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A prominent account of prefrontal cortex (PFC) function is that single neurons within the
PFC maintain representations of task-relevant stimuli in working memory. Evidence for
this view comes from studies in which subjects hold a stimulus across a delay lasting
up to several seconds. Persistent elevated activity in the PFC has been observed in
animal models as well as in humans performing these tasks. This persistent activity has
been interpreted as evidence for the encoding of the stimulus itself in working memory.
However, recent findings have posed a challenge to this notion. A number of recent
studies have examined neural data from the PFC and posterior sensory areas, both at
the single neuron level in primates, and at a larger scale in humans, and have failed to
find encoding of stimulus information in the PFC during tasks with a substantial working
memory component. Strong stimulus related information, however, was seen in posterior
sensory areas. These results suggest that delay period activity in the PFC might be better
understood not as a signature of memory storage per se, but as a top down signal that
influences posterior sensory areas where the actual working memory representations are
maintained.
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INTRODUCTION

A widely held view of prefrontal cortex (PFC) function is that it encodes task relevant
information in working memory (Goldman-Rakic, 1987; Miller and Cohen, 2001; Baddeley,
2003). This account originates from decades of work that showed strong neural activity in PFC
during the delay period of working memory tasks (Fuster and Alexander, 1971; Funahashi
et al., 1993a; Wilson et al., 1993; Levy and Goldman-Rakic, 2000). This delay period activity
has two key properties. First, it is specific to the stimulus being remembered, consistent with it
containing information about the content of working memory. Second, it only encodes stimuli
that are relevant to the task at hand: it is resistant to distractors (Miller et al., 1996; Sakai
et al., 2002) and task irrelevant information is not encoded in working memory (Rainer et al.,
1998). These properties of delay period activity have been observed at the single-neuron level in
monkeys as well as on a larger scale in human imaging studies (Courtney et al., 1998; Zarahn
et al., 1999; Curtis et al., 2004). In monkeys, single neurons recorded from PFC maintain
stimulus information across the delay period, even when distracting stimuli are presented in
the middle of the delay (Miller et al., 1996). The delay period activity is thought to reflect the
stimulus currently in memory (Fuster, 1973; Funahashi et al., 1993a; Wilson et al., 1993; Procyk
and Goldman-Rakic, 2006). In humans, multiple studies using various imaging techniques
have also shown an increase in delay period activity in PFC. For example, using functional magnetic
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resonance imaging (fMRI) sustained activation was measured in
the lateral PFC while subjects kept spatial locations in working
memory across delays of several seconds (Courtney et al., 1998).

The necessity of PFC delay activity for working memory is
demonstrated by studies showing that lesions to PFC produce
strong deficits in workingmemory tasks both inmonkeys (Fuster
and Alexander, 1971; Bauer and Fuster, 1976; Funahashi et al.,
1993b; Wilson et al., 1993; Levy and Goldman-Rakic, 2000)
and humans (Müller et al., 2002; Tsuchida and Fellows, 2009;
Voytek and Knight, 2010). In addition, disruption of delay
period activity with microstimulation increases the rate of errors
(Wegener et al., 2008). Furthermore, the longer the delay, the
greater the error rate, consistent with a failure of working
memory to retain stimulus information. These findings have
formed the basis for the prevailing view of that PFC is the
site where information about the stimulus to be remembered is
stored in working memory (for a recent review, see D’Esposito
and Postle, 2015). However, recently there has been a growing
body of work that has cast doubt on this theory (Druzgal and
D’Esposito, 2001; Curtis and D’Esposito, 2003; Postle et al.,
2003; Ranganath et al., 2004; Sreenivasan et al., 2014a,b; Postle,
2015). In this mini-review, we will briefly discuss the evidence
against the prevalent theory and review emerging evidence
for an alternate proposal for the role of PFC in working
memory.

IS PFC THE SITE OF WORKING MEMORY
STORAGE?

Some of the first evidence that contradicted the view that PFC
represents stimulus information in working memory came from
neuroimaging studies in humans. Researchers showed that delay
period activity in PFC did not encode information specific to the
stimulus being held in working memory (Curtis and D’Esposito,
2003; Riggall and Postle, 2012), while the converse was true for
posterior sensory areas (Ester et al., 2009; Harrison and Tong,
2009; Serences et al., 2009; Emrich et al., 2013). These findings
are important because they confirm that PFC is active during
the delay period. However, they also suggest that PFC does not
contain information about the stimulus, as would be expected
if PFC were the site of working memory storage. In addition to
evidence from imaging studies, it has been reported that lesions
of PFC do not always impair working memory storage. Patients
with large lesions localized to the lateral PFC showed no deficits
on tests of verbal and memory span or delayed recognition
(D’Esposito and Postle, 1999). A similar result was found in
monkeys with lesions of the ventral PFC (Rushworth et al.,
1997).

In trying to reconcile these discrepant findings, Curtis
and D’Esposito (2003) proposed an alternate role for delay
period activity in PFC: ‘‘the [dorsal lateral] PFC does not
store representations of past sensory events or future responses.
Instead, its activation is an extra-mnemonic source of top-down
biasing control over posterior regions that actually store the
representations.’’ A similar proposal was put forward by Postle
(2006), based on similar line of evidence from lesion, imaging
and electrophysiology studies. In his influential review Postle

argued that ‘‘the retention of information in working memory
is associated with sustained activity in the same brain regions
that are responsible for the representation of that information
in non-working memory situations’’; this implies ‘‘that the PFC
is not a substrate for the storage of information in working
memory.’’ (Postle, 2006) Instead, according to Postle, the
contribution of PFC to working memory could be any of the
control processes (e.g., attentional selection, flexible control, etc.)
that are also required when performing a working memory
task.

Until recently, however, there was little electrophysiological
evidence to support these views. In an early study, Lebedev
et al. (2004) trained monkeys to maintain one spatial location
in working memory while they also attended to a different
location that would provide the go cue for making a saccade
to the remembered location. They found two populations of
neurons in PFC: one population encoded the location where
the monkeys were attending while the other population encoded
the spatial location in working memory (Lebedev et al., 2004).
This was one of the first demonstrations that PFC neurons
can play a different role in a working memory task that is
not strictly maintenance per se. Additional evidence for an
alternate role PFC in working memory tasks comes from
recent work in which researchers used multivariate pattern
analysis of neuronal data recorded during performance of
a delayed paired-associate task (Stokes et al., 2013). During
initial stimulus presentation, PFC population activity encoded
information related to the stimulus, yet this information
did not persist into the memory period. During subsequent
stimulus presentations, PFC population activity first encoded the
physical properties of the new stimulus and shortly thereafter
it switched to code whether it was a target or a distractor.
Thus, PFC does not maintain stimulus information in working
memory per se, yet it has access to that information and
can reliably encode whether subsequent stimuli are targets or
distractors.

Our own work has demonstrated further evidence that PFC is
not necessarily involved in maintaining stimulus information in
working memory (Lara and Wallis, 2014). We trained monkeys
to perform a multi-item working memory task in which they
had to remember the color of one or two colored squares. We
used a large set of colors and the discriminations could be very
difficult, often involving subtle changes in the shade of color.
The difficulty of the discriminations required that monkeys
maintain a very precise representation of the sample colors
in working memory in order to successfully perform the task.
Despite the difficulty of the task, monkeys could perform the
task significantly above chance level. Surprisingly, however, we
found that the overwhelming majority of PFC neurons failed to
encode the color of the stimuli in working memory. Instead, the
strongest signals reflected the passage of time and the spatial
location of the stimuli. Both of these signals could play an
important role in organizing behavior towards the performance
of the task, but they do not reflect the contents of working
memory.

On further analysis, we found that when monkeys had to
maintain two colors in working memory, they tended to make
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small eye movements (microsaccades) to one or other of the
items. These microsaccades had behavioral consequences and
appeared to reflect covert attention. If the animals covertly
attended an item, it was stored with amore precise representation
in working memory. The animals appeared to be shifting their
attention between the items in order to cope with the increased
task difficulty. In this situation, neural activity strongly reflected
the locus of covert attention. These results directly support
the ideas put forward by Postle (2006). Even though the key
requirement of the task was to maintain color information in
workingmemory, there was very little evidence that PFC neurons
encoded color. But this did not mean that PFC was uninvolved in
the task. Instead PFC neurons encoded attentional control signals
that helped improve the animals’ performance.

In addition to the emerging neurophysiological evidence
discussed above, a recent lesion study bolsters the case against the
prevalent view of PFC function in working memory. Pasternak
et al. (2015) trained monkeys to perform a delayed-match-
to-sample task using random dot stimuli of varying motion
coherence. Researchers found that lesions of the lateral PFC
produced moderate deficits in the monkeys’ ability to remember
the direction of motion of stimuli presented in the contralesional
side. However, this deficit did not depend on the specific features
of the stimuli that led to the remembered direction of motion
(e.g., motion coherence), indicating that PFC was not involved
in coding the specifics of the motion stimulus. Furthermore,
deficits were much more pronounced when the sample and test
stimuli appeared in different locations compared to when they
appeared in the same location. Thus, PFC lesions seemed to
disrupt the ability of the monkeys to rapidly shift their attention
at the time of the test. Pasternak and colleagues interpreted
these results as evidence that PFC plays a role in attending
to stimuli and accessing motion information stored in other
areas.

SENSORY CORTICES PLAY A CRITICAL
ROLE IN WORKING MEMORY

If PFC is not responsible for storing information in working
memory, then it is important to identify those brain areas that
are responsible for this process. There is strong evidence from
electrophysiological and functional imaging studies that sensory
cortices play a crucial role (Pasternak and Greenlee, 2005).
A large number of electrophysiology studies have examined
single neuron activity in most sensory cortices including visual
(Miller et al., 1993; Motter, 1994), auditory (Gottlieb et al.,
1989), and even gustatory cortex (Lara et al., 2009). For example,
working memory related activity has been reported in area V4 in
a task where monkeys had to remember the color or luminance
of a stimulus (Motter, 1994). A number of functional imaging
studies have also reported working memory activity in sensory
cortices. For example, in a study in which participants had
to remember the orientation of a grating (Ester et al., 2009;
Harrison and Tong, 2009; Serences et al., 2009; Emrich et al.,
2013), orientation specific activation patterns were observed in
the pooled activity of early visual areas V1–V4.

If posterior sensory areas are responsible for keeping
information in working memory while PFC plays a role in
attending to or selecting this information, then there must be
a mechanism by which PFC and posterior sensory areas can
interact. This assumption is not outlandish since it is known
that PFC has reciprocal connections with nearly all sensory
cortices (Pandya and Barnes, 1987). What is the nature of the
interaction? One possibility is that PFC and posterior areas share
information through long-range coupling of ongoing oscillatory
activity present in both areas (Engel et al., 2001; Fries, 2009;
Canolty and Knight, 2010). Indeed, there is a large body of work
both in monkeys and in humans that has revealed an important
role of oscillatory activity during working memory tasks (Vogel
and Machizawa, 2004; McCollough et al., 2007; Ikkai et al., 2010;
Johnson et al., 2011;Myers et al., 2014). For example, inmonkeys,
strong oscillatory activity in the local field potential (LFP) has
been seen in lateral intra-parietal cortex during the performance
of a delayed saccade task (Pesaran et al., 2002), and in V4 of
monkeys performing a delayed match to sample task (Tallon-
Baudry et al., 2004; Lee et al., 2005). There have also been reports
of strong oscillatory activity in the LFP of PFC during the delay
period (Siegel et al., 2009; Lara and Wallis, 2014) of delayed
match to sample tasks.

In humans, extensive work using electroencephalography
(EEG), electrocorticography (ECoG) and magneto-
encephalography (MEG) has revealed increased ongoing
oscillatory activity during working memory tasks both in
frontal and posterior areas (for a review, see Roux and Uhlhaas,
2014). In a recent study, participants were asked to remember
the spatial locations of either three red discs, three red discs
while ignoring three blue discs or six red discs (Roux et al.,
2012). In all conditions there was increased oscillatory MEG
activity in the alpha and gamma frequency bands. In PFC,
activity in the gamma-band (which is thought to reflect local
processing; von Stein and Sarnthein, 2000) predicted the
amount of task relevant information in working memory. A
linear classifier using gamma-band activity from PFC could
successfully classify trials with three targets and three distractors
in the same category as trials with only three discs and not
as six disc trials. Thus, the classifier correctly ignored the
task irrelevant discs. In contrast, gamma-band activity in
the inferior parietal lobule also reflected spatial information
during the delay period, but the classifier failed to identify
distractor trials as three item trials. Thus, it appears that while
gamma-band activity in both PFC and parietal cortex reflects
the stimuli currently in memory, only in PFC is the information
discriminated as either task relevant or task irrelevant. A similar
result was seen in monkeys where ventral intraparietal cortex
population activity robustly encoded the number of target
stimuli in a delayed-match-to-numerosity task even in the
face of distractors (Jacob and Nieder, 2014). In contrast, PFC
population briefly encoded distractors, but target numerosity
information was quickly restored and the strength of the restored
information predicted correct performance in a trial. Again,
this suggests that PFC is not simply involved in the storage of
information, but reflects control processes such as monitoring
and selection.
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INTERACTIONS BETWEEN PFC AND
SENSORY CORTEX

In order to fully understand the nature of the interaction between
PFC and posterior sensory cortices, it is important to measure
neural activity in both areas simultaneously. A number of recent
studies have managed to do this during the performance of
working memory tasks. A recent study examined the interaction
between V4 and lateral PFC using simultaneous LFP and single
neuron recordings in monkeys performing a visual working
memory task (Liebe et al., 2012). In this study, researchers found
that the theta-band phase locking value, a measure that quantifies
the amount of synchrony between theta oscillations in V4 and
PFC, was significantly enhanced during the delay period. The
phase of PFC oscillations led V4 by about 15 ms, which suggests
that the observed coupling is asymmetric and sufficiently fast to
support functional interactions between the two areas. Indeed,
when they looked at the timing of the spikes from each area,
they found that during the delay, spike times were reliably locked
to the phase of the ongoing delta-band oscillations in the more
distant area (i.e., PFC spikes were phase locked to V4 delta-band
LFP and vice versa). Importantly, these effects were stronger in
trials in which monkeys successfully maintained information in
workingmemory, and weaker in trials in whichmonkeys failed to
remember the stimulus. These results suggest that synchronous
activity in PFC and V4 could provide a mechanism through
which information is shared between these two distant areas
during working memory maintenance.

A similar flow of information was recently observed between
PFC and posterior parietal cortex (Salazar et al., 2012). In
this study, researchers made simultaneous spike and LFP
recordings from PFC and posterior parietal cortex while
monkeys performed a spatial delayed match to sample task. They
calculated a coherence selectivity index designed to measure how
much mutual information about the memorized stimulus there
is between PFC and parietal electrodes. An increase in mutual
information about sample identity and location was observed
during the delay period. Furthermore,Weiner-Granger Causality
showed that the flow of information was primarily from parietal
cortex to PFC. These results are consistent with the idea that
the storage of information is taking place in sensory cortex and
PFC can access that information through synchronization of
oscillatory field potentials. A similar phenomenon was reported
in a recent study where researchers simultaneously recorded
neural activity from lateral PFC and lower level visual areas
MT and MST while monkeys performed a delayed match to
sample task (Mendoza-Halliday et al., 2014). During the delay
period, increased selective spiking activity was seen in MST
and lateral PFC but not in MT. This sustained spiking could
conceivably reflect the maintenance of stimulus information in
working memory in both brain areas. However, an alternative
possibility is that MST maintains a strong representation of
the stimulus in working memory, which is then read out
and integrated with other higher order signals by PFC. The
behavioral task does not permit these two possibilities to be
distinguished. However, even though there was no increase
in spiking activity in MT during the delay period, stimulus

information was present in the LFP amplitude from this area.
Moreover, there was increased synchrony between low frequency
LFP oscillations in MT and lateral PFC spikes, consistent with
a top-down interaction between the PFC and early sensory
neurons during the maintenance period.

Long-range synchronization of oscillatory field potentials is
likely not the whole story. There is also the possibility of a
more direct interaction via cortico-cortical synaptic connections
between PFC and posterior sensory neurons (Petrides and
Pandya, 1984). In a recent study, Crowe et al. (2013) recorded
single neuron activity simultaneously form PFC and posterior
parietal cortex neurons while monkeys were engaged in a
categorization task. Both PFC and parietal neurons have been
shown to play an important role in categorization tasks of
this kind (Freedman et al., 2001; Miller et al., 2002; Wallis
and Miller, 2003; Freedman and Assad, 2006; Ferrera et al.,
2009; Swaminathan and Freedman, 2012). They found that
the pattern of firing in PFC was strongly correlated with the
pattern of firing in posterior parietal cortex at different time lags.
Crucially, there was significantly stronger correlation between
the pattern of PFC activity at one time and PPC activity at a later
time, compared to the opposite direction. These results reflect
selective top-down transmission of information from prefrontal
to parietal neurons via a mechanism that does not necessarily
involve synchronization of ongoing oscillatory activity. Although
these results were found in a categorization task, a similar
phenomenon could be at play during working memory.
Furthermore, the exact direction of the interaction may depend
on the precise cognitive process being performed. For example,
accessing sensory information may involve information flowing
from parietal cortex to PFC (‘‘bottom-up’’), while selective
attention and filtering may involve information flowing in the
reverse direction (‘‘top-down’’). Recent studies of sensorimotor
processing have shown such bidirectional interactions within the
fronto-parietal network (Siegel et al., 2015).

One potential challenge to the view outlined in this review
is the recent work by Ester et al. (2015). They required
subjects to maintain very precise representations of oriented
gratings in working memory, and showed that orientation
information could be decoded from the BOLD signal in
localized frontoparietal subregions. However, an important
caveat in interpreting these kinds of results is that information
can be decoded even when neurons are not representing
that information. For example, orientation information can
be decoded from the retina in principle even though no
individual neuron is representing orientation information. In
an analogous way, it is possible that orientation information
could be decoded from the pattern of activity in PFC neurons
responsible for activating the correct representation in posterior
sensory cortex even though individual PFC neurons are not
tuned for this information in their firing rate. On the other hand,
if PFC neurons responsible for precise sensory representations
are localized to small subregions it is possible that these
representations are missed by standard sampling methods used
in single-unit neurophysiology studies. This possibility could be
excluded by recording neural activity at multiple scales, such as
combining ECoG and single unit methods (Lewis et al., 2015).
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CONCLUSION

In recent years there has been steady stream of work that has
challenged the widely held view that PFC stores task relevant
information in workingmemory. Early evidence against this view
came mainly from fMRI studies in humans and it culminated
in the alternate view, most clearly enunciated by Postle (2006),
that sensory information is maintained in working memory by
the same sensory neurons that represent that information when
it is present in the sensory environment. The role of PFC is not
to store information in working memory, but rather to actively
focus attention on the relevant sensory representation, select
information and perform executive functions that are necessary
to control the cognitive processing of the information (Postle,
2006). There is growing neurophysiological and lesion evidence
in support of this view.

More work is needed to shed light on the precise nature of
the interaction between PFC and sensory areas during working
memory. The use of modern large-scale recording methods
(Kipke et al., 2008) and analysis techniques (Cunningham and
Yu, 2014) has the potential to allow the tracing of the flow

of information from sensory areas to PFC and back again
during working memory tasks. Equally as important, however,
is to lay in place a theoretical framework that will allow the
interpretation of this data. One promising idea is to try and
understand how neuronal activity is related to the internal
state of the brain above and beyond any coding for external
factors. This approach forms the basis of the dynamical-systems
framework, which has recently been adopted to understand the
neural mechanisms underlying motor control (Shenoy et al.,
2013). Given that executive processes like working memory and
attention are, by their very nature, internal, dynamical processes,
using a dynamical-systems approach in their study has the
potential to shed light on how the brain internally generates
(i.e., without relying on external inputs) the patterns of activity
that are required for such a complex repertoire of executive
abilities.
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