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Activation of NK cells and disruption of PD-L1/PD-1 axis: two 
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ABSTRACT
Natural Killer (NK) cells play a critical role against tumor cells in hematological 

malignancies. Their activating receptors are essential in tumor cell killing. In Multiple 
Myeloma (MM) patients, NK cell differentiation, activation and cytotoxic potential 
are strongly impaired leading to MM escape from immune surveillance in tissues and 
bone marrow. Mechanisms used by MM to affect NK cell functions are mediated by the 
release of soluble factors, the expression of activating and inhibitory NK cell ligands, 
and the expression of immune check-point inhibitors. Lenalidomide represents an 
efficient clinical approach in MM treatment to improve patients’ survival. Lenalidomide 
does not only promotes tumor apoptosis, but also stimulates T and NK cells, thereby 
facilitating NK-mediated tumor recognition and killing. This occurs since Lenalidomide 
acts on several critical points: stimulates T cell proliferation and cytokine secretion; 
decreases the expression of the immune check-point inhibitor Programmed Death-1 
(PD-1) on both T and NK cells in MM patients; decreases the expression of both 
PD-1 and PD-L1 on MM cells; promotes MM cell death and abrogates MM/stromal 
microenvironment cross-talk, a process known to promote the MM cell survival and 
proliferation. This leads to the inhibition of the negative signal induced by PD-1/PD-
L1 axis on NK cells, restoring NK cell cytotoxic functions. Given the importance of 
an effective immune response to counteract the MM progression and the promising 
approaches using anti-PD-1/PD-L1 strategies, we will discuss in this review how 
Lenalidomide could represent an adequate approach to re-establish the recognition 
against MM by exhausted NK cell.

NK CELL-MEDIATED TUMOR 
SURVEILLANCE AND MULTIPLE 
MYELOMA

NK cells play a critical role in cancer surveillance, 
and their cytotoxic functions are regulated by a balance 
between the expression of activating and inhibitory 
receptors [1-4]. Activating receptors includes Natural 
Cytotoxic Receptors (NCRs), such as NKp30, NKp44 
and NKp46, NKG2D, DNAX Accessory Molecule-1 
(DNAM-1) and several co-stimulatory receptors such as 
LFA-1, NKp80 and CD244 (2B4). The main group of 
inhibitory receptors are the Killer Inhibitory Receptors 
(KIRs) and NKG2A, specific for Major Histocompatibility 

Complex (MHC) class I molecules. Activating receptors 
initiate granule-dependent killing where Perforin and 
Granzymes are released by NK cells followed by 
synapse formation with the target. NK cells play also a 
critical role in autologous stem cell transplantation in 
several hematological malignancies, as described in the 
section [5-10]. Advanced findings have demonstrated 
that the number of NK cells isolated from patients 
with hematological malignancies including Multiple 
Myeloma (MM) is strongly decreased and their cytotoxic 
functions are seriously impaired [11-18]. An overview 
of pathogenesis and therapeutic strategies in MM is 
reviewed in the following references [19-22]. Importantly, 
NK cells isolated from MM patients display a significant 
down-regulation of CD16, DNAM-1 and 2B4/CD244 
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expression, associated with impaired killing abilities [14-
18, 23, 24]. Recently it has been shown that NK cells 
isolated from MM patients display decreased expression of 
the activating receptor CD161 and an increased expression 
of KIRs, which contribute to the impairment of NK cell 
cytotoxic functions [25, 26].

MECHANISMS USED BY MM CELLS TO 
SUPPRESS NK CELL FUNCTIONS

Immune check-point inhibitors: role of PD-L1/
PD-1 axis

Hematological malignancies develop several 
strategies to impair the immune response or to modulate 
the tumor microenvironment. Acute Myeloid Leukemic 
(AML) cells express several co-stimulatory molecules 
such as CD80 and CD86 to interact with CTLA4 (cytotoxic 
T-cell antigen-4)-expressing T cells [27]. In addition, 
AML cells express immune inhibitory check-points and 
HLA class I molecules, which contribute to the anti-
tumor response exhaustion and immune escape [27, 28]. 
Different approaches have been proposed to harness the 
anti-tumor response against AML cells, such as antigen-
targeted therapies, inhibitory check-points modification 
and cytokine therapies [27]. Similarly, it has been shown 
that malignant cells from Chronic Lymphocytic Leukemia 
(CLL) patients impair NK cell cytotoxic functions, thus 
facilitating NK cell anergy and tumor progression [29]. In 
addition, compared to healthy donors, CLL cells secrete 
elevated amount of soluble NK activating ligands, which 
contribute to the impairment of NK killing activity [30]. 
Furthermore, it has been also shown that stromal cells, 
nurse-like cells (NLC) and follicular dendritic cells 
(FDC) in the tumor microenvironment play a major role 
in CLL progression and drug resistance [29, 31]. In the 
last decade, several immunotherapies have been validated 
in CLL patients, including Immunomodulatory drugs, 
monoclonal antibodies, Bi-Specific T cell Engagers 
(BiTE®), immune check-point inhibitors and chimeric 
antigen receptor (CAR) T cells [32]. 

Dendritic cells (DC) in MM patients display 
decreased co-stimulatory molecules expression and 
functions, and therefore are in an immature state. These 
immature DC are responsible for affected T cell activation 
and migration [26, 33, 34]. In addition, Sponaas et al., 
reported that DC and plasma cells in myeloma patients 
express PD-L1 (Programmed death ligand 1), which is 
correlated with an impairment of anti-tumor response 
[35]. Interestingly, it has been reported that DC play a 
dual opposite role as promoter of CD8+ T cells-mediated 
MM cell killing and as facilitator of MM cell resistance to 
CD8(+) T-cell killing [36]. Additionally, a positive effect 
in DC activation mediated by Lenalidomide treatment 

has been observed in both MM patients [37] and murine 
MM model [38]. Macrophages represent an important 
population in the MM microenvironment [39]. MM cells 
secrete inflammatory factors to recruit macrophages in the 
tumor site; in turn, macrophages are able to differentiate 
from M1 (classically activated, pro-inflammatory) to M2 
(alternatively activated) phenotype, secreting factors to 
promote survival and drug resistance in MM cells [39, 
40]. Interestingly, the stromal microenvironment promote 
this differentiation by secreting soluble factors such as 
CCL2 and IL-6 [41, 42]. Concerning the T cell subsets, 
change in CD8/CD4 ratio in T cells has been observed 
in MM patients, where most of T cells display reduced 
expression of co-stimulatory molecules, such as CD28, 
and increased expansion of Treg and Th17 subset, which 
in turn promotes MM cell growth [33, 34]. Among these 
strategies, a critical role in MM progression is played by 
the secretion of soluble factors as Prostaglandin-2 (PGE-
2) and Transforming Growth Factor (TGF-β), or by the 
expression of immune check-point inhibitors [18, 33, 
43-45]. Advanced findings have shown in fact that the 
immune check-point inhibitor PD-L1 play a major role 
in MM escape from immune cells [18, 33, 43, 46]. PD-
L1 can be expressed by solid tumors and hematological 
malignancies to inhibit T and NK cell functions and, 
paradoxically, its expression can be increased by the IFN-γ 
secreted by immune cells, persisting its inhibitory effect 
[47-49]. In contrast to healthy plasma cells, those derived 
from MM patients express PD-L1 and therefore participate 
to the inhibition of Cytotoxic T Cells (CTL) proliferation 
and cytolytic functions [46, 50-56]. Notably, Wang et al., 
recently reported that PD-L1 can be also found as soluble 
form in MM patients, which could represent a potential 
marker for diagnosis and therapy [57]. The PD-L1 receptor 
PD-1 is expressed on activated T and NK cells [58]. 
Triggering PD-1 blocks the activating cascade induced by 
the T-cell receptor (TCR) and the activating receptors on 
T cells and NK cells, respectively [59, 60]. PD-1 activates 
Src-homology 2-containing tyrosine phosphatase (SHP-
2), which interfere with PKC-θ, PI3K, ERK and AKT 
activation, critical for T cell proliferation (for a detailed 
review see [59, 60]) (Figure 1a). Persistent expression 
of PD-1 in T cells leads not only to T cell exhaustion 
and an impaired T cell-mediated immunosurveillance, 
but also to the development of regulatory T cells (Treg) 
population [48, 61]. Similarly, PD-1-mediated SHP-
2 activation inhibits activating receptors-induced 
cytotoxicity, granule exocytosis and IFN-γ secretion in 
NK cells [4, 48, 61] (Figure 1b). Recently, it has been 
reported that PD-1 microclusters can be found in the NK 
immunological synapse (NKIS), thus impairing NK cell 
recognition of target cells [62]. Interestingly, it has also 
been shown that cytokines such as IL-18 could up-regulate 
PD-1 expression on NK cells in the lymph nodes, thus 
promoting metastases dissemination of NK cell-dependent 
tumors [63]. It is noteworthy that PD-1 is absent on NK 
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cells isolated from healthy donor but it is expressed on 
those from MM patients [50]. Furthermore, NK and 
T cells stimulated with an anti-PD-1 antibody CT-011 
restored the cytolytic ability of NK to kill target cells [46, 
50, 54, 55]. Additionally, clonal T cells in MM can be 
hypo-responsive and fail to respond to several cytokines 
[64, 65]. Interestingly, these T-cell clones isolated from 
MM patients have normal TCR signaling but a defective 
p-SMAD pathway, which suppress cell proliferation. In 
particular, these T-cell clones displayed low levels of 
PD-1, which could explain their telomere-independent 
senescence [64, 65]. These results point out to the fact that 
PD-1low T-cell clones fail to be fully activated by an anti-
PD-1 therapy in MM, leading to a partial response in MM 
patients [65, 66].

Advanced evidences demonstrate that BM 
stromal cells isolated from MM patients display several 
abnormalities, compared to healthy donors [67-69]. 
The consequence is an uncontrolled MM progression, 
survival, growth and drug resistance, associated with 
angiogenesis and tumor escape [19, 70-72]. In turn, MM 
cells induce stromal cells to promote a pro-angiogenic and 
an immuno-suppressive milieu. Interestingly, Ponzetta et 
al., have recently demonstrated that MM cells and tumor 
microenvironment influence NK cell trafficking in the 
bone marrow (BM), impairing NK cell-mediated tumor 
recognition [73]. Mechanisms involved in this evasion 
are the down-regulation of CXCR3 and CXCR4 on NK 
cells and the up-regulation of chemokines secretion by the 
tumor microenvironment such as CXCL9 and CXCL10. 
Interestingly, MM cells cultured with stromal cells express 
high levels of PD-L1 [71, 74]. The consequence is that PD-
L1-expressing MM cells interact with the PD-1 expressed 
by immune cells, thus affecting T and NK cell activation 
and supporting MM progression and immune-escape [50]. 
These results suggest that the PD-1/PD-L1 axis expressed 
on MM cells, stromal and immune cells, play a critical 
role not only in supporting MM progression and survival, 
but also in protecting cancer cells from effector cells [50]. 

Activating NK ligands

Another major mechanism used by MM cells to 
escape to NK cell-mediated attack is the modulation of 
the expression of NKG2D [MHC class I related chain A/B 
(MICA/B), UL16-binding proteins (ULBPs)] and DNAM-
1 (PVR and Nectin-2) ligands on their surface [3, 18, 75]. 
Notably, the down-regulation or the release of MICA 
expression facilitate tumor cell escape [13, 17, 23, 76-
81]. Furthermore, Jinushi and colleagues have shown that 
plasma cells from MM patients express low level of MICA 
at their surface and significant high level of soluble MICA 
(sMICA), whereas plasma cells from MGUS patients have 
opposite expression of MICA [82]. Consequently, sMICA 
could represent a prognostic factor in MM patients [81]. 
In addition, NK cells derived from MM patients displayed 

a reduced expression of NKG2D, but a large amount of 
sMICA in the patients’ plasma. Interestingly sMICA was 
not correlated with the reduced expression of NKG2D on 
NK cells, suggesting that MM escape is promoted by a 
direct interaction between NK and MM cells, rather than 
by sMICA secreted by MM cells themselves [83]. 

Furthermore, the up-regulated expression of MHC 
class I molecules and the decreased expression of Fas have 
been described to protect MM cells from NK cell lysis [14, 
16]. Importantly, in early stages of the MM pathogenesis, 
the escape from NK cells seems to be associated with a 
down-regulation of the activating ligands rather than an 
increase of inhibitory ligands. However, in late-stage, 
MM are rather protected from NK cell lysis by a high 
expression of HLA class I molecules [13, 14, 16, 26, 82]. 

LENALIDOMIDE AS PROMISING 
STRATEGY TO RESTORE IMMUNE 
RESPONSE AND IMPROVE PATIENTS 
SURVIVAL

Lenalidomide and MM cells survival

MM is a hematologic cancer characterized by an 
accumulation of terminally differentiated plasma cells in 
the BM [21, 84]. Despite the use of several therapeutic 
strategies MM is still incurable disease and numerous 
patients relapse and/or develop resistance to current 
therapies. The choice of drug treatment depends on the 
tumor progression and the age of the patient. Strategies 
include, among others, (a) Bortezomib/Thalidomide/
Dexamethasone (VTD) in relapsed refractory myeloma, 
(b) Vincristine/Adriamycin/Dexamethasone (VAD) in 
patients which will receive Stem Cell Transplantation 
(SCT), (c) Melphalan/Prednisone combination in patients 
who are ineligible for an Autologous SCT, (d) Melphalan/
Prednisone/Thalidomide or (e) Bortezomib/Melphalan/
Prednisone [21, 84-88]. Interestingly, several groups 
reported that the number, the activation and the cytotoxic 
functions of NK cells are increased during and after SCT. 
This is associated with an overall survival in MM patients 
[5], even in T cell-depleted allografts [6, 89]. In addition, 
following autologous SCT, NK cells display higher 
expression of CD57 and KIRs, compared to the same cell 
analyzed before or at later time points after SCT. Although 
these NK cells also strongly express KIR2DL2/3/
S2 and KIR3DL1, associated with a more immatures 
characteristics, they show granule exocytosis and secretion 
abilities [90]. In addition, Htut and colleagues showed that 
NK cells in MM patients undergoing hematopoietic cell 
transplantation (HCT) displayed a decreased expression 
of the TNF receptor OX40 (CD134) [91]. Interestingly, 
Lenalidomide treatment during and after SCT improved 
anti-myeloma activity (NCT00778752) [92, 93] by 
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increasing the proliferation and NKp44 expression on 
NK cells [91, 92], which are associated with a significant 
down-regulation of CTLA-4 expression [91].

In the last decade new approaches such as IPH-
2102 (anti-KIR) mAb therapy and immune check-points 
inhibitors (ipilimumab (anti-CTLA-4) [48, 49, 94, 95] have 
made further progresses in solid tumors and hematological 
malignancies. However, their impact on MM cell functions 
and the NK/MM interaction has not been completely 
investigated. A similar argument could be used for other 
drugs such as the proteasome inhibitors Bortezomib and 
Carfilzomib (PR-171) and Histone Deacetylases inhibitors 
(HDACi), which have been demonstrated to improve anti-
tumor response [12, 96, 97]. The survival rates of relapsed 
MM patients has been significantly improved since 
the introduction of Immunomodulatory drugs (IMiDs) 
including Thalidomide, Lenalidomide and more recently 
Pomalidomide [86, 97]. Thalidomide was described as 
anti-angiogenic, anti-tumor and immune modulatory agent 
affecting many cell types [97-100]. These properties have 
contributed to re-approved Thalidomide by the Food and 
Drug Administration (FDA) for MM treatment. Similarly, 
Pomalidomide (Pomalyst™) has been approved by FDA 
in 2013 due to its anti-tumor properties characterized 

by increasing NK cell activation, down-regulating 
osteoclastogenesis and inhibiting the interaction between 
stromal and myeloma cells [96, 97, 101]. The introduction 
of Lenalidomide (CC-5013, Revlimid®) as new clinical 
approach improved the median survival of MM patients, 
even in those developing resistance and disease relapse 
[102-105]. Following its approval in 2006 by FDA in MM 
treatment, a plethora of clinical trials registered in www.
clinicaltrials.gov demonstrated a strong anti-tumor effect 
of Lenalidomide when administrated alone or combined 
with others drugs [22, 102, 103, 106-108]. Notably, 
Lenalidomide displays anti-tumor abilities on malignant 
plasma cells, affecting multiple mechanisms involved 
in tumor development and survival [97]. For example, 
Lenalidomide display anti-osteoclastogenic properties and 
induces cell cycle arrest and increases the expression of 
Cyclin-dependent kinase (CDK) inhibitors on MM cells, 
thus inhibiting their proliferation and promoting their 
apoptosis [97, 109-111] (Figure 2). Recent findings also 
show that Lenalidomide partially reversed the exhaustion 
of effector cells promoted by stromal microenvironment 
Myeloid-derived suppressor cells (MDSC) [112] and 
DC [35] (Figure 2). Lenalidomide also acts on tumor 
microenvironment, by disrupting the MM/stromal cells 

Figure 1: Schematic representation of the impact of the PD-1/PD-L1 axis on T and NK cell cytotoxic functions. a. PD-1 
blocks the activating cascade induced by the T-cell receptor (TCR) and the activating receptors in T cells and NK cells, respectively. PD-1 
activates Src-homology 2-containing tyrosine phosphatase (SHP-2), which interfere with PKC-θ, PI3K, ERK and AKT activation and 
signaling, critical for T cell proliferation. b. Similarly, PD-1-mediated SHP-2 activation inhibits PKC-θ, PI3K and ERK activation, critical 
for NK cell functions. This leads to an impaired proliferation, cytotoxicity, granule exocytosis and IFN-γ secretion in NK cells.
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cross-talk. This leads to a decreased secretion of pro-
angiogenic and anti-inflammatory molecules, and down-
regulated expression of both PD-1 and PD-L1 expression 
in MM cells, constitutively expressed or induced by the 
stromal microenvironment [50, 54, 74]. These results 
highlight the critical role of BM microenvironment on 
MM progression, and the importance to develop anti-
tumor approaches based on the PD-1/PD-L1 complex 
[50, 71, 74]. The positive impact of PD-1/PD-L1 axis 
in MM eradication has been also confirmed in vivo in 
a myeloma murine model (5T33) [54, 113]. Authors 
demonstrated that PD-1/PD-L1 blockade with a PD-L1-
specific Ab elicits rejection of a murine myeloma when 
combined with lymphodepleting irradiation [113]. In 
addition, T cells from myeloma-bearing mice up-regulate 
their PD-1 expression in response to multiple myeloma 
[54]. Interestingly, these PD-1-expressing CD8+ T cells, 
although activated, do not secrete inflammatory cytokines 
and they undergo to apoptosis. It has been reported that 
these lymphocyte express TIM-3 (T-cell immunoglobulin 
and mucin-domain containing-3), a marker synonimous 
of cell exhaustion [114, 115]. Of note, the blockade 
of PD-L1 during vaccine administration resulted in 
improved vaccine efficacy. Together, these results are 

very interesting since, as discussed above, Lesokhin 
et al., shown that T-cell clones PD-1low lead to a partial 
response in MM patients with an anti-PD-1 therapy [66]. 
The positive effect of Lenalidomide on MM killing has 
also been recently reported by Ray and colleagues. They 
demonstrated that IMiDs combined with ACY-1215 
(Ricolinostat), Bortezomib, anti-PD-L1 antibody or Toll-
like receptor agonists strongly increased the anti-tumor 
response [116]. In this case, Lenalidomide enhanced the 
effect of PD-1/PD-L1 blocking on NK cell-mediated 
tumor killing. Interestingly, the positive combination of 
Pembrolizumab/Dexamethasone with Lenalidomide [117] 
and Pomalidomide has been also reported in MM patients 
[118] (NCT02289222). A summary of ongoing and 
completed Clinical Trials in hematological malignancies 
including MM using PD-1 [Pidilizumab (CT-011) or 
Pembrolizumab] and PD-L1 (Atezolizumab) can be 
found in www.clinicaltrials.gov and [47-49, 119]. The 
Table 1 summarizes current recruiting Clinical trials using 
Lenalidomide combined with anti-PD-1/PD-L1 antibodies 
in hematological malignancies treatment. 

As described above, MM cells express activating 
NK cell ligands involved in the recognition of NK cells 
but not in the killing [12, 77-79, 82]. Fionda et al., recently 

Figure 2: Schematic representation of the impact of Lenalidomide on MM cell survival and immune escape. Lenalidomide 
induces apoptosis (by increasing p21, p27 and Caspases expression) and impairs survival (by blocking several pathways such as NF-κB and 
PI3K/Akt and inducing cell-cycle arrest) in malignant plasma cells. Additionally, Lenalidomide disrupts the MM/BMSC cell cross-talk, 
by inhibiting TNF-α-induced adhesion molecules (VLA-4, LFA-1, ICAM-1 and VCAM-1) expression on both MM and stromal cells, as 
well as cytokine secretion (i.e. IL-6, TGF-β and IGF-1) and VEGF-mediated angiogenesis. Lenalidomide down-regulates the expression of 
PD-1 on MM cells and the expression of PD-L1 on both stromal and MM cells, thus inhibiting the vicious circle involved in the impairment 
of the immune response. Lenalidomide also activates T cells to secrete IL-2 and IFN-γ, and down-regulates the expression of PD-1 on T 
and NK cells. This restores NK cell activation, as shown by the increased granule exocytosis (Perforin and Granzyme B) and ADCC, re-
establishing cytotoxic functions against tumor cells. In addition, Lenalidomide can be used associated with CT-011 (an anti-PD-1 antibody) 
to restore immune cell functions.
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show that Lenalidomide increases the expression of 
NKG2D and DNAM-1 ligands on both malignant plasma 
cells and MM cell lines leading to NK cell interaction 
and tumor cell killing [120]. Interestingly, authors also 
demonstrated that the negative modulation of Cerebron, 
Ikaros (IKZF1), Aiolos (IKZF3) and Interferon-Regulatory 
Factor (IRF)-4 induced by Lenalidomide was critical to 
promote the NKG2D ligands expression on MM cells 
(Figure 2). It is worthy to note that the second-generation 
of Proteasome Inhibitor Carfilzomib enhanced the 
sensitivity of MM cells to NK cell-mediated lysis [121]. 
In addition, Carfilzomib-activated NK cells also displayed 
an increased cytotoxic granule secretion and cytotoxicity 
which was correlated to the decreased expression of HLA 
class I in Carfilzomib-treated MM cells. Unfortunately, the 
impact of Lenalidomide in HLA class I expression on MM 
cells and the consequence on anti-tumor response has not 
been investigated so far.

Lenalidomide restores NK cells cytotoxicity

Lenalidomide displays immunomodulatory 
properties by inducing IL-2 and IFN-γ secretion by T cells, 
Antibody-dependent cell-mediated cytotoxicity (ADCC) as 
well as NK cell cytotoxic functions [12, 92, 97, 100, 109, 
122-125] (Figure 2). In addition, Lenalidomide increases 
co-stimulatory receptors expression on NK cells, as CD16 
and Lymphocytes Function-associated Antigen (LFA-1) 
[12, 97, 126-129]. Of note, a large heterogeneity exists in 
in vitro experimental protocols that depends on NK cell 
sources (total PBMC against purified NK cells), IL-2 and 
drug concentration, treatment period, targets. Notably, 
Lenalidomide down-regulates PD-1 expression on T 
cells isolated from MM patients, allowing the cytotoxic 
restoration of their cytotoxicity [127]. Intriguingly, Daguet 

et al., reported that Lenalidomide affects the secretion 
of IFN-γ by NK cells isolated from healthy donors, and 
decreases activating receptors expression on NK cells 
[130]. These findings could explain why Lenalidomide 
somehow does not directly supports NK cell activation. 
Interestingly, an opposite effect is observed in CLL 
patients, since Lenalidomide-stimulated NK cells display 
a reinforced cytotoxic activity and increased proliferation 
[125, 131] and a repaired immunological synapse, critical 
for NK cell-mediated tumor surveillance [132]. As already 
discussed, Benson et al., reported that IPH2101 (an anti-
KIR) prevents negative signals by KIRs expressed on NK 
cells [133]. Importantly, IPH2101 can be combined with 
Lenalidomide which, by improving NK cell activation 
and increasing NK cell ligands on MM cells, contributes 
to enhance the in vivo anti-tumor response. Interestingly, 
the same group have recently published results about the 
effect of Lenalidomide combined with IPH2101 (without 
corticosteroids) in relapsed/refractory patients in a Phase 
I trial [134]. It is important to mention that, although 
improving MM patients’ survival [22, 107, 108, 135-137], 
Dexamethasone administration could be at detrimental 
of the immune surveillance against tumor cells [109, 
123, 125, 138, 139]. Advanced findings have in fact 
demonstrated that Dexamethasone decreases the NKG2D, 
NKp30 and NKp46 expression on NK cells, as well as the 
secretion of IL-2 and IFN-γ by NK cells [109, 123, 125]. 
In addition, Dexamethasone decrease IL-2 and IFN-γ 
secretion in normal PBMCs, as well as activated NK cell-
release of Granzyme B, by antagonizing the stimulatory 
capacity of Lenalidomide in both T and NK cells [109]. 

CONCLUSIONS

The positive impact of Lenalidomide based therapies 
has been observed in several hematological malignancies. 

Table 1: MM, Multiple Myeloma; MDS,Myelodysplastic Syndrome; NHL, Non-Hodgkin’s Lymphoma;  FL, Follicular 
Lymphoma; PD-L1, Programmed Death Ligand-1

Study Therapy Disease Clinical trial Status
A Study of Atezolizumab (Anti-Programmed Death Ligand 
1 [PD-L1] Antibody) Administered With or Without 
Lenalidomide in Participants With Multiple Myeloma 
(MM)  

Lenalidomide  
Atetolizumab MM NCT02431208 recruiting

A Study of Pembrolizumab (MK-3475) in Combination 
With Standard of Care Treatments in Participants With 
Multiple Myeloma (MK-3475-023/KEYNOTE-023)

Lenalidomide 
Pembrolizumab 
Dexamethasone

MM NCT02036502 recruiting

Study of Lenalidomide and Dexamethasone With or 
Without Pembrolizumab (MK-3475) in Participants With 
Newly Diagnosed Treatment Naive Multiple Myeloma 
(MK-3475-185/KEYNOTE-185)

Lenalidomide 
Dexamethasone 
Pembrolizumab

MM NCT02579863 recruiting

A Trial of Pembrolizumab (MK-3475) in Participants With 
Blood Cancers (MK-3475-013)(KEYNOTE-013)

Pembrolizumab 
Lenalidomide

MM NHL
Lymphoma

MDS
NCT01953692 recruiting

Phase 2 Multi-center Study of Anti-PD-1 During 
Lymphopenic State After HDT/ASCT for Multiple 
Myeloma

Lenalidomide 
Pembrolizumab MM NCT02331368 recruiting
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For example, NK cells stimulated with Lenalidomide 
display a reinforced cytotoxic potential in CLL patients 
[125, 131, 132, 140]. In AML patients, NK cells show a 
reduced target killing since their ability to form an efficient 
immunological synapse is impaired [141]. Interestingly, 
lytic granules polarization in the immunological synapse 
was significantly restored after Lenalidomide treatment. 
A positive action of Lenalidomide in restoring synapse 
formation, ADCC, and cytotoxic functions in NK cells 
have been also reported in B-cell Non Hodgkin Lymphoma 
patients [142, 143]. 

By promoting cytokine secretion and activating 
receptors stimulation on NK cells, associated with 
an inhibition of the PD-1/PD-L1 axis to disrupt the 
MM/stromal cell cross-talk and the immune response 
exhaustion, Lenalidomide restores NK cell functions in 
MM patients. Furthermore, Lenalidomide can be combined 
with monoclonal antibodies (mAbs) such as CT-011 (anti-
PD-1) [50] to enhance their own positive effect on NK 
cells. However, certain drugs used in MM therapy such as 
Dexamethasone interfere with Lenalidomide-induced NK 
cell activation in vitro. Thus, a more precise understanding 
of the molecular mechanisms induced by a drug on the 
immune system should be verified before applying it in 
MM patients. In conclusion, given the importance of NK 
cells in cancer surveillance and in autologous SCT in MM 
patients, Lenalidomide is currently the more complete 
treatment (alone or combined with anti-PD-1/PD-L1 
antibodies or other drugs) able to restore exhausted NK 
cell cytotoxic functions and to impair MM cell survival 
and immune-escape. These findings support the fact that 
Lenalidomide represents an adequate strategy in MM 
patients to reinforce immune anti-tumor activity.
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