
when they climb again, peaking at about 21 days [36]. The 
glucocorticoid surge parallels an increase in the potassium 
channel, ROMK [15, 58]. Urine concentrating capacity is 
absent at birth but builds slowly, as water excretion capability 
improves with increasing vasopressin and aquaporin 2 (Aqp2) 
production [7]. Nephrogenesis continues beyond birth, with 
nephrons not reaching maturity until about P14. An additional 
stage when Na+ handling could be critical is when the neonate 
begins to eat solid food during the third week of age, which 
is paralleled by the glucocorticoid surge. Potassium status is 
inversely related to blood pressure in both human and experi-
mental models, since K+ is depleted when Na+ is retained in 
the kidney [22]. For example, adrenocorticotropic hormone 
treatment causes substantial hypokalaemia, [2, 10] which is 
often associated with polydipsia and polyuria [3].

Genetic modification of key genes implicated in blood 
pressure control or salt handling provides useful animal 
models to investigate salt-sensitivity. For example, loss of 
Hsd11b2 activity causes Na+ retention in principal cells of 
the collecting duct of the kidney, hypokalaemia, polydipsia, 
polyuria, volume contraction, and salt-sensitive hyperten-
sion [30]. We report that newborn rodents have very high 
Na and water content in their skin and use the rat SAME 
model to investigate neonatal sodium handling in relation 
to salt sensitivity.

Results

Electrolyte storage in skin/pelts

To investigate electrolyte and water content in very young 
rats, skin from Sprague–Dawley e18.5 embryos and neo-
nates were analysed (Fig. 1a and b). High Na+ and water 
content was observed in e18.5 and newborn pups, which 
reduced significantly by 2 days of age, decreasing 2.5-fold 
by 7 days of age. To ascertain the generality of this obser-
vation skin samples from a separate species, C57Bl/6 J 
mice were collected at time points pre- and post-birth and 
were processed for electrolyte analysis. Again, C57Bl/6 J 
mouse embryos at e18.5 and birth demonstrated high 
levels of skin Na+ and water (per g dry weight), which 
declined rapidly in neonates, reaching a significant four-
fold decline by 7 days of age (Fig. 1c–d).

We next extended our analyses to look at a second rat 
strain, Fischer (F344), together with the genetically mod-
ified Hsd11b2 knockout (Hsd2−/−; on the same genetic 
background), which exhibits salt-sensitive hypertension. 
Fischer (F344) neonatal skin analyses again revealed 
dynamic changes in electrolyte and water content. New-
born control skin samples (between 6 and 18 h old) con-
tained high quantities of Na+ (0.538 ± 0.071 mmol/g dry 
weight) and water (5.40 ± 0.66 ml/g dry weight), both of 
which declined approximately fourfold, towards adult 
levels over the first week of life (Fig. 2a–b; 7 day: Na+ 
0.126 ± 0.006 mmol/g dry weight; water 1.64 ± 0.07 ml/g 
dry weight). The Hsd2−/− animals, however, contained less 
Na + and water in newborn skin, showed a reduced rate 
of decline (newborn skin Na+ − 0.377 ± 0.049 falling to 
0.202 ± 0.015 mmol/g dry weight by day 7; newborn skin 
water – 4.01 ± 0.53 falling to 2.34 ± 0.12 ml/g dry weight 
by day 7), and retained consistently higher Na+ content in 
their pelts than controls, extending to adulthood (Fig. 2a). 
The Hsd2−/− adults had 32% more Na+ content per g dry 
weight than controls in pelts (Hsd2−/− − 0.117 ± 0.018 
versus controls – 0.089 ± 0.008  mmol/g; n = 6; 
P = 0.0045). They also had 16% more Na+ content per 
g dry weight in bone ash (Hsd2−/− − 0.515 ± 0.028 ver-
sus controls – 0.444 ± 0.020 mmol/g; P = 0.0005) and 
44% more in carcass Na+ content per g dry weight 
(Hsd2−/− − 0.088 ± 0.002 versus controls – 0.061 ± 0.005); 
P = 2.56e−0.6) giving a 36% increase in total body sodium 
(Hsd2−/− − 0.135 ± 0.008 versus controls – 0.099 ± 0.006; 
P = 5.08e−0.6). Indeed, there was a strong correlation 
between skin Na+ per g dry weight relative to other vari-
ables including total body Na+ per g dry weight and total 
body water per g dry weight in Hsd2−/− animals, and inter-
estingly, a negative correlation relative to bone Na+ per 
g dry weight in both groups (Table 1). Pelt electrolyte 
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concentration ([Na+ + K+]; Hsd2−/− 0.168 ± 0.006 versus 
controls 0.173 ± 0.007 mmol/ml) remained remarkably 
constant from birth to adult (Fig. 2f), but [Na+] was signif-
icantly higher in Hsd2−/− neonates and [K+] significantly 
lower than controls (Fig. 2d–e).

Phenotypic characterization of neonates

Plasma, urine, and milk samples were collected from 
pups aged 13–15  days old. Hsd2−/− animals already 
showed slight, but significant hypokalaemia at 15 days 
of age (Fig. 3b). Na+ was below detection in the urine of 
13–14-day-old controls (n = 9) but was detected in 70% of 
age-matched Hsd2−/− urine samples together with a trend 
towards increased K+ (n = 10; data not shown).

Neonatal stomach contents were analysed for electrolytes 
as an indirect measure of Na+ and K+ passed through moth-
er’s milk. Since milk composition is likely to change with 
age of neonate, we compared electrolytes in the stomach 
contents at 13 days post-partum (correlation between Na+ 
and milk weight –Hsd2−/−: 0.963 (n = 16); controls: 0.743 
(n = 10)). Samples from Hsd2−/− pups contained signifi-
cantly higher Na+ g−1 milk (Hsd2−/− 47.36 ± 8.85 µmol/g 
versus control 33.57 ± 8.40 µmol/g; P = 0.0002), with a trend 

towards lower K+ (Hsd2−/− 43.94 ± 9.06 µmol/g versus con-
trols 48.52 ± 9.98 µmol/g; P = 0.238), resulting in a signifi-
cantly higher Na+/K+ ratio (Hsd2−/− 1.109 ± 0.264 versus 
0.703 ± 0.085; P < 0.0001).

Blood pressure, haematocrit, and plasma 
electrolytes

Analysis of catheterized young rats (from 15 days to 5 weeks 
of age; n = 3–5) suggested that MABP and haematocrit of 
Hsd2−/− were indistinguishable from controls at 15 days old, 
but both reached significance by 40 days of age (MABP: 
158.0 ± 6.1 mmHg versus 118.0 ± 5.3 mmHg controls; n = 3; 
P < 0.0001; HCT: 0.49 ± 0.01 versus 0.42 ± 0.01 controls; 
n = 3; P < 0.0001; Fig. 3a–b). Plasma Na+ (Fig. 3c) was 
indistinguishable from age matched F344 controls on 0.3% 
Na+ diet. However, the Hsd2−/− animals showed worsen-
ing hypokalaemia, with significantly reduced plasma K+ 
(Fig. 3d) compared to F344 controls at all time points.

Assessment of water and electrolyte balance

Newly weaned male rats (22–23 days old; F344 versus 
Hsd2−/−; n = 4 per group) were placed in metabolic cages 

Fig. 1   Skin Na+ and water 
content during development 
in Sprague–Dawley (SD) (a) 
skin Na+ (mmol/g dry weight; 
*** = 0.0002; **** < 0.0001) 
(b) skin water (ml/g dry weight; 
*** = 0.0009; **** < 0.0001), 
and C57Bl/6J mice (c) skin 
Na+ (mmol/g dry weight; 
*** = 0.0003; ** = 0.0047) 
and (d) skin water (ml/g dry 
weight; *** < 0.0002) (n = 6–9 
per group; two-way ANOVA 
with Kruskal Wallis and Dunn’s 
multiple comparison test) e
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to determine baseline water and electrolyte balance. 
Hsd2−/− animals developed significant polydipsia and 
polyuria between 23 and 33 days of age on a 0.3% Na+ diet 
(Fig. 4a–b). Young homozygotes drank significantly more 
water per g body weight (Hsd2−/− 0.32 ± 0.03 ml versus 
controls 0.22 ± 0.03 ml; n = 4; P < 0.0001) and produced 
significantly more urine (Hsd2−/− 0.15 ± 0.02 ml versus 
controls 0.03 ± 0.01 ml; n = 4; P < 0.0001). Hsd2−/− ani-
mals had a higher urinary Na+/K+ ratio (Fig. 4c). Criti-
cally, they excreted significantly more of their ingested 

sodium through the kidney (Hsd2−/− 56.15 ± 8.21% per 
g body weight compared to 34.15 ± 8.23% in controls; 
n = 4; P < 0.0001) from 29 days, as was observed in adult 
Hsd2−/− animals [30].

Urinary urea concentration was significantly lower in 
Hsd2−/− pups than controls at 32 days of age due to polyuria 
(196.3 ± 44.9 mM versus 746.3 ± 76.9 mM controls; n = 4; 
P < 0.0001), but the urea content was not significantly dif-
ferent (2002 ± 288 µmols versus 1710 ± 258 µmols controls; 
n = 4; P = 0.2469).

Fig. 2   Skin electrolytes and 
water content during develop-
ment. a skin Na+ (mmol/g 
dry weight; note logarithmic 
scale); b skin K+ (mmol/g dry 
weight; c skin water (ml/g dry 
weight); d skin Na+ (mmol/
ml); e skin K+ (mmol/ml); f 
skin electrolytes (Na+K+(mmol/
ml)). (n = 3–6 per group per 
time point; two-way ANOVA 
with Sidak’s multiple com-
parison test * < 0.05; ** < 0.01; 
*** < 0.001)
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Table 1   Correlation coefficients 
(r), coefficients of determination 
(r2) and probability (p) between 
variables (column 1), and skin 
Na+ per g dry weight

variables CON Hsd2−/−

r r2 p r r2 p

Total body Na+ g−1 dry weight 0.627 0.393 ns 0.951 0.905 0.0035
Total body Na+ + K+ g−1 dry weight 0.439 0.193 ns 0.982 0.964 0.0005
Total body water g−1 dry weight 0.406 0.165 ns 0.989 0.978 0.0002
Bone Na+ g−1 dry weight  − 0.911 0.83 0.0115  − 0.865 0.748 0.026
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Immunohistochemical analysis

Immunohistochemical analysis of kidney samples taken 
during development suggested notable changes in cell 
composition of the CD in Hsd2−/− compared to con-
trols (Fig. 5a–d). While no significant change in IC cell 
proportion in control or Hsd2−/− animals was observed 
between ~ 5 weeks of age and 24 weeks of age, there was 
a significant reduction in the log-ratio of PC:IC cells (0.52 
± 0.15 control versus 0.39 ± 0.09 Hsd2−/− at 5 weeks and 
0.59 ± 0.20 in control versus 0.13 ± 0.14 in Hsd2−/− at 
24 weeks) and a significant increase in the log-ratio of inter-
mediate: IC cells (− 0.5 ± 0.16 control versus 0.08 ± 0.14 in 
Hsd2−/− at ~ 5 weeks and − 0.51 ± 0.13 control versus − 0.01 
± 0.15 in Hsd2−/− at 24; a negative log-ratio means that 
the proportion of ICs is greater than that of intermediate 
cells) in Hsd2−/− rats. This indicates that the proportion 
of principal cells staining positive for aquaporin decreased 
dramatically in Hsd2−/− rats between ~ 5 weeks of age and 
24 weeks of age, (Hsd2−/− 62.66 ± 16.51% versus controls 
73.84 ± 16.84%, decreasing to Hsd2−/− 38.39 ± 12.05% ver-
sus controls 66.79 ± 13.44%) while intermediate cells stain-
ing positive for both aquaporin and V-Atpaseb1 increased 
during the same period.

Tissue urea and arginase activity

Urea content and arginase activity were determined in adult 
male liver, muscle, heart, kidney cortex, kidney medulla, 
and skin samples (Fig. 6a–b). None of the Hsd2−/− tissue 
samples had significantly different urea content compared 
to control samples. Arginase activity only reached statisti-
cal significance between control and Hsd2−/− kidney cortex 
samples.

RNASeq data from adult kidney

Gene expression levels were assessed in adult kidney sam-
ples by RNAseq [24]. Key changes in transcripts related 
to blood pressure and extra cellular volume control are 
summarized in Table 2. Key changes in electrolyte and 
water transporter transcripts are summarized in Table 3, 
and changes in kidney injury and inflammation gene 
transcripts are given in Table 4. Chronic sodium reten-
tion in Hsd2−/− animals was reflected in a 28-fold sup-
pression of renin. Pappalysin 2 was also down-regulated 
(Pappa2; − 8.28-fold), while the vasopressin receptor 
was marginally up-regulated (Avpr1a; 1.63-fold). Sev-
eral Na+-transporters were modestly, but significantly, 

Fig. 3   Developmental changes 
in a blood pressure b haema-
tocrit c plasma Na+, and d 
plasma K+ (minimum n = 3 per 
time point; unpaired t test; *** 
0.0009; **** < 0.0001)
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down-regulated (Table 3): the proximal tubule specific 
Na–H exchanger (Slc9a3; − 1.37-fold) and Na-Pi co-trans-
porter (Slc34a1; − 1.25-fold); the cortical thick ascend-
ing limb-specific NKCC2 (Slc12a1; − 1.29-fold), and the 
distal convoluted tubule-specific NCC (Slc12a3; − 1.36-
fold). The water transporters, Aqp1 and Aqp2, were also 
down-regulated (− 1.31 and − 1.35-fold, respectively). 
In Hsd2−/− relative to controls, we observed a slight 

up-regulation in a number of genes specific to the CNT/
CCD, including the principal cell-specific αENaC (Scnn1a; 
1.66-fold) and the Na+/K+ transporting subunit alpha 1 
ATPase (Atp1a1, 1.33-fold).

The principal cell-specific K+ transporter, ROMK, was 
down-regulated (− 1.39-fold), while the BK alpha sub-unit 
(Kcnma1), a K+ large conductance Ca2+-activated chan-
nel, which is activated by flow (i.e. polyuria) [24] was sig-
nificantly up-regulated (2.65-fold), though neither BK beta 
subunits (Kcnmb1 or Kcnmb4) were altered significantly 
[19]. Additionally, there was a very significant 4.29-fold 
up-regulation of the α-intercalated cell-specific HK-ATPase 
(Atp12a).

A large number of changes associated with kidney 
damage and extracellular matrix were identified in the 
adult Hsd2−/− kidney (Table  4), including osteopontin 
(Spp1; 7.82-fold), Kim-1 (Havcr; 5.52-fold), and Col1a1 
(2.58-fold).

Discussion

The demonstration of high Na+ and water content in new-
born skin of both SD and F344 rats (despite their demon-
strably different handling of Na+ [47]) and C57Bl/6 J mice, 
reveal a species-overarching phenomenon. The high Na+ 
content reflects increased extracellular volume in skin at 
birth, as has been observed in humans [45]. Oedematous 
skin at birth may protect the foetus during passage through 
the birth canal. High skin Na+ has been shown to regulate 
immunity in adult skin [43] so this may represent an innate 
protection from infection during the transition from an 
aquatic to dry environment at birth. It has been suggested 
that Na+ is stored in the human foetus and provides a vital 
source of Na+ to support post-natal growth [44]. Addition-
ally, skin may play a role as a ‘rudimentary kidney’, control-
ling sodium and water balance prior to nephron maturation 
in the mammalian kidney. It will be important to investigate 
the sodium status of skin in very premature babies, given the 
prevalence of trans-epidermal water loss (TEWL) [27, 37].

Using our global rat Hsd11b2 knockout model, we were 
able to investigate salt handling in very young animals, 
prior to the development of overt salt-sensitivity. Nota-
bly, we found lower Na+ and water content in the skin of 
Hsd2−/− than F344 control newborns. Due to the lack of 
protective placental Hsd11b2 activity [52], exposure of 
Hsd2−/− foetuses to maternal glucocorticoids during ges-
tation is likely to affect Na+ retention in the skin prior to 
birth, particularly when the mineralocorticoid receptor is 
expressed transiently in skin, as has been demonstrated for 
the mouse at e16 [4]. Boix et al. reported that Hsd11b2 is 
expressed in mouse skin at e18.5 and that levels diminish 
post birth [4]. They suggested that Hsd11b2 is expressed in 
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a GR-dependent manner, modulating local glucocorticoid 
actions. Since pre-term glucocorticoids are known to cause 
early maturation and increased hydrophobicity of skin [33], 
presumably through reduction of the extracellular volume, 
this may explain the reduced Na+ and water content in the 
skin of newborn Hsd2−/− pups.

Salt-induced hypertension in the Dahl salt-sensitive rat 
has been shown to depend on maternal diet during gesta-
tion and lactation, with a casein-based diet exacerbating, 
and a grain-based diet attenuating salt-sensitivity [16]. The 
milk recovered from stomachs of Hsd2−/− neonates indi-
cated that Hsd2−/− mothers produce milk with higher [Na+] 
than control dams, which will severely compromise the rap-
idly growing Hsd2−/− pups. Cross-fostering between con-
trol and Hsd2−/− dams would be a way to address this. By 
2 weeks of age (when pups are still unable to concentrate 
urine to the same extent as adults [14]) most Hsd2−/− pups 

were excreting detectable Na+ in the urine, reflecting the 
increased Na+ intake from milk.

During the first week of life Na+ and water in the skin 
(g−1 dry weight) declined in both Hsd2−/− pups and controls. 
During early growth and development, the relative demands 
on sodium stores may be complex, as demonstrated in the 
Sprague–Dawley rat [42]. However, the rate of decline in 
Hsd2−/− pups was half that of controls, and Hsd2−/− pups 
retained significantly (~ 30%) higher levels of Na+ and water 
in the skin throughout development and into adulthood, 
indicating an increase in Na+ storage and/or reduced Na+ 
clearance from the skin at the expense of K+. Beyond birth 
the increased sodium and water in skin are likely to reflect 
increased sodium loading — firstly the increased Na+ intake 
from milk and then increased Na+ recovery from urine due to 
the lack of Hsd11b2 activity. Likely consequences of higher 
skin Na+ content include an inability to adapt appropriately 
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Fig. 5   Immunohistochemical analysis showing PC, IC, and inter-
mediate cells stained with Aqp2 and V-Atpaseb1 antibodies in a 
control; b Hsd2−/− section. The relative proportion of cell types in 
collecting ducts was counted between control and Hsd2−/− rats. The 
log-ratio of PC: IC and intermediate: IC are reported as means ± SD, 
at c ~ 5 weeks (n = 4), and d 24 weeks (n = 3). Significance between 

groups was assessed using multiple analysis of variance (p < 0.05 *). 
A decrease in the log-ratio of PC:IC indicates an overall decrease in 
the proportion of PCs present in the CD relative to ICs (the latter did 
not significantly change between WT and KO). Likewise, an increase 
in the log-ratio of intermediate: IC indicates an overall increase in the 
proportion of intermediate cells relative to ICs
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to Na+ imbalance, by limiting the skin’s capacity to buffer 
excess Na+. It should be noted that the effects seen on skin 
sodium may reflect increases in total body sodium, as was 
demonstrated in adult rats, where storage of Na+ in skin 
was highly correlated with skin water, total skin electrolytes, 
and total body sodium. The exception was bone sodium, 
which showed a negative correlation with skin Na+, both in 
controls and Hsd2−/− groups. This suggests partitioning of 
excess Na+ in the body, with a completely different control 
mechanism at play in bone. The apparent paradox between 
increased Na+ recovery in kidney and overt volume contrac-
tion (increased haematocrit) may also reflect the partitioning 
of excess Na+ and water.

Incipient hypokalaemia was already evident by 15 days 
of age. The glucocorticoid surge in the third week post 
birth exposed the Hsd2−/− pups to additional Na+ and 
water retention through its un-restricted action on the min-
eralocorticoid receptor in principal cells of the collecting 
duct, with concomitant K+ loss. The overt response post 
weaning was increasing polydipsia and polyuria, which 
mirrored the developing hypokalaemia and increased 
sodium storage. This situation differs from the acute 
changes seen following administration of a potassium-free 
diet to adult rats, where polydipsia and polyuria precede 
overt hypokalaemia [1]. Hypokalaemia has been shown to 
suppress aquaporin 2 and reduce the capacity of the loop 
of Henle to generate medullary hypertonicity through the 
suppression of Slc12a1 and the urea transporter Slc14a2 
[13], all of which were down-regulated in the SAME rat. 
The development of hypokalaemia, in the face of increased 

Na+ partitioning, may set in place irrevocable changes, 
which result in volume contraction with polydipsia and 
polyuria as a means to control water balance.

Skin electrolyte concentration remained remarkably 
constant for both control and Hsd2−/− animals throughout 
the developmental window observed, suggesting that in 
Fischer (F344) rats, like the Dahl salt-sensitive rat [47], 
the electrolytes are associated with water (active) rather 
than sequestered by proteoglycans in the osmotically inac-
tive form observed in adult DOCA salt rats [46]. Exces-
sive water intake would increase ECV, dropping plasma 
K+ to potentially life-threatening levels, while excessive 
water loss would decrease ECV, stimulating thirst. We 
saw no significant changes in urea or arginase activity 
in tissue samples taken from control or Hsd2−/− adults, 
indicating that ECV control in this model is not reliant 
on metabolism-driven natriuretic-ureotelic control [21] 
but instead depends on tight control of water (and pre-
sumably K+) balance. The increased urinary Na/K ratio 

Table 2   RNAseq data for genes involved in BP and ECV control

Fold q value

Ren — renin  − 27.97 0
Pappa2 — pappalysin 2  − 8.28 0
Ptgs2 — Cox2  − 3.1 2.91E-10
Aqp5 — aquaporin 5  − 1.88 6.00E-05
Aqp8 — aquaporin 8  − 1.85 0.0008
Nos1 — nNos  − 1.62 2.40E-09
Agtr1b — angII receptor type 1b  − 1.48 0.005
Aqp2 — aquaporin 2  − 1.35 0.00779
Gcgr — glucagon receptor  − 1.33 6.34E-05
Nr3c2 — mineralocorticoid receptor  − 1.28 0.0013
Aqp1 — aquaporin 1  − 1.25 2.56E-03
Avpr2 — arginine vasopressin receptor 2  − 1.16 1.06E-01
Slc2a2 — Glut2 1.32 1.41E-05
Tgfb1 — transforming growth factor beta 1 1.42 7.61E-05
Edn1 — endothelin 1 1.54 4.21E-05
Avpr1a — arginine vasopressin receptor 1a 1.63 2.88E-06
Cldn7 — claudin 7; membrane protein; Cl 

permeation
2.01 0

Table 3   RNA-seq data for genes coding for nephron transporters

Fold q value

Slc14a2 — urea transporter  − 6.4 9.00E-04
Slc22a13 — organic/urate cation transporter  − 3.86 0
Kcna4 — K voltage-gated channel  − 3.45 0
Kcnq3 — K voltage-gated channel  − 2.61 0
Slc4a5 — sodium bicarbonate  − 2.36 0.00015
Slc2a4 — facilitated glucose transfer  − 2.4 0
Atp1a4 — atpase Na/K transporter subunit a4  − 2.13 0
Scn1a — Na voltage-gated channel 1a  − 2.06 0.001
Slc9a3 — Na–H exchanger  − 1.36 0
Slc12a1 — Na K chloride cotransporter (NKCC2)  − 1.29 0.025
Kcnj1 — ROMK channel  − 1.38 0
Slc12a3 — Na-Cl cotransporter (NCC)  − 1.35 0.0016
Slc20a1 — Na dependent Pi cotransporter 1.27 3.00E-05
Car4 — carbonic anhydrase 1.29 0.0008
Atp1a1 — atpase Na/K transporter subunit a1 (IC 

beta)
1.34 0

Slc4a8 — sodium bicarbonate (IC beta) 1.4 0.0025
Slc4a9 — AE4 (IC β) 1.6 0
Scnn1a — endothelial Sodium chloride (PC) 1.67 0
Kcne5 — K voltage-gated channel 2.03 0.00093
Slc26a4 — Cl/OH/HCo3 exchanger, Pendrin (IC 

β)
2.04 0

Trpv5 — transient potential cation channel 2.46 0
Kcnma1 — BK, K Ca activated channel, subunit 

α
2.66 0

Slc34a2 — sodium/phosphate co-transporter 2.68 0
Atp12a — ATPase H/K transporter (distal 

nephron)
4.33 3.00E-05

Trpv6 — transient potential cation channel 8.89 0
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in Hsd2−/− animals reflects a shift in intra/extracellular 
volume (though this was not tested specifically).

Overt hypertension in Hsd2−/− animals was not seen 
before 5 weeks of age. It should be noted that all blood pres-
sure measurements were determined under anaesthesia, and 
though replicate numbers were low because of the technical 
challenges of working with young neonates, no significant 
difference was observed between controls and knockouts 
prior to that age.

RNASeq data from the kidneys of adult Hsd2−/− rats 
revealed a modest concerted down-regulation of multiple 
Na+ and water transporter mRNAs expressed through the 
proximal- and mid-nephron. This might occur in response 
to increased Na+ recovery through principal cells, hypoka-
laemia, and reduced ECV. Though reduction in mRNA 
levels may not correspond directly to a reduction in active 
proteins, the large amounts of Na+ and urine delivered to 
the DCT attest to functional down-regulation of transport-
ers in the proximal tubule and the thick ascending limb as 
has been observed, for example, during angiotensin-convert-
ing enzyme inhibition [23]. Captopril, at a dose that does 
not change BP, has been shown to increase urine flow and 
depress Na+ transport at multiple sites along the nephron, 
through redistribution or retraction of transporters from the 
apical membranes in AngII-sensitive regions of the nephron 
[23]. A similar reduction in transporter abundance and acti-
vation also occurs with hypertension [31]. The almost com-
plete suppression of renin in our model indicates that there 
is very little intra-renal RAS activity so Na+ transport in the 
proximal tubule should be suppressed. Nguyen et al. did not 
observe many changes in Na+, K+, and H2O transporters 
along the nephrons of rats fed K+-deficient diet in the pres-
ence or absence of salt supplementation [32]. In their model, 
NaCl supplementation caused a reduction in β-ENaC, while 
NHE3, NKCC2, NCC, Aqp2, and renin were unchanged. 
Clearly this is significantly different from our model in 
which ENaC is ‘constitutively’ stimulated and renin highly 
suppressed.

Up-regulation and stimulation of ENaC activity gener-
ates a significant potential driver for K+ depletion, which 
will be exacerbated by inappropriate, flow-induced increase 
of the BKα channel (2.65-fold increase in mRNA). On the 
other hand, HK-ATPase (Atp12a), which is stimulated by K+ 
depletion, is a positive K+-retaining adaptation to hypoka-
laemia [9, 53]. The changing proportion of PC to intermedi-
ate cells observed beyond weaning may reflect an additional 
attempt to control or limit Na+ uptake, since the activity of 
ENaC in the intermediate cell is not known. This indicates 
that the plasticity, observed between principal, intermediate, 
and intercalated cells, continues up to adulthood in the col-
lecting ducts of rats with SAME.

Interestingly, one of the most significantly down-regu-
lated transcripts was Pappa2 (8.13-fold decrease in mRNA), 
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Table 4   RNA-seq data for genes involved in fibrosis/inflammation

Fold q value

Fgg — fibrinogen gamma 12.62 0
Fgb — fibrinogen beta 9.29 0
C4b — complement component 4b 9.17 0
Spp1 — secreted phosphoprotein 7.86 0
Havcr1 — KIM-1 5.52 0
C4a — complement component 4a 5.16 0.00067
Angptl4 — angiopoietin like 4 4.43 0
Mmp7 — matrix metalloproteinase 4.29 0
Timp1 — tissue inhibitor of metalloproteinase 4.11 0
Fga — fibrinogen alpha 3.97 0
Mmp12 — matrix metalloproteinase 3.18 0
Col1a1 — collagen 2.59 0
Col28a1 — collagen 2.44 0
Fbln1 — fibulin; ECM 2.32 0
Mmp8 — matrix metalloproteinase 2.34 0
Fn1 — fibronectin 1 2.26 0
Mmp2 — matrix metalloproteinase 2.09 0
Col3a1 — collagen 2.08 0
Col8a1 — collagen 2.07 0
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depletion of which has previously been linked to salt sensi-
tivity in Dahl rats [8]. Pappa2 encodes a metalloproteinase, 
expressed in the cortical thick ascending limbs of salt-resistant 
(SR) rats fed a 0.4% sodium diet. It appears to be secreted 
and subsequently binds to the apical membrane of intercalated 
cells in the cortical collecting duct. Expression falls dramati-
cally when SR rats are fed an 8% sodium diet, suggesting that 
its expression is intimately linked to sodium exposure [8]. One 
of the most significantly up-regulated transcripts was Trpv6 
(8.89-fold increase), which has been reported to increase in 
Gitelman syndrome [57].

The significantly increased percentage of ingested Na+ 
excreted by the adult Hsd2−/− kidney (56% versus 38% in con-
trols) [30] was also observed post weaning, strongly suggest-
ing that the alterations in nephron transporters occurred around 
weaning, following exposure to incipient hypokalaemia, and 
compounded by glucocorticoid-stimulated Na+ uptake by the 
principal cell from weaning. The increase of urine flow to the 
DCT, through down-regulation of Na+ transporters and aqua-
porins in response to hypokalaemia or increased Na+ uptake, 
has been reported to occur within 12 to 24 h [1]. The flexibility 
of the nephron to adjust expression and trafficking of transport-
ers along its length demonstrates its ability to exquisitely tailor 
its response to the homeostatic imbalance it is presented with.

There is much debate about the effect of salt on hyper-
tension [48]. Proponents of the Guytonian theory [17] 
maintain that the kidney is central to regulation of pressure 
natriuresis [18], while others argue that vascular resistance 
is key [29]. Data from the kidney-specific Hsd11b2 knock-
out mouse model [51] suggested that SAME is strictly a 
kidney phenotype. However, conditional Hsd11b2 knock-
out in the brain showed that increased salt appetite leads to 
hypertension [12]. Taken together, evidence from our model 
of SAME would support the suggestion that the skin also 
plays a fundamental role in the development of salt-sensitive 
hypertension.

This is still not the whole story — the Hsd2−/− ani-
mals become volume contracted, but paradoxically exhibit 
oedema of the skin. Despite consuming equivalent amounts 
of food, adult Hsd2−/− animals are 12% smaller (indicating 
a catabolic state [28]), have increased insulin sensitivity, 
and have reduced availability of 11-deoxycorticosteroid for 
Hsd11b1, in tissues such as the mesenteric fat pad [30]. Both 
the metabolic dimension (clearly not natriuretic-ureotelic 
control) and the key roles that potassium and water play in 
SAME deserve further investigation.

Experimental procedures

Experimental animals

All studies were undertaken under UK Home Office license, 
and ARRIVE guidelines, following review by local ethics 
committee. Rodents were maintained in a 12-h light–dark 
cycle (on at 07.00 h) under controlled conditions of humid-
ity (50 ± 10%) and temperature (21 ± 2 °C) and fed rodent 
maintenance diet (RM1, containing 0.3% Na with soya pro-
tein; Special Diet Services Ltd., Witham, Essex, UK) and 
water ad libitum unless otherwise stated. At end of study or 
for sample collection, animals were terminated by a sched-
ule 1 method. Hsd11b2 gene was previously knocked out 
on a Fischer (F344) genetic background, using ZFN gene 
targeting [30]. Males were used for experimental cohorts, 
while females were used as breeders for the multiple neona-
tal groups required.

Tissue electrolytes

To investigate Na+ and water retention in rodent skin 
at or around birth, skin samples were collected from 
Sprague–Dawley rats and also from the C57Bl/6J mouse 
strain at e18.5, newborn, 2 days and 7 days post birth. The 
smaller, dried mouse skin samples were analysed in Bergen. 
Wet weight of the samples was measured before being desic-
cated in a drying chamber, and dry weight was determined 
when the sample weight was constant. Electrolytes were 
extracted in 5 ml ultrapure water (Milli-Q, Millipore Corpo-
ration) and analysed using highly sensitive and accurate con-
ductivity and charge detection (Thermo Scientific Dionex 
ICS-4000 System). Based on the measured concentration in 
the sample, the amount of sodium and potassium relative to 
the water in the original tissue sample was calculated. Data 
were compared by two-way ANOVA with non-parametric 
Kruskal–Wallis and Dunn’s multiple comparison test using 
Graphpad Prism8 software (p ≤ 0.05 was considered statisti-
cally significant).

Skins and pelts were recovered from control Fischer 
F344 and Hsd11b2−/− newborn, 7-, 13-, and 21-day-old 
pups and adults (n = 3 to 6 per group). All rat samples 
were sent to the Experimental & Clinical Research Center 
(ECRC; Berlin), where they were dried, ashed, and quanti-
fied for Na+ and K+ electrolytes, as previously published 
[46]. Samples were desiccated at 90 °C for 72 h and water 
content was calculated. After dry ashing (24 h at 190 °C 
and 450 °C and finally 600 °C for an additional 48 h) ashes 
were dissolved in 20 ml 10% HNO3. Electrolyte concentra-
tions were measured with an atomic absorption spectrom-
eter (flame photometry mode; model 3100, PerkinElmer, 
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Rodgau, Germany). Relative changes in electrolytes during 
growth were calculated according to methods of Shafflhu-
ber et al. [42]. In a similar way, electrolytes were deter-
mined in ashed adult carcasses and bones to give an esti-
mate of total body sodium as previously described [46]. 
Pelt data were compared using two-way ANOVA with 
Sidak’s multiple comparison test. Newborn skin samples 
were considered separately, since the newborns experi-
enced a different nutrition experience in utero, compared 
to older neonates.

Blood pressure measurement

Male rats were anaesthetized (Inactin, 120 mg/kg ip; n = 3 
per age group) and prepared surgically for blood pressure 
measurements, following catheterization of the carotid and a 
40-min equilibration period, using a Powerlab monitor with 
LabChart software. Blood was collected into heparinized 
capillary tubes; plasma was separated by centrifugation and 
the fraction of blood cells (haematocrit; HCT) determined. 
Data were analysed using Student’s t test.

Metabolic study

Male control and Hsd2−/− rats (n = 4 per group, 22 to 23 days 
old) were randomly assigned to and individually housed in 
metabolic cages (tecniplast) with free access to RM1 and 
water. Body weight, urine output, food, and water intake 
were measured daily. Data were analysed by two-way 
ANOVA with Sidak’s multiple comparison test. Analyses 
per g body weight from 29 days allowed for acclimatization 
to the metabolic cage.

Fluid electrolyte measurements

Plasma [Na+] and [K+] were determined using the 9180 
Electrolyte Analyzer (Roche) (minimum n = 4–6 per time 
point). Urinary [Na+] and [K+] were determined using the 
BWB technologies XP flame photometer. Urine samples 
(n = 4–6 per time point) were diluted in Bridj detergent 
buffer (1 in 50 or 1 in 100) and electrolytes measured against 
standard dilutions. Data were analysed by two-way ANOVA 
with Sidak’s multiple comparison test.

Stomach contents of neonatal rats were weighed and 
lyophilized using a vacuum drier (VirTis BenchTop Pro 
with Omnitronics, SP Scientific, New York; 90mT and 
– 70 °C for 24 h), extracted in 400 µl of 1 M nitric acid 
overnight, centrifuged and filtered to remove fine debris. 
Electrolytes were quantified by flame photometer as above. 
Flame photometry data were subject to an F-test for nor-
mality of variance using StatPlus (AnalystSoft, California). 
Data were analysed using Student’s t test.

Tissue urea and arginase activity

Urea and arginase activity were measured as previously pub-
lished [21]. Briefly, various tissues from adult male F344 
control or Hsd2−/− rats (12 weeks old; n = 6) were homog-
enized in protein extraction reagent (Thermo Fisher Scien-
tific) with an added proteinase inhibitor cocktail (Roche), 
immediately after tissue collection. Samples were centri-
fuged at 13,000 g for 20 min. To extract urea, the samples 
were centrifuged using a 10-kDa molecular weight cut-off 
filter (Amicon Ultra, Millipore). The urea-depleted concen-
trate was used for arginase activity determination, and tissue 
urea content was measured in the filtrate. Urea concentration 
was measured in plasma, urine, and tissue using a BioVision 
urea assay kit. Tissue arginase activity was measured using 
an arginase assay kit (Sigma-Aldrich). Data were analysed 
using the Student t test.

Principal cell (PC): intercalated cell (IC): 
intermediate cell ratios during development

Kidneys were dissected from male rats aged 3 to 5 weeks 
and 6 months and fixed overnight in 4% paraformaldehyde 
at 4 °C. Following paraffin embedding, 5µ sections were pro-
cessed by de-waxing, rehydration, and heat induced antigen 
retrieval in sodium citrate buffer pH6. Double immunostain-
ing was carried out using polyclonal goat anti-mouse Aqp2 
(NovusBio NBP1-70,378, 1:1000 for mouse and 1:500 for 
rat) and polyclonal rabbit anti-human V-ATPase B1 (1:200 
for mouse and 1:50 for rat). The secondary antibodies used 
were polyclonal donkey anti-goat AlexaFluor 488 (Life 
Technologies, A-11055) and donkey anti-rabbit AlexaFluor 
568 (Life Technologies, A10042). Stained samples were 
imaged using a Q-imaging camera (Canada) on a Nikon 
Eclipse Ti fluorescent microscope with DAPI, FITC and 
TRITC filters applied, for DAPI, AlexaFluor 488, and Alex-
aFluor 568, respectively. Both 60X 1.4 NA Plan Apo and 
40X 1.3 NA Plan Flur oil objectives were used. A minimum 
of 6 images for each section were analysed using ImageJ 
software (National Institutes for Health). The cell counter 
was blinded to the source of each section. Cells within col-
lecting ducts expressing Aqp2 only were deemed principal 
cells, those expressing V-ATPase B1 as intercalated cells 
and those expressing both as an intermediate cell type. The 
relative proportion of cell types in collecting ducts were 
counted in control and Hsd2−/− rats at ~ 5 weeks (n = 4) and 
24 weeks (n = 3). The log-ratio of PC: IC and intermedi-
ate: IC are reported as means ± SD. Significance between 
groups was assessed using MANOVA test with p < 0.05 (*). 
A decrease in the log-ratio of PC:IC indicates an overall 
decrease in the proportion of PCs present in the CD relative 
to ICs, which did not significantly change between WT and 
KO. Likewise, an increase in the log-ratio of intermediate: 
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IC indicates an overall increase in the proportion of inter-
mediate cells relative to ICs.

RNASeq

RNA was prepared from control and Hsd2−/− adult male 
whole kidney samples (23–25 weeks of age; n = 6 per group) 
using trizol and quality assessed by bio-analyzer. RNA-seq 
data from a Tru-Seq stranded library was obtained on a 
NextSeq 550 with 75 bp reads and was quantified and ana-
lysed for differential expression and over-representation of 
gene sets. Quality checks were made with FASTQC [Ref-
erence Source (2010)] and trimming was applied using 
Trimmomatic [5]. Transcript quantification was carried out 
with quasi-alignment using Salmon [34], and reads were 
aligned with HISAT2 [20] to the Ensembl rat Rnor_6.0 
genome (rn6). Stranded-ness and distribution of reads by 
genomic feature was assessed using infer_experiments.
py and read_distribution.py from RSeQC [20, 54] follow-
ing an initial un-stranded alignment, with > 98% of reads 
exhibiting the expected stranded-ness. Estimated counts 
adjusted for library size and transcript length were derived 
from the Salmon results with tximport, normalization with 
the trimmed mean of M values [40], differential expres-
sion analysis with edgeR version 3.12.0 [39], and differen-
tial exon usage analysis with DEXSeq version 1.16.6 [25]. 
Canonical pathways, hallmarks, KEGG, and gene ontology 
libraries were downloaded from version 5.0 of the molecular 
signatures database [26]. Identifiers for all gene sets were 
mapped to rat via homology relationships downloaded from 
the RGD database (RGD_ORTHOLOGS.txt) [6]. Differ-
ences in gene set expression between experimental groups 
were examined via the statistically robust ROAST method 
[56], as implemented in the limma package of Bioconductor 
(version 3.27.4) [38].

Statistical analysis

Statistical analyses were chosen according to the design of 
each experiment (Student’s t test, one-way ANOVA, or two-
way ANOVA) using Graphpad Prism8 software or multiple 
analysis of variance using R. All graphs are presented ± SD.
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