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Xenon has been shown to have neuroprotective effects and is clinically used as a
favorable safe inhalation anesthetic. We previously confirmed the neuroprotective effects
of xenon treatment in epileptic animals. However, the mechanism underlying these
protective effects remains unclear. We aimed to assess the effects of xenon inhalation
on autophagy in neuronal injury induced by acute generalized seizures. Kainic acid (KA)
was injected into the lateral ventricle of male Sprague–Dawley rats to induce acute
generalized seizures. Next, the rats were treated via inhalation of a 70% xenon/21%
oxygen/9% nitrogen mixture for 60 min immediately after KA administration. The control
group was treated via inhalation of a 79% nitrogen/21% oxygen mixture. Subsequently,
two inhibitors (3-methyladenine or bafilomycin A1) or an autophagy inducer (rapamycin)
were administered, respectively, before KA and xenon administration to determine
the role of autophagy in the protective effects of xenon. The levels of apoptosis,
neuronal injury, and autophagy were determined in all the rats. Xenon inhalation
significantly attenuated the severity of the seizure-induced neuronal injury. Increased
autophagy accompanied this inhibitive effect. Autophagy inhibition eliminated these
xenon neuroprotective effects. A simulation of autophagy using rapamycin recapitulated
xenon’s protective effects on KA-induced acute generalized seizures in the rats. These
findings confirmed that xenon exerts strong neuroprotective effects in KA-induced acute
generalized seizures. Further, they indicate that increased autophagy may underlie the
protective effects of xenon. Therefore, xenon and autophagy inducers may be useful
clinical options for their neuroprotective effects in epileptic seizures.

Keywords: seizure, autophagy, neurodegeneration, apoptosis, xenon inhalation

Abbreviations: 3-MA, 3-methyladenine; BafA1, bafilomycin A1; Bax, Bcl-2-associated X protein; Bcl-2, B cell lymphoma-2;
EC, entorhinal cortex; GAPDH, glyceraldehyde-3-phosphate dehydrogenase; KA, kainic acid; LC 3, microtubule-associated
protein 1 light chain 3; PC, pyriform cortex; SQSTM 1, sequestosome 1.
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INTRODUCTION

Epilepsy is a common neurological disease that affects 0.5–1% of
the worldwide population with potentially serious consequences,
including neuronal injury and cognitive defects. There are
currently available drug and surgical treatment options for
epilepsy and associated cognitive defects. However, they
have several limitations, including drug resistance, serious
side effects, and recrudescence (Schmidt and Löscher, 2005;
Chen et al., 2018). Therefore, there is a need for more
safe and effective therapeutic strategies for treating epileptic
seizures, as well as seizure-induced neuronal injury and
cognitive defects.

Xenon is clinically used as a safe anesthetic agent and is
popular due to having almost no side effects. It has been recently
receiving increased attention due to its superior neuroprotective
effects, which have been confirmed in Alzheimer’s disease
(Lavaur et al., 2016a,b) and in ischemia/reperfusion injury
(Cattano et al., 2011; Yang T. et al., 2012; Yang et al., 2014;
Metaxa et al., 2014). Moreover, xenon treatment has been
shown to exert similar neuroprotective effects and ameliorate
cognitive impairment in intrauterine (Yang Y. W. et al., 2012)
and neonatal asphyxia (Luo et al., 2008). Further, we previously
demonstrated it had anti-epileptic and neuroprotective effects in
seizure-induced neuronal injury (Zhang et al., 2019a,b). Further
studies are required to explore the underlying mechanisms of
xenon treatment effects and reveal potential targets for neuronal
protection in epilepsy and seizure.

There is a correlation of epilepsy- and seizure-induced
neuronal injury with over-excitation induced by increased
glutamate levels (Malinska et al., 2010; Kovac et al.,
2016; Liang et al., 2019). Glutamate metabolism deficits
may cause reactive oxygen species (ROS) production.
Furthermore, oxidative stress induced by ROS accumulation
may lead to neuronal injury (Shekh-Ahmad et al., 2019;
Zhang et al., 2020b) and induce autophagy (Signorelli
et al., 2019). Therefore, there is a close correlation of
autophagy with an excitotoxicity-induced neuronal injury
during epileptic seizures. However, autophagy has been
shown to promote both cell survival and death, which
depends on the different psychological or pathological
environments (Zhang et al., 2013, 2014; Feng et al., 2020).
Although there have been inconsistent findings regarding
the role of autophagy in cell injury, autophagy has been
suggested to have protective effects in epileptic animals
(Jain et al., 2016; Ni et al., 2016).

Xenon can attenuate over-excitation by the regulation
of glutamate metabolism, through inhibiting glutamate
uptake and efflux (Lavaur et al., 2016a,b). Given the
initiating role of over-excitation in neuronal injury and
autophagy, as well as the effect of autophagy on the
seizure-induced neuronal injury, we hypothesized that
autophagy is closely related to the neuroprotective effects
of xenon.

We aimed to evaluate the effect of xenon inhalation
on seizure-induced neuronal injury after KA administration.
Furthermore, we aimed to assess the role of autophagy in the

protective effect of xenon, as well as to explore the role of
autophagy regulation in KA-induced acute generalized seizures.

MATERIALS AND METHODS

Animals and Surgery
We conducted the experiments using male Sprague–Dawley
rats (240–260 g, Certificate No. SCXK2014-0006; Jinan
Jinfeng Experimental Animal Company Limited, China).
All experiment protocols were approved by the Binzhou Medical
University Animal Experimentation Committee (Approval
No. 2018002) and comply with the National Institutes of
Health Guide for the Care and Use of Laboratory Animal
(NIH Publications No. 80-23, revised 1996). We made
maximum effort to minimize the number of rats used and
to attenuate suffering. The rats were raised in individual
cages where water and food were provided ad libitum. All
animal experiments, including surgery, drug treatment,
and xenon inhalation, were performed between 09:00 h
and 17:00 h.

The rats were anesthetized using sodium pentobarbital
(50mg/kg, intraperitoneal injection, CAS, 57-33-0, Xiya Reagent,
China) and fixed on a stereotactic apparatus (Anhui Zheng Hua
Biological Instrument Equipment Company Limited, China). As
previously described (Zhang et al., 2020a), stainless steel cannulas
(Reward, China) were implanted into the right lateral cerebral
ventricle (AP: −1.8 mm, ML: −0.96 mm, and DV: −3.8 mm).
The rats were allowed 7 days for recovery.

KA-Induced Acute Generalized Seizure
Acute generalized seizures were induced through KA treatment
(3.25× 10–3 mg/kg, 1.25 mg/ml, CAS, 58002-62-3, Sigma, USA),
which was injected into the lateral ventricle via the implanted
cannulas. The seizure severity was assessed Racine’s criteria
(Racine, 1972). Immediately after KA treatment, almost all the
rats presented with signs of continuous acute generalized seizures
(mainly stage 4 or 5). Sixty minutes after KA treatment, diazepam
(2 mg/kg, CAS, 439-14-5, Sigma, USA) was intraperitoneally
injected to stop the seizures. Finally, the cannula location
was histologically verified. We excluded data from rats with
inaccurate cannula locations from the analysis.

Xenon Treatment
KA-treated rats were randomly placed into two transparent resin
boxes. Rats in the xenon group were treated with 70% xenon/21%
oxygen/9% nitrogen (DaTe Special Gas Limited, China) for 1 h
immediately after KA injection (De Deken et al., 2018), while
those in the control group were treated with a 21% oxygen/79%
nitrogen mixture (Rulin gas Limited, China).

The gas delivery speed (200 ml/min) was controlled by flow
regulator valves (DaTe Special Gas Limited, China), which were
installed in the gas bottles. The rats remained sober with stable
temperatures during the entire xenon treatment. Sixty minutes
after KA administration, diazepam was intraperitoneally injected
to stop KA-induced seizures. Supplementary Figure 1 presents
details of the experimental procedure.
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Drug Administration
The rats were randomly divided into the drug administration
groups and the control group. Six hours before xenon treatment,
autophagy inhibitors [3-methyladenine (3-MA, 75 µg, CAS,
5142-23-1, Sigma, USA—dissolved in 5 µl saline) or bafilomycin
A1 (BafA1, 200 ng, CAS, 88899-55-2, Sigma, USA) dissolved in
dimethyl sulfoxide and 5 µl saline] were injected into the right
lateral cerebral ventricle. Rats in the control group were instead
treated with 5 µl saline. Subsequently, all the rats were treated
with xenon (70% xenon/21% oxygen/9% nitrogen) immediately
after KA injection.

One hour before KA treatment, an autophagy inducer
(rapamycin, 200 ng, CAS, 53123-88-9, Sigma, USA; dissolved in
5 µl saline) was injected into the right cerebral ventricle while
rats in the control group were instead treated with 5 µl saline.

Western Blot Analysis
As previously described (Zhang et al., 2019c), five rats from each
group were randomly anesthetized using sodium pentobarbital
(50 mg/kg, intraperitoneal injection, Xiya Reagent, China) at
the different time points after KA administration (24 h, 3 days,
or 7 days) and culled. Their brains were immediately retrieved
and different subregions, including the hippocampus, pyriform
cortex (PC), and remaining cortex, were dissected on ice. Protein
levels in each sample were measured (P0012, Beyotime Institute
of Biotechnology, China) after sonication. Next, proteins with
similar concentrations were loaded and separated using 12%
sodium dodecyl sulfate-polyacrylamide gels and transferred to
polyvinylidene difluoride membranes. After blocking for 1 h
using 5% skim milk, the membranes were incubated overnight
at 4◦C with the following primary antibodies: rabbit polyclonal
antibody against caspase-3 (9662, 1:1,000, Cell Signaling
Technology, Danvers, MA, USA), rabbit monoclonal antibody
against activated caspase-3 (ab2302, 1:1,000, Abcam, USA),
mouse monoclonal antibody against B cell lymphoma-2 (Bcl-2,
ab32124, 1:1,000, Abcam, USA), Bcl-2-associated X protein
(Bax, ab77566, 1:1000, Abcam, USA), sequestosome 1 (SQSTM
1, ab56416, 1:1,000, Abcam, USA), microtubule-associated
protein 1 light chain 3 (LC 3, D3U4C, 1:1,000, Cell Signaling
Technology, Danvers, MA, USA), and glyceraldehyde-3-
phosphate dehydrogenase (GAPDH, AB-P-R 001, 1:2,000,
Kangcheng, China). After treatment with horseradish
peroxidase-conjugated IgG secondary antibodies, visualized
bands were obtained for analysis (Odyssey, LI-COA Biosciences,
USA). Protein level differences were presented as the normalized
intensity relative to GAPDH.

Fluoro-Jade B (FJB) Staining
Fluoro-Jade B (FJB) specifically binds to degenerating neurons,
and FJB staining is used to evaluate neurodegeneration
(Schmued and Hopkins, 2000). From each group, five rats were
randomly anesthetized using sodium pentobarbital (50 mg/kg,
intraperitoneal injection, Xiya Reagent, China) and perfused.
Coronal slices (10µm)were obtained using a cryostat microtome
(CM3050s, Leica, Germany). As previously described (Zhang
et al., 2019a,b), we performed the staining procedure (three
slices/rat) as per the kit manufacturer’s instructions (AG310,

Millipore, USA). Finally, the stained slices were examined under
a fluorescent microscope with a 450 nm excitation light (Carl
Zeiss AG, Germany), and the number of positive FJB signals
(300 × 300 µm vision) in changed subregions was determined
and analyzed.

Immunohistochemistry
At designated time points (24 h, 3 days, and 7 days) after KA
treatment, five mice in every group were deeply anesthetized
and coronal slices were obtained, as performed in FJB staining.
LC3B/DAPI fluorescence staining was performed as per the
following protocol: After being treated with rabbit anti-LC3B
(1:100; ab48394, Abcam, UK) and washing three times, the
sections were incubated in the secondary antibody (FITC, 1:200,
EMD Millipore, USA). After three washes, the sections were
incubated in DAPI (C1005, Beyotime Institute of Biotechnology,
China) for 15 min at room temperature and were finally rinsed
three times with 0.01 M PBS for 5 min each.

All fluorescence images were acquired with a laser confocal
microscope (Zeiss, Germany) under the same capture conditions
and were analyzed using ImageJ V.1.37 software (National
Institutes of Health, Bethesda, MD, USA).

Statistical Analysis
Investigators who obtained all of the data were blinded and the
data are presented as the mean ± standard error of the mean
(SEM). All statistical analyses were performed using SPSS version
13.0 software (SPSS Inc., Chicago, USA). The nonparametric
Mann–Whitney U test was used to compare protein levels and
the number of positive FJB signals. Statistical significance was set
at a p-value of < 0.05.

RESULTS

Xenon Treatment Reduced Apoptosis and
Neuronal Injury With an Accompanying
Increase in the Autophagy Level
We analyzed apoptosis-related markers after KA administration
(n = 5 per group). Western blot analysis revealed increased
activated caspase-3 levels in the hippocampus and cortex at
24 h and 7 days after KA administration (Figures 1A,B).
Further, we compared the apoptosis level between rats
treated with and without xenon after KA administration
(n = 5 per group). We found that xenon treatment significantly
attenuated KA-induced changes in apoptosis-related proteins.
There was a significant decrease in the immunoreactivity of
activated caspase-3 (Figures 1C,D) and Bax (Figures 1C,E)
and increases in that of caspase-3 (Figure 1C) and Bcl-2
(Figures 1C,F) in the xenon-treated rats compared with
the control rats. Consistent with this, xenon treatment
significantly attenuated the increased number of positive
FJB signals in the CA3 and PC after KA administration
(n = 5 per group, Figures 1G,H). These findings
indicate that xenon inhalation could prevent apoptosis
and neuronal injury associated with KA-induced acute
generalized seizures.
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FIGURE 1 | Xenon treatment attenuated apoptosis and neurodegeneration during kainic acid (KA)-induced acute generalized seizures. (A) Changes of caspase-3
and activated caspase-3 levels after KA treatment; (B) normalized intensity of activated caspase-3 relative to GAPDH; (C) changes of caspase-3, activated
caspase-3, Bax, and Bcl-2 after xenon inhalation; (D–F) normalized intensity of activated caspase-3, Bax and Bcl-2 relative to GAPDH; (G) changed positive
Fluoro-Jade B (FJB) signals (bar = 100 µm); (H) analysis of positive FJB signals. Data are presented as mean ± SEM. Error bars indicate SEM (n = 5/group;
***P < 0.001, compared with controls; ###P < 0.001 compared with KA group; one-way ANOVA). C, cortex except pyriform cortex; P/PC, pyriform cortex; H,
hippocampus.

Moreover, we investigated changes in the autophagy levels in
the different groups (n = 5 per group). SQSTM1, LC3-II, and
LC3B are considered autophagy markers. After KA injection,
there was no significant change in LC3-II/GAPDH levels in the
KA group compared with the control group (Figures 2A,B).
Notably, xenon treatment significantly elevated the LC3-
II/GAPDH ratio in the cortex with the PC removed (P = 0.014),

PC (P = 0.002), and hippocampus (P = 0.024, Figures 2C,D)
from 24 h after administration. The immunoreactivity of
LC3B increased after xenon treatment (Figures 2E,F). There
is a negative relationship between SQSTM1 expression and
autophagy activity given its usual degradation during autophagy.
We observed significantly reduced SQSTM1/GAPDH ratios
in the cortex, PC, and hippocampus in the xenon group
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FIGURE 2 | Xenon treatment increased the level of autophagy during KA-induced acute generalized seizures. (A) change of LC3 expression after KA administration;
(C) changes of LC3 expression after xenon treatment; (B,D) normalized intensity of LC3-II relative to GAPDH; (E,F) immunoreactivity of LC3B; (G) the expression of
SQSTM1; and (H) normalized intensity of SQSTM1 relative to GAPDH. Data are presented as mean ± SEM. Error bars indicate SEM (n = 5/group; *P < 0.05,
**P < 0.01, and ***P < 0.001, compared with controls; ###P < 0.001 compared with KA group; one-way ANOVA). C, cortex except pyriform cortex; P/PC, pyriform
cortex; H, hippocampus.

compared with the KA group, though no significant difference
was found between the sham and KA groups (Figures 2G,H).
These findings suggest that xenon treatment significantly
attenuates neuronal injury with an accompanying enhancement
in the autophagy level. Subsequently, to assess whether
autophagy promotes or inhibits the neuroprotective effects
of xenon, autophagy inhibitors were administrated to xenon-
treated rats, while autophagy promoters were administrated to
KA-treated rats.

3-MA Reversed the Increased Autophagy
Level and Xenon Neuroprotective Effect
For autophagy inhibition (Yu et al., 2018), 75 µg 3-MA was
injected into the lateral cerebral ventricle 6 h before xenon
treatment (3-MA + KA + Xenon group, n = 5) while the

control rats were injected with saline (Saline + KA + Xenon
group, n = 5). Compared with the Saline + KA + Xenon
group, a significant decrease in the LC3-II/DAPDH ratio (the
cortex with the PC removed, P = 0.017; the PC, P = 0.010;
and the hippocampus, P < 0.001; Figures 3A,C) and an
increase in the SQSTM1/GAPDH ratio (the cortex with the PC
removed, P < 0.001; the PC, P < 0.001; and the hippocampus,
P < 0.001; Figures 3A,B) in the 3-MA+KA+Xenon group
were noted. This indicates that xenon-induced enhanced
autophagy was inhibited by 3-MA administration. Moreover,
we assessed apoptosis-related proteins. Compared with
the controls, the 3-MA-treated rats had a significantly
higher activated caspase-3/GAPDH (Figures 4A,B) and
Bax/GAPDH ratios (Figures 4A,C), and a significantly lower
Bcl-2/GAPDH ratio (Figures 4A,D). Also, compared with
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FIGURE 3 | Treatment with 3-methyladenine (3-MA) reversed the increase in
autophagic level after xenon inhalation. (A) Increased level of SQSTM1 and
decreased level of LC3-II; (B) normalized intensity of SQSTM1 relative to
GAPDH; (C) normalized intensity of LC3-II relative to GAPDH. Data are
presented as mean ± SEM. Error bars indicate SEM (n = 5/group; *P < 0.05,
**P < 0.01, and ***P < 0.001, compared with controls, one-way ANOVA). C,
cortex except pyriform cortex; P/PC, pyriform cortex; H, hippocampus.

the control rats, 3-MA-treated rats had significantly more
FJB-positive signals in the CA3 and PC (Figures 4E,F). Taken
together, 3-MA reversed the increases in autophagy and
prevented the xenon-induced attenuation of apoptosis and
neuronal injury.

BafA1 Similarly Reversed
the Enhanced Autophagy and Xenon
Neuroprotective Effect
BafA1 is a proton-pump and autophagy inhibitor (Zheng
et al., 2020). We injected 200 ng of BafA1 dissolved in
5 µl saline into the lateral ventricle 6 h before xenon
treatment, while the control rats were instead injected with
saline. The BafA1 effects were similar to those of 3-MA.
BafA1 treatment significantly increased SQSTM (Figures 5A–C)
and decreased LC3-II (Figures 5A,D,E) from 24 h onward.
Moreover, BafA1-treated rats had significantly higher levels
of activated caspase-3 (Figures 6A,C), Bax (Figures 6A,D)
and lower levels of caspase-3 (Figures 6A,E) and Bcl-2
(Figures 6A,B) than those treated with saline from 24 h
onwards (n = 5 per group). Moreover, BafA1-treated rats
had a higher number of FJB-positive signals than the saline-
treated control rats (Saline+KA+xenon group; the CA3 and
PC; Figures 6F,G). Taken together, BafA1 reduced the
autophagy level and reversed the neuroprotective effects
of xenon.

Rapamycin Promoted Autophagy and
Simulated the Xenon Protective Effects
Rapamycin, which is an autophagy inducer (Wang et al.,
2019), was administered 1 h before KA administration to

FIGURE 4 | Treatment with 3-MA reversed the attenuated neuronal injury
after xenon inhalation. (A) Increased level of activated caspase-3 and
decreased level of caspase-3; (B–D) normalized intensity of activated
caspase-3, Bax, and Bcl-2 relative to GAPDH; and (E,F) analysis of positive
FJB signals (bar = 100 µm). Data are presented as mean ± SEM. Error bars
indicate SEM (n = 5/group; ***P < 0.001, compared with controls, one-way
ANOVA). C, cortex except pyriform cortex; P/PC, pyriform cortex; H,
hippocampus.

simulate xenon-induced autophagy enhancement. We found
that rapamycin treatment increased autophagy levels, which
was indicated by decreased SQSTM1 and increased LC3-II
levels (Figures 7A–E). Moreover, it attenuated apoptosis,
which was indicated by decreased levels of activated caspase-3
(Figures 8A,D,E) and Bax (Figures 8A,B), and increased
levels of Bcl-2 (Figures 8A,C; n = 5 per group). Furthermore,
the FJB staining results showed that rapamycin-treated mice
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FIGURE 5 | Treatment with BafA1 attenuated the increased autophagy after
xenon inhalation. (A) Increased expression of SQSTM1 and decreased
expression of LC3-II; (B,C) normalized intensity of SQSTM1 relative to
GAPDH; (D,E) normalized intensity of LC3-II relative to GAPDH. Data are
presented as mean ± SEM. Error bars indicate SEM (n = 5/group; *P < 0.05,
**P < 0.01, and ***P < 0.001, compared with controls, one-way ANOVA).
C, cortex except pyriform cortex; P/PC, pyriform cortex; H, hippocampus.

had a significantly lower number of FJB-positive signals than
that in control rats (CA3 and PC; Figures 8F,G). Taken
together, rapamycin treatment exerts a similar
autophagy promotion and protective effect as that of
xenon, involving both, attenuation of apoptosis and
neuronal injury.

DISCUSSION

Previous studies have demonstrated the strong xenon
neuroprotective effects (Metaxa et al., 2014; Lavaur et al.,
2016a,b; Zhang et al., 2019a,b); however, the possible xenon
neuroprotective effects and the underlying mechanisms
in seizure-induced neuronal injury remain clear. In
this study, we assessed the effects of xenon treatment
on neuronal injury; moreover, we evaluated the role
of autophagy in KA-induced acute generalized seizures
and the involved xenon neuroprotective effects. There
were no significant changes in the autophagy level with
KA-induced acute generalized seizures. Contrastingly,
xenon treatment significantly increased autophagy levels
and attenuated neuronal injury. Moreover, the protective

FIGURE 6 | Treatment with BafA1 reversed the attenuated neuronal injury
after xenon inhalation. (A) Increased level of activated caspase-3 and
decreased level of caspase-3; (B–E) normalized intensity of caspase-3,
activated caspase-3, Bax, and Bcl-2 relative to GAPDH; (F,G) FJB staining
(bar = 100 µm) and account of FJB positive signals. Data are presented as
mean ± SEM. Error bars indicate SEM (n = 5/group; *P < 0.05,
**P < 0.01, and ***P < 0.001, compared with controls, one-way ANOVA).
C, cortex except pyriform cortex; P/PC, pyriform cortex; H, hippocampus.

effects of xenon were impeded by autophagy inhibitors,
including 3-MA and BafA1, and simulated by an autophagy
inducer (rapamycin). These findings suggest that increased
autophagy levels may be involved in the protective effects
of xenon.

Epilepsy is characterized by neuronal over-excitation.
Excessive excitation of the N-methyl-D-aspartate receptor,
which results from extracellular glutamate accumulation,
causes acute nerve injury or even death, by activating
calpain and the caspase-3 pathway in patients with
epilepsy and in animal models of epilepsy (Baudry and
Bi, 2016; Hoque et al., 2016; Ceccanti et al., 2018). Xenon
treatment regulates the glutamate level by suppressing its
uptake and efflux (Lavaur et al., 2016a). This results in
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FIGURE 7 | Rapamycin enhanced autophagy. (A) Decreased expression of
SQSTM1 and increased expression of LC3-II; (B,C) normalized intensity of
SQSTM1 relative to GAPDH; (D,E) normalized intensity of LC3-II relative to
GAPDH. Data are presented as mean ± SEM. Error bars indicate SEM
(n = 5/group; *P < 0.05, **P < 0.01, and ***P < 0.001, compared with
controls, one-way ANOVA). C, cortex except pyriform cortex; P/PC, pyriform
cortex; H, hippocampus.

the upregulation of the anti-apoptotic protein Bcl-2 and
downregulation of the pro-apoptosis protein Bax. Therefore,
the xenon neuroprotective effect involves the inhibition of
excessive excitation and attenuation of apoptosis (Preckel
et al., 2006; Sinha and Cheung, 2010). Consistent with
previous findings, we found that xenon treatment strongly
prevented neuronal injury induced by KA-induced acute
generalized seizures.

Increased oxidative stress resulting from over-excitation
could cause autophagy (Signorelli et al., 2019). Autophagy plays
an important role during apoptosis; however, its role in the
pathological state remains controversial. Autophagy has been
shown to play a protective role in some pathological states
and its promotion is beneficial in some neurodegenerative
diseases, including Parkinson’s disease and Alzheimer’s
disease (Zhang et al., 2017). Contrastingly, autophagy
could aggravate mitochondrial functional defects, which
results in ROS accumulation and neuronal damage (Feng
et al., 2020). So far, the role of autophagy in epilepsy-
or seizure-induced neuronal injury remains unclear for
complex seizure types and different epileptic development
periods; however, previous studies have reported possible
anti-epileptic effects of autophagy (Jain et al., 2016; Ni
et al., 2016; Zhu et al., 2016; Kim et al., 2018). Therefore,
we examined post-xenon treatment changes in molecular
autophagy markers during KA-induced acute epileptic
seizures to determine the involvement of autophagy in the

xenon neuroprotective effect. We found that KA-induced
epilepsy did not cause significant changes in autophagy
markers; however, xenon inhalation significantly increased
the autophagy level and attenuated neuronal injury in some
brain subregions, including the PC, entorhinal cortex, and
hippocampus, which are closely associated with the epilepsy
development (Hsu, 2007; Petit et al., 2014; Parker et al.,
2017; Sun et al., 2018). The previous reports confirmed the
protection of increased autophagy in PTZ- and pilocarpine-
induced seizures, though no significant changes in autophagy
were found (Hosseinzadeh et al., 2016; Zhu et al., 2016).
Our findings also suggest that increased autophagy levels
could be closely associated with the neuroprotective effects
of xenon. However, the effects of the increased autophagy
in xenon treatment is unclear, because the dual roles were
confirmed under different physiological or pathological
conditions (Wen et al., 2008; Wang and Klionsky, 2011; Wang
et al., 2011; Zhang et al., 2017; Feng et al., 2020). Moreover,
whether an increased autophagy level is the underlying
mechanism or is caused by the xenon neuroprotective effects
remains unclear.

We administered autophagy inhibitors (3-MA and
BafA1) to evaluate the role of autophagy in the xenon
protective effects. We found that pretreatment with these
autophagy inhibitors decreased the autophagy level and
impeded the xenon protective effects. Contrastingly, the
administration of rapamycin, an autophagy inducer, partly
simulated the xenon neuroprotective effects in KA-induced
acute generalized seizures. These findings further indicate
that increased autophagy levels could be an underlying
mechanism of the xenon neuroprotective effect and that
simulating autophagy function could be a novel means
of attenuating neuronal injury; however, this requires
further research.

The overproduction of ROS has been confirmed in epileptic
seizure (Reid et al., 2014). Due to active metabolism and oxygen
consumption, mitochondria and neurons are particularly
vulnerable to ROS accumulation, and injury or even death
may occur due to oxidative stress. Meanwhile, the injury
of mitochondria further produces even more ROS (Hattori
et al., 2014; Yang et al., 2018). The damaged mitochondria
could be cleaned by autophagy, ultimately, the function of
mitochondria is stable (Wang and Klionsky, 2011; Lin et al.,
2019), so the elevated level of autophagy attenuated ROS
accumulation and neuronal injury in Parkinson’s disease
and Alzheimer’s disease (Zhang et al., 2017). Similarly,
our results indicate that the increased autophagy level may
underlie the neuroprotective effect of xenon. Cleaning the
injured mitochondria may contribute to the protection
of autophagy, though some studies found that autophagy
aggravated the damage of mitochondria, promote ROS
production and neuronal injury in different pathological status
(Wen et al., 2008; Wang et al., 2011; Feng et al., 2020).

As an inhibitor of mTOR, rapamycin has broad effects
on neuronal survival, regeneration, and apoptosis. Even the
effects of rapamycin on epilepsy are opposite at different
intervention timepoints (Chen et al., 2012). Rapamycin
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FIGURE 8 | Rapamycin simulated the neuronal protective effect of xenon. (A) Decreased level of activated caspase-3 and increased level of caspase-3;
(B–E) normalized intensity of caspase-3, activated caspase-3, Bax and Bcl-2 relative to GAPDH; and (F,G) the changes of positive FJB signal after rapamycin
treatment (bar = 100 µm). Data are presented as mean ± SEM. Error bars indicate SEM (n = 5/group; *P < 0.05, **P < 0.01, and ***P < 0.001, compared with
controls, one-way ANOVA). C, cortex except pyriform cortex; P/PC, pyriform cortex; H, hippocampus.
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intervention 10 h before KA inhibits epileptic seizure
and neuronal cell death. Conversely, pretreatment with
rapamycin 1 h before KA significantly promotes epileptic
seizure and neuronal injury. Even rapamycin 6 h before KA
results in weak aggravation. The age-, treatment paradigm-
, and mode-specific anticonvulsant effects have also been
confirmed (Chachua et al., 2012). These studies indicate
that differences in pathological status may influence the
effects of rapamycin intervention. In our preliminary
experiment, the effects of rapamycin treatment 4 and 6 h
before KA administration were evaluated. Significant neuronal
protection was found in rats treated with rapamycin 6 h
before KA. The neuroprotection difference of rapamycin
at different intervention time points may be due to the
different pathological development by the KA disposal
method. The aggravation of rapamycin was found in KA
intraperitoneal injection (12 mg/kg)-induced seizure, and
seizure latency over 40 min (Chen et al., 2012). In our study,
KA was administered via intracerebroventricular injection
(3.25 × 10–3 mg/kg), and almost all rats had acute generalized
seizures immediately after KA treatment, and even during the
KA injection.

Additionally, given the crucial regulation roles of the PC
and hippocampus in epileptic network development (Hsu, 2007;
Petit et al., 2014; Parker et al., 2017; Sun et al., 2018), the
neuroprotection of rapamycin in vital brain regions is most
likely influence the epileptic development than acute seizure
(Chachua et al., 2012).

CONCLUSIONS

In summary, this study provides evidence of the strong
neuroprotective effect of xenon during KA-induced acute
generalized seizures. Moreover, our findings indicate that
increased autophagy levels might be involved in the xenon
neuroprotective effect. Therefore, proper autophagy activation
may be an effective approach for preventing seizure-induced
neuronal injury.
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