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Background: Ulcerative colitis (UC) is an inflammatory disease of the intestinal mucosa,
and its incidence is steadily increasing worldwide. Intestinal immune dysfunction has been
identified as a central event in UC pathogenesis. However, the underlying mechanisms
that regulate dysfunctional immune cells and inflammatory phenotype remain to be
fully elucidated.

Methods: Transcriptome profiling of intestinal mucosa biopsies were downloaded from
the GEO database. Robust Rank Aggregation (RRA) analysis was performed to identify
statistically changed genes and differentially expressed genes (DEGs). Gene Set
Enrichment Analysis (GSEA), Gene Ontology (GO), and Kyoto Encyclopedia of Genes
and Genomes (KEGG) were used to explore potential biological mechanisms.
CIBERSORT was used to evaluate the proportion of 22 immune cells in biopsies.
Weighted co-expression network analysis (WGCNA) was used to determine key
module-related clinical traits. Protein-Protein Interaction (PPI) network and Cytoscape
were performed to explore protein interaction network and screen hub genes. We used a
validation cohort and colitis mouse model to validate hub genes. Several online websites
were used to predict competing endogenous RNA (ceRNA) network.

Results: RRA integrated analysis revealed 1838 statistically changed genes from four
training cohorts (adj. p-value < 0.05). GSEA showed that statistically changed genes were
enriched in the innate immune system. CIBERSORT analysis uncovered an increase in
activated dendritic cells (DCs) and M1 macrophages. The red module of WGCNA was
considered the most critical module related to active UC. Based on the results of the PPI
network and Cytoscape analyses, we identified six critical genes and transcription factor
NF-kB. RT-PCR revealed that andrographolide (AGP) significantly inhibited the expression
of hub genes. Finally, we identified XIST and three miRNAs (miR-9-5p, miR-129-5p, and
miR-340-5p) as therapeutic targets.
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Conclusions: Our integrated analysis identified four hub genes (CXCL1, IL1B, MMP1,
and MMP10) regulated by NF-kB. We further revealed that AGP decreased the
expression of hub genes by inhibiting NF-kB activation. Lastly, we predicted the
involvement of ceRNA network in the regulation of NF-kB expression. Collectively, our
results provide valuable information in understanding the molecular mechanisms of active
UC. Furthermore, we predict the use of AGP and small RNA combination for the treatment
of UC.
Keywords: active UC, GEO dataset, integrated analysis, AGP, gene signatures, ceRNA network
INTRODUCTION

Ulcerative colitis (UC) is a type of relapsing/remitting
inflammatory bowel disease characterized by clinical symptoms
of abdominal cramping, passage of pus, mucus, or both, and
bloody diarrhea (1). UC imposes a major health burden globally,
owing to its high incidence in developed countries and the
increasing prevalence in developing countries, occurring across
all ages (2, 3). The pathophysiology of UC is multifaceted and not
completely understood. Environmental factors, genetic
susceptibility, intestinal epithelium barrier defects, and
dysfunctional immune responses have all been suggested to
contribute to UC pathogenesis (4, 5).

In general, UC patients often experience two phases of the
disease, namely the active phase, during which the symptoms are
present, and the remission phase, characterized by the absence of
symptoms (6). UC is considered a progressive disease, giving rise
to a variety of intestinal disorders, including colorectal cancer,
thus compromising the patient’s quality of life (4, 7). Currently,
UC treatment goals include early remission and long-term
maintenance to prevent relapse. Oral and local 5-aminosalicylic
acid (5-ASA) formulations are useful for achieving remission in
patients with mildly to moderately active UC. Successful 5-ASA
treatment in UC patients reduced the risk of UC-associated
colorectal cancer (8). Longitudinal analysis revealed that
vedolizumab, a monoclonal antibody directed against the
integrin heterodimer a4b7, induced the recovery of intestinal
mucosal injury owing to its anti-inflammatory effects (9).
Andrographolide (AGP) is a natural product extracted from
traditional Chinese herbs and has been shown to alleviate clinical
UC symptoms with minor side effects (10). AGP was reported to
block the NF-kB signaling pathway in macrophages (11, 12) and
regulate neutrophil activation, apoptosis, and extracellular trap
formation (13, 14). CX-10, an AGP derivative, reduced dextran
sulfate sodium (DSS)‐induced tissue damage in mice by blocking
NF-kB and MAPK signaling (15).

Under normal intestinal barrier conditions, only few luminal
antigens and microbiota find their way into the lamina propria.
However, when damage compromises barrier integrity and
tolerance mechanisms fail, a complex population of immune
cells within the intestinal lamina propria are exposed to the
invading luminal antigens, which leads to the excessive
infiltration of immune cells, as well as chemokine and cytokine
production, which further exacerbate inflammation. Infiltrating
org 2
cell types include neutrophils (16), dendritic cells (17), innate
lymphoid cells (18), natural killer T cells (19), macrophages (20),
and T cells (21, 22). Activated immune cells communicate
mutually via direct or indirect contact through the secretion of
cytokines, such as tumor necrosis factor (TNF), interferon
gamma (IFNg), interleukin 1b (IL1b), IL-6, and IL-23, as well
as T helper (Th) 17 cell-associated cytokines. Chemokines form
another large family of inflammatory factors that regulate
leukocyte trafficking and activation (23, 24).

The complex intestinal microenvironment complicates UC
diagnosis and treatment. Therefore, uncovering the underlying
etiology of UC is necessary for the development of curative
treatment. Recently, high-throughput sequencing methods have
provided unprecedented insight for the study of disease
mechanisms and biomarker identification (25, 26). In the
present study, we screened key signature genes using robust
rank aggregation (RRA), weighted co-expression network
analysis (WGCNA), and Cytoscape software. We then
validated signature genes in patient datasets and colitis mouse
model. Finally, we constructed a lncRNA–miRNA–transcription
factor (TF) interaction network to provide a preliminary plan for
combination therapy in active UC.
MATERIALS AND METHODS

Datasets and Sample Selection
We systematically searched for microarray studies from public
GEO datasets using the following terms: “mucosal” and
“ulcerative colitis”. The screening criteria were as follows: ①
expression profiling by array; ② Homo sapiens; ③ dataset
containing more than five active UC samples and healthy
controls. Finally, five GEO datasets (GSE16879, GSE75214,
GSE48958, GSE87473, and GSE92415) were included (27–30)
(Table 1). We downloaded series matrix file(s) from the GEO
website and corresponding annotation documents from GEO
or Bioconductor.

RRA Analysis
RRA analysis was used to integrate gene expression data from
different datasets in an unbiased manner using a comprehensive
ranking list algorithm (31). We combined the “limma” and
“RobustRankAggreg” packages in R to obtain statistically
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changed genes (adj. p-value < 0.05) and differentially expressed
genes (DEGs; adj. p-value < 0.05 and |logFC| > 1.5).

Biological Function and Pathway
Enrichment Analyses
Gene Set Enrichment Analysis (GSEA), Gene Ontology (GO)
analysis, and Kyoto Encyclopedia of Genes and Genomes
(KEGG) pathway enrichment analysis were conducted using
the “ClusterProfiler” R package (32). The reference gene list
c2.cp.reactome.v7.0.symbols.gmt was downloaded from
Molecular Signature Database (MsigDB) (33). GO analysis
included the biological process (BP), cellular component (CC),
and molecular function (MF) categories. FDR < 0.05 was
considered significant.

Evaluation of Tissue-Infiltrating
Immune Cells
The CIBERSORT deconvolution algorithm was employed to
analyze the cellular composition of the tissues based on gene
expression profiles, according to the known reference set LM22
(leukocyte signature matrix) (34). The permutation (perm) was
set at 1000 to obtain more stable results.

WGCNA
WGCNA can be used as a data exploratory tool or screening
method to identify key gene modules using an unsupervised
clustering without priori defined gene sets (35). In our study, a
total of 15162 genes (top 75% according to variation) were
analyzed using the “WGCNA” R package. Scale-free network
features were constructed when the power of b was equal to 12
(R2 = 0.85). Dynamic tree cut algorithm was used to aggregate
genes with similar expression profiles into the same module.
Gene clusters in the module most related to the active UC traits
were considered candidates for further validation.

PPI Network Analysis
STRING database (https://cn.string-db.org/) is a functional
protein association network, assembling all known and
predicted proteins (36). Multiple protein names were put into
the list box, with one name per line. PPI network interactions file
with medium confidence scores ≥ 0.4 was downloaded.
Cytoscape software (version 3.7.2), a general-purpose, open-
source software platform for network biology analysis and
visualization (37). Molecular complex detection (MCODE) (K-
core = 2, degree cutoff = 2, max depth = 100, and node score
cutoff = 0.2) and cytohubba-MCC plugins with default
parameters were used to explore important gene clusters and
Frontiers in Immunology | www.frontiersin.org 3
hub genes (38, 39). The iRegulon (Version: 1.3) plugin was used
to screen key TF with the default cutoff criteria (40).

Correction Analysis
We used the R “corrplot” package to display a correlation matrix.
We download the organized gene list of “Immunomodulator”
from TISIDB database (http://cis.hku.hk/TISIDB/index.php),
which is an online integrated repository portal for tumor-
immune system interactions (41). p-value < 0.05 was
considered to be statistically significant.

Animal Model of Colitis
Animal experiments were approved by the Animal Ethics and
Experimentation Committee of Soochow University and carried
out according to the Guide for the Care and Use of Laboratory
Animals. AGP or DMSO diluted in PBS was intraperitoneally
injected into mice at a dose of 25 mg/kg on alternate days, with the
first dose administered one day before DSS administration. The
experimental colitis model was induced in 10-week-old C57BL/6
male mice by administering 3.5% DSS (MW: 36,000–50,000 Da;
Yeasen Biotechnology Co., Ltd., Shanghai, China, 60316ES76) for
seven days, followed by administration of normal water for three
days. Mice were sacrificed on the tenth day, and colon tissues were
obtained for hematoxylin and eosin (H&E) staining,
immunofluorescence (IF) staining, and RT-PCR analysis.

H&E and IF Staining
Colon tissues were fixed with 4% paraformaldehyde (PFA)
overnight and were then embedded in paraffin. Colonic sections
of 5 mm were obtained and laid flat on a glass slide for H&E or IF
staining. For IF staining, the tissue slices were permeabilized with
0.1% Triton X-100 for 15 min, blocked with 1% BSA for 1 h at
37°C, and then incubated with antibodies against NF-kB (Cell
Signaling Technology, #8242, 1:500) and IkBa (Cell Signaling
Technology, #4812, 1:500) at 4°C overnight. The next day, tissue
slices were incubated with an Alexa Fluor® 488-conjugated goat
anti-rabbit IgG antibody (Life Technologies, A11088) for 1 h at
room temperature. The nuclei were stained with Hoechst 33342
(1:10000 dilution, Beyotime) for 10 min prior to imaging.
Representative cells were selected and photographed.

RNA Extraction and RT-PCR
RNA was extracted from the intestinal tissues using TRIzol
reagent (Invitrogen, 15596018) and reverse-transcribed to
cDNA using the Hifair® II 1st Strand cDNA Synthesis Kit
(Yeasen Biotechnology, 11119ES60). Primer sequences were
obtained from PrimerBank (https://pga.mgh.harvard.edu/
TABLE 1 | Microarray information.

GEO ID Platform Participants Tissues Attribute

GSE16879 GPL570 24 active UC and 12 controls Mucosal Training set
GSE48958 GPL6244 7 active UC and 8 controls Mucosal Training set
GSE75214 GPL6244 74 active UC and 22 controls Mucosal Training set
GSE87473 GPL13158 106 active UC and 21 controls Mucosal Training set
GSE92415 GPL13158 87 active UC and 21 controls Mucosal Validation set
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primerbank/) and synthesized at GENEWIZ Biotech Co. Ltd.
(Suzhou, China) (Table 2). RT-PCR was performed using the
Hieff® qPCR SYBR Green Master Mix (High Rox Plus; Yeasen
Biotechnology, 11203ES03) on an ABI Applied Biosystems. PCR
amplification was conducted in triplicate for each sample, and
the expression of target genes was normalized to GAPDH.
Relative expression was determined using the 2-DDCt method.

ceRNA Network Construction
TargetScan Human 7.2 (http://www.targetscan.org/vert_72/),
miRDB (http://mirdb.org/), microT v5 (http://diana.imis.
athena-innovation.gr/DianaTools/index.php?r=microT_CDS/
index), and miRWalk 3.0 (http://mirwalk.umm.uni-heidelberg.
de/) with default parameters were used to predict the miRNAs
(42–45). StarBase (v2.0) (https://starbase.sysu.edu.cn/starbase2/
index.php) was used to predict miRNA-lncRNA interactions
with very high stringency (≥5) (46). The interaction networks
were constructed and visualized using Cytoscape software.

Statistical Analyses
The R “ggpubr” package was used to perform statistical analyses,
and the R “ggplot2” package was used to generate images.
Differences between two groups were assessed using the
Student’s t-test. All data are shown as mean ± standard error
of the mean (SEM). GraphPad Prism 7.0 (GraphPad Software,
Inc., La Jolla, CA, USA) was used for statistical analysis and
image construction. Adobe Illustrator (AI) CS6 software was
used to edit the figures.
RESULTS

GSEA Revealed the Involvement of the
Innate Immune system
The study workflow is presented in Figure 1. GSE16879,
GSE48958, GSE75214, and GSE87473 expression data were
Frontiers in Immunology | www.frontiersin.org 4
processed and normalized. Boxplots show the normalized gene
expression profiles, and principal component analysis (PCA)
scatter plots show significant differences between active UC
samples and normal controls (Supplementary Figures 1A–D).
We performed RRA analysis to determine statistically changed
genes in different datasets and then subjected them to GSEA.
RRA analysis revealed 1838 statistically changed genes (adj. p-
value < 0.05). GSEA indicated that the top annotated collection
of genes was enriched in innate immune system, indicating that
innate immune responses may play an important role during
active UC (Figures 2A, B).

Immune Landscape of the Training
GEO Datasets
Several immune-related gene sets were enriched in the active UC
group as compared with that in the normal group, especially with
regards to the innate immune system. We explored the immune
landscape in training datasets using the CIBERSORT algorithm.
The abundance of 22 immune cell types is shown using stacked
bar plots (Figures 3A–D). Cell types were filtered if not present
in half of the samples, and their relative proportions are shown in
the boxplots (Figures 3A–D). The results revealed that the active
UC tissue was infiltrated by a higher fraction of activated DCs
and macrophages (M0 and M1) and a lower fraction of M2
macrophages in all training datasets (FDR < 0.05), whereas other
immune cells exhibited heterogeneity (Figures 3A–D). These
results indicated that the inflammatory microenvironment
reshapes the proportion and distribution of immune cells.

Identification of DEGs and Functional
Enrichment Analysis
We identified 1072, 431, 490, and 303 DEGs between active UC
patients and normal subjects in the GSE16879, GSE48958,
GSE75214, and GSE87473 datasets, respectively (Figure 4A).
Subsequently, RRA analysis integrated the four cohorts, revealing
64 up-regulated and 46 down-regulated DEGs. The top 15
upregulated and downregulated genes are shown using a
heatmap (Figure 4B). Furthermore, GO and KEGG functional
enrichment analyses were performed to determine the biological
features of these 110 robust DEGs. GO functional enrichment
analysis revealed 487 up-regulated and 221 down-regulated terms
(FDR< 0.05) across BP, CC, and MF categories. DEGs were
markedly enriched in granulocyte and neutrophil chemotaxis and
migration in the BP category. In the CC category, genes were
mainly enriched in vesicle and secretory granule terms. Enriched
MF terms included cytokine activity and metallopeptidase activity
(Figure 4C). KEGG pathway analysis revealed 16 up-regulated and
5 down-regulated items (FDR < 0.05), which included the IL-17
and NF-kB signaling pathways (Figure 4D). These results
indicated that pro-inflammatory factors and pathways were
enriched in active UC patients.

Co-Expression Modules and Functional
Enrichment Analysis
Correlation networks are used for identifying clusters of highly
correlated genes across microarray samples. We employed
WGCNA to construct and analyze active UC-associated
TABLE 2 | Primers for RT-PCR.

Gene Primer Sequence (5’ -> 3’)

CXCL1 Forward ACTGCACCCAAACCGAAGTC
Reverse TGGGGACACCTTTTAGCATCTT

IL-1B Forward GCAACTGTTCCTGAACTCAACT
Reverse ATCTTTTGGGGTCCGTCAACT

MMP1 Forward CTTCTTCTTGTTGAGCTGGACTC
Reverse CTGTGGAGGTCACTGTAGACT

MMP3 Forward ACATGGAGACTTTGTCCCTTTTG
Reverse TTGGCTGAGTGGTAGAGTCCC

MMP7 Forward CTTACCTCGGATCGTAGTGGA
Reverse CCCCAACTAACCCTCTTGAAGT

MMP10 Forward GAGCCACTAGCCATCCTGG
Reverse CTGAGCAAGATCCATGCTTGG

TIMP1 Forward CGAGACCACCTTATACCAGCG
Reverse ATGACTGGGGTGTAGGCGTA

PLAU Forward ATGGAAATGGTGACTCTTACCGA
Reverse TGGGCATTGTAGGGTTTCTGA

GAPDH Forward AGGTCGGTGTGAACGGATTTG
Reverse TGTAGACCATGTAGTTGAGGTCA
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networks. We analyzed GSE87473 microarray datasets,
containing 106 active UC and 21 normal control samples, and
the optimal b value to match approximate scale-free topology
criterion compared to other datasets. The adjacency matrix was
constructed based on the criterion of gene distribution
conformed to a scale-free network when setting the soft-
threshold power of b = 12 (R2 = 0.85), retaining high
connectivity information (Figure 5A). In this study, gene
clusters were conducted using the hierarchical clustering
method, and 11 consensus co-expression modules were
identified (Figure 5B). The heatmap shows the association
Frontiers in Immunology | www.frontiersin.org 5
between each module and clinical traits (Figure 5C). The
correlation analysis of module membership (MM) and gene
significance (GS) indicated that the selected module genes
exhibited good correlation with the red MM (R = 0.57, P =
1.2e-24, Figure 5D), implying that genes in the red module were
highly correlated with active UC. Genes within the red module
were selected, and their biological function was inferred using
GO and KEGG analyses (Figures 5E, F). Enrichment analyses
yielded immune-related terms and pathways. A total of 55
overlapping DEGs were obtained via RRA analysis and
WGCNA (Figure 5G).
FIGURE 1 | Flowchart of the study.
March 2022 | Volume 13 | Article 855645
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PPI Network Construction and Key
TF Identification
An interaction network between proteins encoded by the 55 DEGs
was constructed using the STRING database (Figure 6A). The
interaction network comprised 49 nodes and 88 edges, visualized
using the Cytoscape software. The MCODE plugin was used to
identify gene cluster modules. According to the filter criteria, two
cluster modules were identified. Cluster 1 had the higher score
(score: 8.000, 8 nodes and 28 edges), followed by cluster 2 (score:
5.111, 10 nodes and 23 edges; Figure 6B). Next, we used the
cytoHubba-MCC plugin to identify hub genes and obtained eight
hub genes when setting score >5000 (Figures 6C, D), consistent
Frontiers in Immunology | www.frontiersin.org 6
with cluster 1 in MCODE. We performed differential expression
analysis of the eight hub genes in the validation cohort GSE92415.
Consistent with our prediction, mRNA expression levels of the
eight specifically expressed hub genes were significantly
upregulated in active UC samples compared to those in the
control samples (Figure 6E). Gene expression is spatiotemporally
regulated via networks, which consist of interactions between TFs
and their direct target genes, influencing development,
homeostasis, and pathogenesis. Eight hub genes correlated with
active UC traits were tested for TF binding motifs using the
iRegulon plugin. The results indicated that six genes, excluding
TIMP1 and MMP3, were regulated by NF-kB1 (Figure 6F).
A

B

FIGURE 2 | GSEA annotation of gene sets. (A) Ridge plot show gene expression distribution in the immune-related annotated gene set. (B) Gene set enriched in
the innate immunity system (FDR = 0.009, NES = 3.064, adj. p-value < 0.05), gene set enriched in cytokine signaling in immune system (FDR = 0.009, NES =2.965,
adj. p-value < 0.05), gene set enriched in the NABA matrisome (FDR = 0.009, NES = 3.408, adj. p-value < 0.05), gene set enriched in signaling by interleukins (FDR =
0.009, NES = 3.006, adj. p-value < 0.05), gene set enriched in NABA matrisome associated (FDR = 0.009, NES = 3.024, adj. p-value < 0.05), gene set enriched
in hemostasis (FDR = 0.009, NES = 2.337, adj. p-value < 0.05). Screening criteria for significant gene sets included adj. p-value < 0.05 and FDR < 0.25. NES:
normalized enrichment score.
March 2022 | Volume 13 | Article 855645
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A B

C D

FIGURE 3 | Estimation of infiltrating immune cell types in the 4 training GEO cohorts via CIBERSORT. (A–D) Stacked barplots show the relative composition of 22
immune cell subsets in four cohorts, and the boxplots show that activated DCs and macrophages (M0 and M1) were significantly increased in the active UC group.
Data were assessed via the method of Benjamini and Hochberg (BH). * adj. p-value < 0.05, ** adj. p-value < 0.01, *** adj. p-value < 0.001, **** adj. p-value <0.0001,
ns, no significance.
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A

B

D

C

FIGURE 4 | Differentially regulated genes (DEGs) were identified via RRA analysis. (A) Volcano plots show DEGs in active UC and control samples from the four
GEO datasets. (B) Heatmap of the top 15 up- and down-regulated DEGs from the integrated analysis. (C) GO functional enrichment analysis, including BP, CC, and
MF, revealed the underlying functions of up- and down-regulated DEGs. (D) KEGG revealed the top ten pathways enriched in up- and down-regulated DEGs.
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A B

C D

E F

G

FIGURE 5 | WGCNA analysis of GSE87473. (A) Soft threshold power screening and scale-free network construction. (B) The hierarchical clustering tree shows the
network and the 11 identified modules. (C) Heatmap plot shows the adjacencies in the eigengene network. Correlation of each module with active UC. (D) A
scatterplot of gene significance (GS) versus module membership (MM) in the red module. (E, F) GO and KEGG enrichment analysis of the red module. (G) Venn
diagram of the overlapping genes.
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Hub Genes Correlation Analysis
In order to explore the expression patterns of hub genes, we
performed correlation analysis of the expression data from the
GSE92415 validation cohort. Positive correlation was observed
between the hub genes (Figure 7A). We further explored the
relationship between hub genes and immune cells, and the hub
genes were significantly associated with pro-inflammatory cell
types, such as neutrophils, M1 macrophages, and activated DCs.
Hub genes showed a negative correlation with M2 macrophages
and plasma cells (Figure 7B). We then analyzed the correlation
between hub genes and different immune regulators, including
immunosuppressive and immunostimulatory factors (Figures 7C,
D). These analyses verified that hub genes were closely involved in
the regulation of immune cell infiltration and inmmunoregulators,
thus modulating the immune microenvironment.

Inhibition of NF-kB Activity Suppressed
the Expression of Hub Genes and
Alleviated Colitis
To further validate the important role of hub genes in active UC,
we employed the DSS-induced mouse colitis model. Studies have
Frontiers in Immunology | www.frontiersin.org 10
shown AGP and its derivates could ameliorate active UC
symptoms and promote barrier integrity through the inhibition
of NF-kB signaling (15, 47). NF-kB represents a family of TFs
containing five members, with the NF-kB p65–p50 (NF-kB1)
heterodimer being most widely studied. Mice were
intraperitoneally injected with DMSO or AGP during the
period of DSS administration (Figure 8A). AGP-treated mice
exhibited milder colon blockage than that in the control mice
(Figure 8B). Histologic analysis strengthened the protective
effect of AGP against colitis, with less intestinal epithelial
damage and more preserved goblet cells (Figure 8C). IF
staining revealed that AGP attenuates inflammation by
preventing NF-kB activation without affecting IkBa expression
(Figures 8D, E). We also detected the expression levels of NF-kB
and hub genes using RT-PCR. NF-kB activity was increased in
the DSS group, whereas there was no significantly recused in the
DSS-AGP treatment group. CXCL1, IL1B, MMP1, and MMP10
were significantly upregulated in the DSS group; however, the
effect was rescued by AGP treatment. No significant changes
were observed inMMP7 and PLAU expression (Figure 8F). Our
results revealed four genes implicated in the progression of active
A B

E F

C D

FIGURE 6 | Protein interaction network. The network was constructed and visualized using Cytoscape software. (A) PPI network. The nodes represent proteins, the
edges represent their interaction. (B) MCODE sub-network, including cluster 1 and cluster 2. (C, D) Cytohubba-MCC was used to identify hub genes in the network.
(E) Differential gene expression analysis in GSE92415 cohort. (F) The master regulator predicted by the iRegulon tool is highlighted in blue, and target genes are in
pink. ***P < 0.001.
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UC, providing insight into the therapeutic mechanism of the
traditional herb AGP.

CeRNA Network Construction
MicroRNAs are widely studied refer to epigenetic regulators that
have shown tremendous potential as therapeutic targets for
various human diseases. Four online miRNA databases were
used to predict the miRNAs regulating NF-kB activity.
Interactions indicated by all three miRNA databases were
selected. We obtained 55 regulatory miRNAs of NF-kB and
constructed a network using the Cytoscape software (Figure 9A).
The ceRNA network has attracted much attention in recent years
and plays an important role in regulating gene expression. The
ceRNA network was constructed with miRNA as a bridge to
establish the relationship between target gene mRNA and
Frontiers in Immunology | www.frontiersin.org 11
lncRNA by combining miRNA response elements (MREs). We
further explored the lncRNAs that interacted with regulator
miRNAs using the StarBase 2.0 database and constructed three
lncRNA–miRNA subnetworks (Figure 9B). Interestingly, we
found that the lncRNA XIST mediated crosstalk between the
three miRNAs. Thus, we speculated that the ceRNA network
might play an important role in active UC by regulating NF-
kB expression.
DISCUSSION

Although there have been substantial advances in understanding
the immunopathogenesis of UC, critical questions remain to be
answered. The underlying etiology and triggers of UC are
A

C

D

B

FIGURE 7 | Correlation analysis between hub genes with immune cell types and factors. (A) Correlation analysis of the six hub genes. (B) Correlation analysis of
hub genes and different immune cell types. (C, D) Correlation analysis of hub genes with immunosuppressive and immunostimulatory factors. *P < 0.05, **P < 0.01.
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A

D

E

F

B

C

FIGURE 8 | AGP alleviated DSS-induced colitis. (A) The structure of AGP. (B) Colon length of mice during 3.5% DSS challenge. (C) Representative H&E staining
of the colon at day 10 of colitis induction. (D, E) AGP prevents nuclear translocation of NF-kB without affecting IkBa. (F) RT-PCR analysis. *P < 0.05, **P < 0.01,
***P < 0.001, ****P < 0.0001, and ns, no significance (Student’s t-test). Error bars represent the SEM.
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unclear. In the past few decades, most studies have focused on
the role of abnormal adaptive immune responses in the
pathogenesis of UC. Advances arising from genome-wide
association studies and immunological studies have recently
moved the focus of UC pathogenesis on to mucosal innate
immune responses (48, 49). In our study, GSEA of 211
samples from patients with active UC and 63 from heathy
controls indicated that several immune response-related
pathways were involved in UC, especially those of innate
immunity. CIBERSORT analysis revealed that activated DC
and M1 macrophages were significantly increased in patient
colon tissues. Comprehensive bioinformatics analysis using
RRA, WGCNA, and Cytoscape, as well as in vivo validation
using a classic mouse model of colitis revealed CXCL1, IL1B,
MMP1, and MMP10 as signature genes of active UC.
Frontiers in Immunology | www.frontiersin.org 13
Furthermore, a central role of the TF NF-kB in the regulation
of active UC was determined. We predicted a ceRNA network of
the XIST–miR-9-5p/miR-129-5p/miR-340-5p–NF-kB axis in the
regulation of NF-kB expression, providing neww avenues for
combination targeted therapy in active UC.

According to the modified Riley score (50), histologic UC
activity is defined as the presence of epithelial infiltration by
neutrophils, crypt abscesses, erosions, or ulceration. Neutrophil
infiltration was confirmed as an early yet central event in UC
(51), persisting in parallel to inflammation. Disruption of
intestinal macrophage homeostasis contributed to neutrophil
infiltration. Macrophages are classified into classically activated
M1 or alternatively activated M2 macrophages, and their
“plasticity” is based on cytokine secretory patterns and pro-
inflammatory versus immunoregulatory activity (52). It has been
A

B

FIGURE 9 | Prediction of miRNA-mRNA network and ceRNA network. (A) The miRNA-mRNA network included NF-kB (blue hexagon) and 55 regulatory miRNAs
(pink circles). (B) The lncRNA-miRNA-mRNA network was constructed, including three lncRNA-miRNA subnetworks and XIST showed as the crossover point. The
blue hexagon node, the pink diamond nodes, and the pale-green ellipse nodes represent the mRNA and miRNA, respectively. Apricot ellipse nodes represent
crosstalk via XIST.
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reported that NF-kB played an important role in M1
macrophage polarization and was required for the expression
of a many pro-inflammatory genes (53). Activated M1
macrophages expressed high levels of pro-inflammatory
cytokines (IL-1b, IL-6, TNF-a, IL-12, IL-23, and Type-I IFN)
and chemokines (CXCL1, 2, 3, 5, 9, 10) (54). CD14+

macrophages M1 were accumulated in the inflamed human
intestine, enhancing antigen presentation and the subsequent
inflammatory cascade. CXCL1 has been shown to mediate
neutrophil recruitment by binding and activating CXCR2
expression on neutrophils during colitis in an M1-Toll-like
receptor (TLR) signaling-dependent pathway (55). Animal
studies have demonstrated that genetic deficiency for negative
regulators of the canonical NF-kB pathway increase
susceptibility to colonic inflammation (56, 57). In line with
these findings, colitis was ameliorated by NF-kB decoy
oligonucleotides targeting the consensus NF-kB binding
site (58).

Our results indicated that MMP1 and MMP10 expression
was significantly upregulated in the areas of ulcerated and
inflamed intestinal mucosa. MMPs are a large family of zinc-
dependent endoproteinases that degrade the extracellular matrix
directly or indirectly by cleavage of protein substrates, such as
TNF-a and IL-1b, thereby controlling various aspects of
inflammation and immunity (59). IL-1b is a classic and potent
pro-inflammatory cytokine, with elevated levels in UC tissue
and intestinal mononuclear cells extracted from active UC
specimens (60).

During intestinal inflammation, MMPs act as major effector
molecules driving mucosal injury. MMP-1 expression reflects
acute tissue injury and is associated with the initial steps of
ulceration and angiogenesis in UC (61). In inflammatory bowel
disease,MMP-1 activity is closely associatedwithmyeloperoxidase
(MPO) levels (62). MPO is an enzyme produced by neutrophils
and released upon inflammatory stimulation, catalyzing the
generation of highly cytotoxic and tissue-damaging reactive
oxygen metabolites (63). Increased MPO levels are observed in
themucosa and intestinal lumenduring inflammatorydisease (64),
promoting the inflammatory process (65). Inhibition of MMP-10
activity via siRNA or blocking associated signaling resulted in the
amelioration of colitis. Recent findings indicated that increased
levels of serum MMP-10 represent an early event in the
pathogenesis of UC (66). MMPs are also known to influence
macrophage behavior, potentially involving their antigen-
presenting function.

DCs are heterogeneous cells that monitor the surrounding
microenvironment and induce tolerance or incite a host defense
pro-inflammatory response (67). Mucosal DCs exhibit unique
properties that enable them to interact with T cells, B cells, the
intestinal epithelium, and stroma, contributing to themaintenance
of mucosal homeostasis or inducing inflammation (68). This dual
function endows DCs with the capacity to bridge the innate and
adaptive immunity. Mature DCs exhibit an upregulation of MHC
II molecule, co-stimulatory molecule, and pro-inflammatory
cytokine levels that enable the stimulation of pathogen-specific T
cells (69). Innate sensing of microbes via distinct pathogen-
Frontiers in Immunology | www.frontiersin.org 14
recognition receptors enables DCs to launch distinct classes of
T helper responses. DCs control Th1 responses through a
mechanism of TLR signaling, involving MyD88- and TRAF6-
mediated NF-kB activation (70). By contrast, some TLR2 ligands
stimulate DCs to produce IL-10 or activate NOD1/NOD2
signaling to skew the balance toward Th2 responses (71, 72).
Murine DC subsets in the intestine produce large amounts
of IL-23, which plays critical roles in the induction of Th17
responses (73).

Identification of key miRNAs and lncRNAs involved in colitis
pathogenesis provided new strategies for disease diagnosis and
treatment. MiRNAs are endogenously expressed short nucleic
acids, which regulate the expression of target mRNA via
complementary sequences within the 3′-untranslated region,
and can be orchestrated by lncRNAs. In vivo study
demonstrated that upregulation of miR-129 ameliorated
intestinal inflammation in TNBS-induced colitis mice through
inhibition of the NF-kB signaling pathway (74). Lnc-ITSN1-2
was reported to function as a ceRNA to sponge miR-125a,
thereby enhancing IL-23R expression and increasing disease
risk, activity, and inflammatory cytokine profiles of IBD (75).
In addition, lncRNA ANRIL accelerated UC development via the
miR-323b-5p/TLR4/MyD88/NF-kB pathway (76). XIST
regulated NF-kB/NLRP3 inflammasome pathway for mediating
the process of inflammation (77). Taken together, the predicted
lncRNA XIST and three key miRNAs may play important roles
in the progression of UC by targeting the NF-kB pathway.

Intestinal injury arises through a programmed, coordinated
series of events. Multiple immune cell types engage in
inflammatory network and interact sequentially through
cytokines and/or chemokines during the inflammatory process.
The constructed ceRNA network potentially acted as an
upstream regulator. CXCL1 and IL-1b were considered to
mediate communication, and MMPs were shown to act as
important effectors of the inflammatory process. Although our
studies were detailed and comprehensive, the effective clinical
information was lacking and requires clinical studies. Further
research is warranted to narrow the gaps between basic, clinical,
and translational application.
CONCLUSION

Our study identified up-regulated expression of four hub genes
and further revealed the action mechanisms of AGP in active
UC. We also predicted the role of the XIST–miR-9-5p/miR-129-
5p/miR-340-5p/NF-kB axis targeting NF-kB expression in
active UC treatment. The ceRNA network obtained from the
bioinformatics analysis and its potential function in combination
with AGP can be examined in future experiments. Our findings
may reflect the “tip of the iceberg” of the mechanism underlying
inflammatory events that eventually cause colonic damage. Further
advanced methods, such as single-cell sequencing technology, will
provide new insights into disease mechanisms as well as novel
therapeutic targets and open avenues for disease prediction
and interventions.
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