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Brain-derived neurotrophic factor (BDNF) plays important functions in cell survival and
differentiation, neuronal outgrowth and plasticity. In Alzheimer’s disease (AD), BDNF
signaling is known to be impaired, partially because amyloid β (Aβ) induces truncation
of BDNF main receptor, TrkB-full length (TrkB-FL). We have previously shown that
such truncation is mediated by calpains, results in the formation of an intracellular
domain (ICD) fragment and causes BDNF loss of function. Since calpains are Ca2+-
dependent proteases, we hypothesized that excessive intracellular Ca2+ build-up
could be due to dysfunctional N-methyl-d-aspartate receptors (NMDARs) activation.
To experimentally address this hypothesis, we investigated whether TrkB-FL truncation
by calpains and consequent BDNF loss of function could be prevented by NMDAR
blockade. We herein demonstrate that a NMDAR antagonist, memantine, prevented
excessive calpain activation and TrkB-FL truncation induced by Aβ25–35. When
calpains were inhibited by calpastatin, BDNF was able to increase the dendritic spine
density of neurons exposed to Aβ25135. Moreover, NMDAR inhibition by memantine
also prevented Aβ-driven deleterious impact of BDNF loss of function on structural
(spine density) and functional outcomes (synaptic potentiation). Collectively, these
findings support NMDAR/Ca2+/calpains mechanistic involvement in Aβ-triggered BDNF
signaling disruption.

Keywords: Alzheimer’s disease, brain-derived neurotrophic factor, TrkB receptor, extrasynaptic N-methyl-d-
aspartate receptors, memantine, long-term potentiation, spine density, synaptic plasticity

INTRODUCTION

Brain-derived neurotrophic factor (BDNF) is a neurotrophin widely expressed in the central
nervous system that, through activation of its full-length receptor (TrkB-FL), plays pivotal roles
in cell survival and differentiation, axon elongation, dendritic growth and synaptic plasticity
(Lewin and Barde, 1996; Lu et al., 2013). Truncated isoforms of TrkB receptors (TrkB-TC) act as

Abbreviations: Aβ, Amyloid-β peptide, aCSF, Artificial cerebrospinal fluid; AD, Alzheimer’s disease; BDNF, Brain-
derived neurotrophic factor; eNMDAR, extrasynaptic N-methyl-d-aspartate receptor; fEPSPs, Field excitatory post-synaptic
potential; HBSS, Hanks’ balanced salt solution; ICD, intracellular domain fragment; LTP, long-term potentiation; NMDAR,
N-methyl-d-aspartate receptor; PBS, Phosphate-buffered saline; RT, Room temperature; SDS, Sodium dodecyl sulfate; SEM,
Standard error of the mean; TrkB-FL, TrkB-full length; TrkB-T’, new truncated TrkB; TrkB-TC, truncated TrkB.
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negative modulators of TrkB-FL receptors (Eide et al., 1996;
Dorsey et al., 2006), and changes in TrkB-FL:TrkB-TC ratio are
thought to cause and/or reflect BDNF signaling dysfunction
(Gomes et al., 2012). Cultured rat hippocampal or striatal
neurons under excitotoxic conditions, such as exposure
to glutamate, present a downregulation of TrkB-FL and
upregulation of TrkB-TC receptors (Gomes et al., 2012), which
may result in dysregulated actions of BDNF. Excitotoxicity
and dysregulation of BDNF signaling are involved in several
pathological processes, such as brain ischemia (Ferrer et al., 2001;
Vidaurre et al., 2012; Tejeda et al., 2016), traumatic brain injury
(Schober et al., 2012; Rostami et al., 2014) and neurodegenerative
diseases (Porritt et al., 2005; Plotkin et al., 2014; Nguyen et al.,
2016), including AD (Jerónimo-Santos et al., 2015). The link
between excitotoxicity in AD and BDNF dysregulation is
however not fully understood.

In AD, total BDNF levels are decreased and the TrkB-
TC:TrkB-FL ratio is increased in hippocampal and cortical post-
mortem samples from AD patients (Phillips et al., 1991; Connor
et al., 1997; Allen et al., 1999; Ferrer et al., 1999; Holsinger
et al., 2000). Such imbalance was suggested to contribute to
cognitive impairment in AD (Morris, 1993). On the other hand,
boosting BDNF/TrkB signaling was shown to ameliorate synaptic
function and cognitive decline in mouse models of AD (Blurton-
Jones et al., 2009; Nagahara et al., 2009; Devi and Ohno, 2012;
Kemppainen et al., 2012).

We have previously demonstrated that Amyloid-β peptide
(Aβ) – one of the main molecular drivers of the disease
(Ittner and Götz, 2011) – is able to increase the expression
of truncated isoforms of TrkB receptor in primary neuronal
cultures (Kemppainen et al., 2012). Moreover, we showed that Aβ

induces a calpain-dependent cleavage of TrkB-FL, which results
in the formation of a previously unidentified truncated isoform
(TrkB-T’) and of an ICD fragment (Jerónimo-Santos et al., 2015).

Calpains are intracellular Ca2+-dependent proteases that play
physiological roles (Goll et al., 2003; Ono and Sorimachi, 2012).
However, calpains were also reported to be dysregulated in aging-
related diseases, such as AD (Nixon, 2003; Vosler et al., 2008),
leading to excitotoxic neuronal death (Caba et al., 2002), synaptic
dysfunction and spatial memory impairments (Trinchese et al.,
2008; Granic et al., 2010; Medeiros et al., 2012). Excessive
activation of calpains might result from increased intracellular
Ca2+ concentrations that occur in excitotoxic conditions (Kelly
and Ferreira, 2006, 2007). One source of intracellular Ca2+

are NMDARs, which have been implicated in excitotoxicity
phenomena (Rueda et al., 2016). In animal models of AD, Aβ

accumulation may lead to abnormal NMDAR activation, even
in early stages (Parameshwaran et al., 2008). Moreover, Aβ was
shown to induce a sustained Ca2+ influx by directly interacting
with NMDARs, especially with those found at extrasynaptic sites
(eNMDARs) (Alberdi et al., 2010; Texidó et al., 2011; Ferreira
et al., 2012).

Thus, we hypothesized that eNMDARs could act as mediators
of Aβ toxicity, by promoting Ca2+ influx and calpain activation,
which would then lead to TrkB-FL truncation and BDNF
signaling disruption. In order to experimentally address this
hypothesis, we used the only NMDAR antagonist commercially

available for the treatment of AD – memantine – as a
pharmacological tool to preferentially block eNMDARs (Lipton,
2007; Parsons et al., 2007; Xia et al., 2010). Memantine, at doses
that translate into plasmatic concentrations that are known to be
highly selective to eNMDAR, has been shown to benefit cognitive
function, a global outcome in patients with moderate to severe
AD (Lipton, 2007; Parsons et al., 2007; Xia et al., 2010). Briefly,
we herein show that memantine was able to reduce Aβ-induced
TrkB-FL cleavage and to restore BDNF-mediated actions on
spine density. In this regard, spine density was reported to be
reduced in brain samples of both AD patients (Knobloch and
Mansuy, 2008) and animal models (Spires et al., 2005; Spires-
Jones et al., 2007), which has been related to the cognitive deficits.
Importantly, BDNF is known to increase the number of dendritic
spines (Tyler and Pozzo-Miller, 2001; Ji et al., 2005, 2010; Kellner
et al., 2014), whereby promoting synaptic strength. Moreover,
we show that memantine prevented Aβ-induced loss of BDNF
effect on LTP, which is accepted as the synaptic correlate of
learning and memory (Bliss and Collingridge, 1993). Collectively,
our data support the thesis that NMDAR dysregulation may
be mechanistically implicated in Aβ-induced BDNF signaling
impairment.

MATERIALS AND METHODS

Animals and Brain Areas Used
Sprague-Dawley and Wistar rats (Charles River, Barcelona,
Spain) were maintained in controlled temperature (21 ± 1◦C)
and humidity (55 ± 10%) conditions with a 12:12 h light/dark
cycle and access to food and water ad libitum. All animals were
handled according to Portuguese Law and the European Union
Directive (86/609/EEC) on the protection of animals for scientific
experimentation. Care was taken to minimize the number of
animals sacrificed.

Rats were deeply anesthetized with isoflurane (Esteve,
Barcelona, Spain) and sacrificed for tissue preparation. The
hippocampus was used for functional studies for two reasons: it
is one of the brain areas more affected in AD and where BDNF
effects have been most extensively studied (Figurov et al., 1996;
Korte et al., 1998; Pang and Lu, 2004). On the other hand, since
Aβ-induced dysregulation of TrkB receptors was reported to be
similar in cortical and hippocampal cultures (Kemppainen et al.,
2012), cortical cultures were used for molecular studies in order
to increase culture yield and reduce the number of animals used.

Amyloid-β Peptides
All the experiments were performed using Aβ25–35 (Bachem,
Bubendorf, Switzerland). As previously confirmed, Aβ25-35,
which contains mainly protofibrillar and fibrillar amyloid
structures (Del Mar Martínez-Senac et al., 1999; Kemppainen
et al., 2012), represents the biologically active region of Aβ and
induces the same molecular and cellular dysfunction as Aβ1–42,
similar to what has been observed in AD brains (Pike et al.,
1995; Kaminsky et al., 2010). Stock solutions of Aβ25–35 were
prepared in MilliQ water to a final concentration of 1 mg/mL. We
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used 25 µM of Aβ25–35, as previously (Kemppainen et al., 2012;
Jerónimo-Santos et al., 2015).

Primary Neuronal Cultures and Drug
Treatments
Primary neuronal cultures were obtained from fetuses of 18/19-
day pregnant Sprague-Dawley females. Unless stated otherwise,
culture reagents and supplements were purchased from Gibco
(Paisley, United Kingdom). The fetuses were collected in HBSS
and, after brain dissection, the cerebral cortex was isolated,
and the meninges were removed. The tissue was mechanically
fragmented, and its digestion was performed with 0.025%
(wt/vol) of trypsin solution in HBSS for 15 min at 37◦C. After
tissue digestion, cells were precipitated by centrifugation at
1200 rpm. The supernatant was removed and 20% of Fetal Bovine
Serum was added to HBSS. Cells were again precipitated by
centrifugation, the supernatant removed and 2 mL of HBSS was
added to the solution. Cells resuspension by pipette aspiration
was required between centrifugations in order to dissociate
cells. This washing process was repeated four more times to
neutralize trypsin. After washed, cells were resuspended in
supplemented Neurobasal medium (0.5 mM L-glutamine, 25 mM
glutamic acid, 2% B-27, and 25 U/mL penicillin/streptomycin).
To obtain single cells and avoid cellular clusters or tissue
fragments, the suspension was filtrated with a nylon filter
(BD FalconTM Cell Strainer 70 µM, Thermo Fisher Scientific,
Waltham, MA, United States). Cells were plated at densities
of 6 × 104 and 5 × 104 cells/cm2 on coverslips for western
blotting and immunocytochemistry experiments, respectively,
and maintained at 37◦C in a humidified atmosphere of 5%
CO2. These coverslips were previously sterilized under UV
light, coated overnight with 10 µg/mL of poly-D-lysine (Sigma-
Aldrich, St. Louis, MO, United States) and then washed with
sterile H2O. Primary neuronal cultures were incubated with
25 µM of Aβ25–35 at DIV13 for 24 h at 37◦C, as previously
described (Kemppainen et al., 2012; Jerónimo-Santos et al., 2015).
In these experiments, cells were also co-incubated with Aβ25–35
and 1 µM memantine, a NMDAR antagonist (Sigma-Aldrich).
Finally, for immunocytochemistry, cells were co-incubated with
the same drugs and 1 µM of calpastatin (Millipore, Billerica,
MA, United States), a cell-permeable calpain inhibitor, in the
presence or absence of 20 ng/mL of BDNF, a gift from Regeneron
Pharmaceuticals (Tarrytown, NY, United States). BDNF was
used at a final concentration of 20 ng/mL (corresponding to
∼0.75 nM).

Western Blot (WB)
After treatments, primary neuronal cultures at DIV14 were
washed with ice-cold PBS and lysed with Radio Immuno
Precipitation Assay buffer (RIPA) [50 mM Tris–HCl (pH 7.5),
150 mM NaCl, 5 mM ethylenediaminetetraacetic acid, 0.1% SDS
and 1% Triton X-100] containing protease inhibitors (Roche,
Penzberg, Germany). Adherent cells were scraped off the dish
using a cell scraper and the cell suspension were centrifuged
at 13,000 g, 4◦C during 10 min. The supernatant was aspired,
discarding the pellet, and placed in fresh tubes. The amount

of protein was determined by Bio-Rad DC reagent (Bio-Rad
Laboratories, Berkeley, CA, United States) and all samples were
prepared with the same amount of total protein (30 µg).
A loading buffer (350 mM Tris pH = 6.8, 10% SDS, 30% glycerol,
600 mM Dithiothreitol, 0.06% bromophenol blue) was added and
the mixture was boiled at 95–100◦C for 5 min. Next, all samples
and the molecular weight marker (Thermo Fisher Scientific)
were loaded and separated on 10% SDS–polyacrylamide gel
electrophoresis (SDS–PAGE) within a standard migration buffer
(25 mM Tris pH = 8.3, 192 mM Glycine, 10% SDS), at a constant
voltage between 80 and 120 mV. Then, proteins were transferred
onto PVDF membranes (GE Healthcare, Buckinghamshire,
United Kingdom), previously soaked in methanol for 5 min,
within the standard buffer (25 mM Tris pH = 8.3, 192 mM
Glycine, 15% methanol) for wet transfer conditions. After 1.5 h
of transfer, membranes were soaked again in methanol for
5 min and then stained with Ponceau S solution to evaluate
protein transference efficacy. Membranes were blocked with a 5%
(w/v) non-fat dry milk solution in Tris-buffered saline with the
detergent Tween-20 (20 mM Tris base, 137 mM NaCl and 0.1%
Tween-20). Membranes were incubated overnight with primary
antibodies: C-14 – the C-terminal of TrkB-FL rabbit polyclonal
antibody (1:2000) and the αII-Spectrin (C-3) mouse monoclonal
antibody (1:2500), raised against human spectrin (aa. 2368–
2472) (Santa Cruz Biotechnology, Dallas, TX, United States)
and 1 h at RT with goat anti-mouse and goat anti-rabbit IgG-
horseradish peroxidase-conjugated secondary antibodies (Santa
Cruz Biotechnology). Immunoreactivity was visualized using
ECL chemiluminescence detection system (GE Healthcare), band
intensity was measured using ChemiDoc (Bio-Rad Laboratories)
and quantified by the digital densitometry ImageJ 1.45 software
(Bethesda Softworks, Bethesda, MD, United States). The intensity
of GAPDH was used as loading control.

Immunocytochemistry
Primary neuronal cultures at DIV14 were washed with PBS
and then fixed in 4% paraformaldehyde in PBS (pH = 7.4)
for 15 min at RT. Cells were incubated with the blocking
solution (3% (w/v) bovine serum albumin) (Sigma-Aldrich) in
PBS with 0.1% (v/v) Triton X-100 for 1 h. After new washes with
PBS, cells were incubated with mouse microtubule-associated
protein 2 (MAP2) primary antibody (1:200 in blocking solution)
(Millipore), to specifically detect neurons, overnight at 4◦C.
After this, cells were washed with PBS and then incubated with
Goat Anti-Mouse Alexa Fluor R© 568 secondary antibody (1:200
in blocking solution) (Invitrogen), for 1 h at RT, in the dark.
The secondary antibody solution was decanted and rinsed with
PBS. Then, cells were incubated with Alexa Fluor R© 488 Phalloidin
(1:40 in PBS) (Invitrogen), which recognizes filamentous actin
(F-actin), for 30 min. F-actin has an important role in the
constitution of the cytoskeleton of dendritic spines (Koskinen
and Hotulainen, 2014). After being washed, coverslips were
mounted in Mowiol mounting solution and observed using an
inverted fluorescent microscope Axiovert 135 TV (Carl Zeiss
Microscopy, Thornwood, NY, United States). Spine density was
counted as the number of protrusions per 10 µm of the parent
dendrite, as previously reported (Alonso et al., 2004; Ji et al.,
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2010) with a distance of 25 µm from the cell body. We analyze
6 neurons per condition and, for each neuron, we counted
protrusions in 3 different dendrites.

Freshly Prepared Hippocampal Slices
For electrophysiological studies, male Wistar rats (8–12 weeks
old) were sacrificed after being deeply anesthetized with
isoflurane. The brain was quickly removed and placed in ice-
cold continuously oxygenated (O2/CO2: 95%/5%) aCSF (124 mM
NaCl, 3 mM KCl, 1.2 mM NaH2PO4, 25 mM NaHCO3, 2 mM
CaCl2, 1 mM MgSO4, and 10 mM glucose, pH 7,4) and the
hippocampi were dissected free. The hippocampal slices were
cut perpendicularly to the long axis of the hippocampus with
a McIlwain tissue chopper (400 µm thick). After recovering
functionally and energetically for at least 1 h in a resting chamber
filled with oxygenated aCSF at RT, slices were incubated for
3 h either with aCSF (control), Aβ25–35 peptide (25 µM) alone,
memantine (1 µM) alone or with both Aβ25–35 and memantine.

Ex Vivo Electrophysiology Recordings
Hippocampal slices were transferred to a recording chamber
continuously superfused with oxygenated aCSF at 32◦C (flow
rate of 3 mL/min). fEPSPs were recorded extracellularly through
a microelectrode filled with 4 M NaCl (2–6 M�) placed in
the stratum radiatum of the CA1 area. Two different pathways
of Schaffer collateral fibers were stimulated (rectangular pulses
of 0.1 ms duration) at every 10 s by two bipolar concentric
wire electrodes place on the Schaffer fibers. Recordings were
obtained with an Axoclamp 2B amplifier (Axon Instruments,
Foster City, CA, United States), digitized and continuously
stored on a personal computer with the LTP software (Anderson
and Collingridge, 2001). Individual responses were monitored
and averages of six consecutive responses were obtained and
the slope of the initial phase of the fEPSP was quantified.
LTP induction and quantification were performed as described
previously (Diogenes et al., 2011). Since the facilitatory action
of BDNF upon LTP is mostly seen under weak θ-burst protocol
(three trains of 100 Hz, three stimuli, separated by 200) (Fontinha
et al., 2008), LTP was induced by this protocol. Moreover, this
pattern of stimulation is considered to be closer to what occurs
in the hippocampus during episodes of learning and memory
in living animals (Albensi et al., 2007). Therefore, we selected
the more adequate stimulation paradigm to detect BDNF effect
upon LTP (Fontinha et al., 2008), so that we could evaluate the
modulatory influence of Aβ and memantine. After a stable fEPSP
slope LTP was inducted in the first pathway. After 60 min of
LTP induction, BDNF (20 ng/mL) was added to the superfusion
solution. The intensity of stimulation was adjusted for similar
values recorded before BDNF application. After at least 20 min of
BDNF perfusion, LTP was induced in the second pathway. BDNF
remained in the bath until the end of the experiment. LTP was
quantified as % change in the average slope of the fEPSP taken
from 46 to 60 min after LTP induction relatively to the average
slope of the fEPSP measured during the 10 min before LTP
induction. BDNF effect on LTP was evaluated by comparing the
LTP magnitude in the first (control pathway, aCSF superfusion)
and second pathway (test pathway, BDNF superfusion).

Statistical Analysis
Data are expressed as mean ± standard error of the mean (SEM)
of the n number of independent experiments. Independent
experiments are considered the results observed in different
primary neuronal cultures obtained from fetuses of different
pregnant-Sprague Dawley females and the results acquired from
hippocampal slices of different Wistar rats.

For the analysis of the experiments reported in Figures 1, 2
and a two-way ANOVA model was used, considering two fixed
factors (exposure to Aβ25–35 and memantine), each with two

FIGURE 1 | The inhibition of eNMDAR reduces the cleavage of TrkB-FL by
modulating calpains activation. (A) TrkB-FL protein levels. Representative
western-blots of DIV14 neuronal cultures showing the effect of 24 h of 25 µM
Aβ25–35 and 1 µM memantine on TrkB-FL (∼145 kDa). The panel shows the
average band intensity of TrkB-FL (∗∗p < 0.01, n = 9–22, two-way ANOVA
with Tukey post hoc test). (B) TrkB-ICD protein levels. Representative
western-blots of DIV14 neuronal cultures showing the effect of 24 h of 25 µM
Aβ25–35 and 1 µM memantine on TrkB-ICD (∼32 kDa). The panel shows the
average band intensity of TrkB-ICD (∗∗p < 0.01, ∗∗∗p < 0.001, n = 10–20,
two-way ANOVA with Tukey post hoc test) and (C) Calpains activation.
Representative western-blots of DIV14 neuronal cultures showing the effect of
24 h of 25 µM Aβ25–35 and 1 µM memantine on SBDP (150 kDa). The panel
shows the average ratio of the SBDP (150) to intact spectrin (∗∗p < 0.01,
∗∗∗p < 0.001, n = 7–20, two-way ANOVA with Tukey post hoc test). Results
were normalized to the loading control, GAPDH. Values are mean ± SEM.
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FIGURE 2 | Neither Aβ nor memantine caused significant changes in different
NMDAR subunits expression. (A) Representative western-blots of DIV14
neuronal cultures showing the effect of 24 h of 25 µM Aβ25–35 and 1 µM
memantine on GluN1 and GluN2B. (B) The panels show the average band
intensity of GluN1 (left histogram) and GluN2B (right histogram). Results were
normalized to the loading control, GAPDH. Values are mean ± SEM.

levels (presence versus absence). For the experiments in Figure 3,
three-way ANOVA models were built, where three fixed factors
(exposure to Aβ25–35, memantine/calpastatin and BDNF) were
considered, each with two levels (presence versus absence). The
mean squares, F-values and p-values of each source of variance
within all ANOVA models built is provided as Supplementary
Tables 1–7. Whenever a significant interaction was detected,
a Tukey post hoc test was performed for multiple pairwise
comparisons. For the experiments in Figure 4, paired t-tests were
used to compare LTP magnitudes in the control and test pathways
of the same slice.

All statistics were performed on STATA (version 14.2,
StataCorp LCC, College Station, TX, United States).
P < 0.05 were considered statistically significant. Graphical
representations were built on GraphPad (version 6.0f, La Jolla,
CA, United States).

RESULTS

The Inhibition of NMDAR Limits TrkB-FL
Cleavage Induced by Aβ
Primary cultured cortical neurons were treated at DIV13 with
Aβ25–35 fragment (25 µM) for 24 h, either in the presence or
absence of memantine at a concentration (1 µM) highly selective
to eNMDARs (Lipton, 2007; Parsons et al., 2007; Xia et al., 2010).
Total proteins were then isolated, and TrkB-FL and TrkB-ICD
levels were evaluated by WB.

Exposure to Aβ25–35 alone induced a marked decrease in
TrkB-FL receptor levels (TrkB-FLAβ: 0.67 ± 0.06; TrkB-FLCTR:

1.00 ± 0.04, n = 10–22, p = 0.001, two-way ANOVA with Tukey
post hoc test, Figure 1A and Supplementary Table 1) and a
reciprocal increase in TrkB-ICD levels (TrkB-ICDAβ: 1.53± 0.10;
TrkB-ICDCTR: 1 ± 0.07, n = 10–20, p < 0.001, two-way
ANOVA with Tukey post hoc test, Figure 1B and Supplementary
Table 2), as previously described (Jerónimo-Santos et al., 2015).
Importantly, co-incubation with memantine (1 µM) prevented
the Aβ-induced decrease of TrkB-FL receptors. Indeed, in these
conditions, TrkB-FL increased (TrkB-FLAβ+Mem: 0.99 ± 0.07;
TrkB-FLAβ: 0.67 ± 0.06, n = 9–10, p = 0.006, two-way ANOVA
with Tukey post hoc test, Figure 1A) and TrkB-ICD decreased,
relatively to exposure to Aβ25–35 alone (TrkB-ICDAβ+Mem:
1.02 ± 0.09; TrkB-ICDAβ: 1.53 ± 0.10, n = 10–11, p = 0.002,
two-way ANOVA with Tukey post hoc test, Figure 1B), to levels
similar to those of control conditions. Memantine alone had no
significant effect on TrkB-FL (n = 9, p = 0.120, two-way ANOVA
with Tukey post hoc test, Figure 1A) or TrkB-ICD expression
levels (n = 12, p = 0.886, two-way ANOVA with Tukey post hoc
test, Figure 1B).

Next, to evaluate if memantine could affect Aβ25–35-induced
activation of calpains, αII-spectrin levels and the formation
of calpain-specific spectrin breakdown products (SBDPs) were
evaluated. αII-spectrin (250 kDa) is a major substrate for
calpain and caspase-3 proteases, and its cleavage can produce
breakdown products with distinct molecular weights. Specifically,
calpains mediate the degradation of αII-spectrin to highly
stable 150 kDa SBDPs (SBDP150). The presence of the
calpain-cleaved fragments occurs early in neural cell pathology
and may be indicative of necrotic and excitotoxic neuronal
injury and death (Yan et al., 2012). Our data show that
the exposure of neuronal cultures to Aβ25–35 resulted in
high expression levels of SBDP150 (SBP150Aβ: 3.22 ± 0.40;
SBP150CTR: 1.00 ± 0.24; n = 7–20, p < 0.001, two-way ANOVA
with Tukey post hoc test, Figure 1C and Supplementary
Table 3), strongly suggesting a marked activation of calpains as
previously reported (Jerónimo-Santos et al., 2015). Importantly,
memantine was able to prevent this effect, significantly reducing
the levels of SBDP150 (SBP150Aβ+Mem:1.14 ± 0.37), when
compared with Aβ25–35 alone (n = 7–8, p = 0.002, two-
way ANOVA with Tukey post hoc test). Memantine (1 µM)
alone had no significant effect upon calpain activity (n = 12–
20, p = 0.994, two-way ANOVA with Tukey post hoc test
Figure 1C).

N-methyl-d-aspartate receptors are tetramers of GluN1 and
GluN2 subunits, with the latter being regarded as the subunit
predominantly involved in excitotoxicity (Ferreira et al., 2012).
To evaluate if the neuroprotective effects of memantine could
correlate with changes in NMDAR subunit composition, we
analyzed the levels of GluN2B and GluN1 subunits in primary
neuronal cultured cells by WB. Interestingly, neither Aβ25–35
(25 µM) nor memantine (1 µM) significantly changed the
expression levels of these subunits (Supplementary Tables 4, 5).

So far, our results suggest that, at least in our experimental
conditions, memantine is able to prevent Aβ25–35-induced
cleavage of TrkB-FL receptors, putatively by preferential blockade
of eNMDAR (Xia et al., 2010) and through a mechanim
independent of changes in NMDAR subunits expression levels.
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FIGURE 3 | Brain-derived neurotrophic factor (BDNF) restores its capacity to increase spine density after inhibition of Aβ-induced NMDAR activation.
(A) Representative image of an untreated neuron obtained from primary cultures. DIV14 neurons were incubated with BDNF (20 ng/mL) for 24 h, in the presence or
absence of Aβ25–35 (25 µM) and/or memantine (1 µM) or calpastatin (1 µM). MAP2 (red) specifically detects neurons, while phalloidin (green), recognizes F-actin,
thus labeling protrusions (filopodia and spines). The merge of both elements is represented in yellow. Six neurons were analyzed per condition and spine density was
considered, in each cell, as the number of protrusions per 10 µm of the parent dendrite with a distance of 25 µm from the cell body. Protrusions were counted in
each neuron in three different dendrites. (B) Treatments effects on synaptic growth. Aβ significantly reduces the number of protrusions, whereas BDNF increases the
number of protrusions when incubated alone. In the presence of Aβ, BDNF loses its ability to increase the number of protrusions, which is rescued when cells are
incubated with memantine. (C) The panels show the average number of protrusions in different conditions when neurons were treated with memantine and
(D) calpastatin (∗p < 0.05, ∗∗p < 0.01, ∗∗∗p < 0.001, n = 6–14, three-way ANOVA with Tukey post hoc test). Values are mean ± SEM.

NMDAR Inhibition Restores the Ability of
BDNF to Increase Spine Density of
Cultured Cortical Neurons
Next, we aimed to further clarify the structural and functional
implications, at the synaptic level, of memantine ability to prevent
Aβ25–35-induced impairment of BDNF signaling.

Firstly, we evaluated spine density of cultured cortical neurons
as a morphological readout, since BDNF is known to positively

modulate the number of dendritic spines (Tyler and Pozzo-
Miller, 2001; Ji et al., 2005, 2010; Kellner et al., 2014).

Our data showed that exposure to BDNF (20 ng/mL) alone,
for 24 h, significantly increased spine density, compared with
control conditions (BDNF: 8.55 ± 0.28 vs. CTR: 7.34 ± 0.25,
n = 11–14, p = 0.044, three-way ANOVA with Tukey post hoc
test, Figure 3C and Supplementary Table 6). Conversely, the
number of dendrites quantified in cultured neurons exposed
to Aβ25–35 (25 µM) for 24 h was significantly reduced (Aβ:
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FIGURE 4 | The inhibition of NMDAR activation by Aβ restores the facilitatory effect of BDNF upon θ-burst-induced LTP. (A,C,E) Panels in the left side show the
averaged time courses changes in field excitatory post-synaptic potential (fEPSP) slope induced by a θ-burst stimulation in the absence or in the presence of BDNF
(20 ng/mL) in the second stimulation pathway in rat hippocampal slices without (A, n = 4) or with a pre-exposure for 3 h to aCSF solution containing 25 µM Aβ25–35

(C, n = 3) and 25 µM Aβ25–35 in the presence of 1 µM Mem (E, n = 7). Tracings from representative experiments are shown to the right of panels A,C,E; each
tracing is the average of six consecutive responses obtained before (1 and 3) and 46–60 min after (2 and 4) LTP induction. Tracings are composed by the stimulus
artifact, followed by the pre-synaptic volley and the fEPSP. Tracings 1 and 2 and tracings 3 and 4 were obtained in the absence and presence of BDNF, respectively.
(B,D,F) Histograms depicting LTP magnitude (change in fEPSP slope at 46–60 min) induced by θ-burst stimulation in the presence and absence of BDNF for each
group of pretreated slices (control, Aβ25–35, Aβ25–35+Mem). (∗p < 0.05, n = 3–7, paired t-test) Values are mean ± SEM.
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5.21 ± 0.27 vs. CTR: 7.34 ± 0.25, n = 12–14, p < 0.001, three-
way ANOVA with Tukey post hoc test, Figure 3C). Moreover,
BDNF (20 ng/mL) lost its effect when Aβ25–35 (25 µM) was
simultaneously present (BDNF+Aβ: 7.45 ± 0.29 vs. BDNF:
8.55± 0.28, n = 11, p = 0.135, three-way ANOVA with Tukey post
hoc test, Figure 3C). However, this loss of effect was prevented
in the presence of memantine (1 µM) (BDNF+ Aβ+MEM:
9.03± 0.36 vs. BDNF+Aβ: 7.45± 0.29, n = 7–11, p = 0.021, three-
way ANOVA with Tukey post hoc test, Figure 3C). Memantine
(1 µM) per se was able to prevent Aβ25–35-induced decrease
in spine density (Aβ+MEM: 6.41 ± 0.33 vs. Aβ: 5.21 ± 0.27,
n = 8–12, p = 0.037, three-way ANOVA with Tukey post
hoc test, Figure 3C). Interestingly, memantine alone decreased
spine density (MEM: 4.75 ± 0.39 vs. CTR: 7.34 ± 0.25,
n = 6–14, p< 0.001, three-way ANOVA with Tukey post hoc test,
Figure 3C). This can probably be explained by the fact that, in
the absence of a neuronal insult, NMDAR activation might be
required for neuronal homeostasis (Hunt and Castillo, 2012).

Next, we evaluated the contribution of calpains to the
Aβ-mediated BDNF signaling impairment, on the same
morphological readout. To this end, we used calpastatin (1 µM),
a calpains inhibitor. Similarly to the results with memantine,
calpastatin prevented both Aβ25–35-induced decrease in spine
density (Aβ+CAL: 7.90 ± 0.30 vs. Aβ: 5.21 ± 0.27, n = 6–12,
p< 0.001, three-way ANOVA with Tukey post hoc test, Figure 3D
and Supplementary Table 7), as well as BDNF loss of effect in
cultured neurons also exposed to Aβ25–35 (BDNF+Aβ+CAL:
9.43 ± 0.28 vs. BDNF+Aβ: 7.45 ± 0.29, n = 9–11, p < 0.001,
three-way ANOVA with Tukey post hoc test, Figure 3D).
Consistently, calpastatin alone did not significantly affect the
number of dendritic protrusions (CAL: 7.25 ± 0.35 vs. CTR:
7.34 ± 0.25, n = 6–14, p = 1.000, three-way ANOVA with Tukey
post hoc test, Figure 3D).

Altogether, these results suggest that both NMDAR blockade
by memantine and calpain inhibition by calpastatin were able
to restore BDNF effect on dendritic growth and to prevent
Aβ25–35 deleterious effect on spine density. Since we have
shown that NMDAR activation is upstream of calpain activation
(Figure 1), we argue that the NMDAR/Ca2+/calpains pathway
is mechanistically involved in mediating Aβ25–35-driven BDNF
signaling impairment, as evaluated by exogenous BDNF effect on
dendritic protrusions of cultured neurons.

The Inhibition of NMDAR Can Partially
Rescue the Facilitatory Effect of BDNF
Upon LTP
Given the possibility that NMDAR activation could be involved
in TrkB-FL cleavage by calpains and consequently involved in
BDNF loss of function, we next aimed to evaluate whether
NMDAR blockade by memantine could also rescue the action
of BDNF on LTP in hippocampal slices pre-exposed to Aβ

(Jerónimo-Santos et al., 2015).
As previously shown (Fontinha et al., 2008), the 3×3 θ-burst

paradigm delivered in the presence of BDNF (20 ng/mL)
induced a robust LTP, which was significantly higher than that
obtained in the absence of BDNF (LTPBDNF: 38.46 ± 10.46%

vs. LTPCTR: 14.10 ± 3.50%, n = 4, p = 0.049 paired t-test,
Figure 4B). However, when hippocampal slices were pretreated
with Aβ25–35 (25 µM) for 3 h, BDNF (20 ng/mL) failed to
significantly enhance LTP magnitude (LTPAβ: 17.68 ± 11.25%
vs. LTPAβ+BDNF: 20.93 ± 7.95%, n = 3, p = 0.825, paired
t-test, Figure 4D). When hippocampal slices were simultaneously
pre-treated with Aβ25–35 (25 µM) and memantine (1 µM)
for 3 h, the enhancement of LTP magnitude induced by
BDNF was restored (LTPAβ+Mem+BDNF: 31.77 ± 8.59% vs.
LTPAβ+Mem: 19.35 ± 4.14%, n = 7, p = 0.026, paired t-test,
Figure 4F). Interestingly, although CA1 hippocampal θ-burst
LTP is known to be NMDAR-dependent (Citri and Malenka,
2008), pre-treatment with memantine did not significantly affect
LTP, in experimental conditions similar to ours (Pinho et al.,
2017).

Altogether, our data shows that memantine was able to rescue
BDNF boosting effect upon LTP in slices exposed to Aβ25–35.
Thus, our results strongly suggest that Aβ-mediated impairment
of BDNF action relies, at least partially, on a NMDAR-depended
mechanism, also for functional synaptic outcomes.

DISCUSSION

Taken together, our results suggest that Aβ25–35 induces TrkB-
FL cleavage through calpains that are activated, at least partially,
by Ca2+ influx through NMDARs, which likely occurs at
extrasynaptic sites, given the pharmacodynamic properties of
memantine. TrkB-FL cleavage culminates in BDNF signaling
disruption, as highlighted by BDNF loss of function on dendritic
growth and synaptic potentiation. Conversely, when NMDARs
were inhibited by memantine, loss of BDNF signaling was
prevented, with beneficial structural and functional implications,
at the synaptic level.

Brain-derived neurotrophic factor is a neurotrophin with
key regulatory actions, on neuronal survival (Middleton et al.,
2000), structural remodeling of excitatory spine synapses (Alonso
et al., 2004), as well as in dendritic growth (Kumar et al.,
2005) and plasticity (Arevalo and Wu, 2006). It acts through
the activation of TrkB-FL receptors, which are coupled to
three different signaling pathways: (i) the phosphatidylinositol-3-
kinase (PI3K)/Akt pathway, (ii) the Ras/MAPK pathway, and (iii)
the PLCγ pathway. Working together, these pathways underlie
important cognitive processes, including memory formation.
Apart from its full-length cognate receptor (TrkB-FL), BDNF
can also bind to TrkB-TC, whereby a negative feedback on
TrkB-FL signaling is activated (Eide et al., 1996; Dorsey et al.,
2006). Consequently, many neuronal excitotoxic conditions are
associated with downregulation of TrkB-FL and upregulation
of TrkB-TC expression (Gomes et al., 2012). Moreover, BDNF
levels were reported to be decreased in the CNS and in
the blood of AD patients, which might indicate that BDNF
is involved in the pathogenesis of this disease (Song et al.,
2015). Furthermore, changes in BDNF signaling can lead to
synaptic dysfunction that can account for memory deficits
observed in AD (Arancio and Chao, 2007; Schindowski et al.,
2008).
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FIGURE 5 | General overview of the main highlights of this work.

We have previously demonstrated that Aβ-induced
impairment of BDNF actions on hippocampal LTP and
neurotransmitter release were rescued when calpains were
inhibited (Jerónimo-Santos et al., 2015). Given the central
role of BDNF in synaptic physiology, a complete mechanistic
understanding of its loss of function is of the utmost importance.
Since calpains are overactivated by increased levels of Ca2+

(Kelly and Ferreira, 2006, 2007), we hypothesized that NMDARs
could be implicated in the calpain-mediated cleavage of TrkB-FL.
Indeed, NMDARs are an important homeostatic source of Ca2+

influx, but are also known to be involved in pathophysiological
processes. Memantine – 1-amino-3,5-dimethyladamantane – is
a commercially available drug currently used in clinical practice
for the treatment of AD patients (Rogawski and Wenk, 2003;
McShane et al., 2006; Parsons et al., 2007). It is an uncompetitive
NMDA receptor antagonist with strong voltage dependency
and rapid unblocking kinetics (Chen et al., 1992; Parsons et al.,
1993). In addition, memantine has been used in several studies
to selectively block the pathological activation of NMDARs,
while leaving their physiological functions intact (Chen et al.,
1992; Leveille et al., 2008; Papadia et al., 2008; Pinho et al.,
2017). Thus, in the present study, we used memantine as a
pharmacological tool to better understand NMDAR involvement
in the mechanisms underlying TrkB-FL cleavage and its
consequences.

Remarkably, we found that the cleavage of TrkB-FL in cortical
cultured neurons treated with Aβ25–35 was prevented in the
presence of memantine. This suggests that Aβ-induced NMDAR
activation may contribute to the increased intracellular Ca2+

levels responsible for calpain activation and, subsequently, for
TrkB-FL truncation. This is consistent with previous work
showing that Aβ oligomeric species evoke an immediate rise
in intracellular Ca2+ through activation of GluN2B subunit
(Rönicke et al., 2011; Ferreira et al., 2012). NMDAR activation
was shown to be upstream of calpain activation (del Cerro et al.,
1994). Consistently, blockade of GluN2B prevented disruption of
Ca2+ homeostasis induced by Aβ (Ferreira et al., 2012).

It is important to note, however, that distinct isoforms of
calpains are differentially activated by synaptic and extrasynaptic
NMDARs. In fact, synaptic NMDARs prefentially activate
µ-calpains, while m-calpains are activated by eNMDAR (Parsons
and Raymond, 2014). We did not evaluate the independent
activation of different sets of calpains. However, it was
previously shown that m-calpains induce the proteolysis of
striatal-enriched protein phosphatase (STEP), activating the p38
mitogen-activated protein kinase (p38MAPK), wich culminates
in cell death (Xu et al., 2009; Wang et al., 2013). Thus, we
hypothesize that the overactivated calpains that are in the
pathway culminating in TrkB cleavage are, most likely, of the
m-subtype.
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Brain-derived neurotrophic factor is known to facilitate or to
boost hebbian plasticity mechanisms, which, in turn, rely on the
formation of dendritic spines (Tartaglia et al., 2001; Knobloch
and Mansuy, 2008). Therefore, we also evaluated whether
NMDAR inhibition by memantine could prevent the Aβ25–35-
induced BDNF loss of function upon spine density and synaptic
potentiation. The results show that inhibition of NMDARs or
calpains by memantine or calpastatin, respectively, was capable
to restore BDNF effects on spine density in cultured cortical
neurons, previously exposed to Aβ25–35, thus suggesting that
NMDAR activation, probably upstream of calpain overactivation,
contributes to Aβ-mediated BDNF loss of function upon spine
density. This is consistent with previous results demonstrating
that BDNF has important roles in spine outgrowth (Tyler and
Pozzo-Miller, 2001; Ji et al., 2005, 2010; Kellner et al., 2014),
which are impaired by Aβ (Shrestha et al., 2006; Smith D.L. et al.,
2009). In addition, alterations in spine density are thought to
contribute to cognitive deficits (Knobloch and Mansuy, 2008).
Furthermore, it has been shown that NMDAR inhibition prevents
the decrease in synaptic density in several animal models of AD
(Shankar et al., 2007; Wei et al., 2010), which is in agreement with
the data herein reported on cortical cultured neurons.

However, whether such NMDAR excessive activation is
associated with changes in NMDAR subunits expression is
not yet clear. Some evidence suggests that GluN1 mRNA
levels are unchanged in AD patient’s brains (Bi and Sze,
2002), which is consistent with the results we obtained.
On the other hand, it has been reported that expression
of GluN2B mRNA and protein levels are decreased in the
hippocampus and cortex of post-mortem human AD brain
(Bi and Sze, 2002; Hynd et al., 2004; Mishizen-Eberz et al., 2004).
It is possible that certain subunit combinations may be lost
in AD because of selective neuronal loss. If so, retention of
GluN1 transcripts suggests that neurons that express GluN2B
NMDAR are comparatively more susceptible to neurotoxicity
(Hynd et al., 2004). Other reports, however, showed that Aβ

oligomers induced an increase of GluN2B membrane expression
at extrasynaptic sites (Gilson et al., 2015). We did not observe
significant changes in GluN2B protein levels in our experimental
conditions. These discrepancies may be related with differences
between AD models; namely, in our experimental setup, neurons
were acutely exposed to Aβ25–35, which does not recapitulate
the chronic and slow build-up of Aβ in the brains of AD
patients. It may be that, in the early stages of AD before
symptomatic onset, Aβ modulates the activity of NMDARs,
putatively acting as a trigger to neurodegeneration. Furthermore,
Aβ is known to enhance GluN2B-mediated NMDA currents
and extrasynaptic responses. Thus, changes in NMDAR activity
rather than changes in NMDAR composition may be early
involved in the neurodegenerative cascade.

Long-term potentiation, widely accepted as the molecular
substrate for learning and memory (Bliss and Collingridge,
1993), was used as a functional readout to evaluate the
consequences of NMDAR inhibition. BDNF has the capacity
to increase LTP magnitude through TrkB-FL activation (Korte
et al., 1995; Figurov et al., 1996; Minichiello et al., 2002).
Furthermore, LTP is correlated with the formation of new spines

within minutes of induction (Toni et al., 1999; Lüscher and
Malenka, 2012). We previously demonstrated that Aβ-induced
impairments of BDNF actions upon hippocampal LTP are
dependent on calpain activation (Jerónimo-Santos et al., 2015).
The data herein presented expands our understanding of
these processes, since NMDARs inhibition by memantine
was also able to restore BDNF effect upon LTP. Hence, we
hypothesize that, also for LTP, eNMDAR activation should be
upstream of calpain overactivation leading to BDNF signaling
impairment.

It is important to highlight that Aβ25–35 per se decreases
spine density on primary neuronal cultures but has no significant
effect upon LTP on hippocampal slices. Previous reports
have shown that Aβ1–42, Aβ1–40 and the active fragment
Aβ25–35 can significantly impair LTP in rat hippocampal slices
(Chen et al., 2000). However, other reports have shown no
significant changes on LTP magnitude (Smith J.P. et al., 2009;
Jerónimo-Santos et al., 2015). The developmental age and genetic
background of the animals used, the stimulation protocol or Aβ

preparation (Smith J.P. et al., 2009) could explain such absence of
Aβ effect upon LTP.

N-methyl-d-aspartate receptors, which are composed by four
subunits (Paoletti et al., 2013), can be subdivided in synaptic
and extrasynaptic subtypes (Hardingham et al., 2002), depending
on their subcellular localization. NMDAR containing GluN2B
are predominantly located extrasynaptically, while GluN2A-
containing receptors have been mainly found at synaptic domains
(Cull-Candy et al., 2001). The concentration of memantine used
in this study, 1 µM, is within a concentration range that is
known to target extrasynaptic receptors selectively (Xia et al.,
2010). Therefore, we advance the hypothesis that NMDARs
located at extrasynaptic sites are preferentially responsible for
the rise in intracellular Ca2+ induced by Aβ, leading to TrkB-
FL cleavage and the consequent BDNF loss of function. In line
with this thesis, eNMDARs are known to be excessively activated
in the presence of Aβ and in animal models of AD (Li et al.,
2011; Talantova et al., 2013; Hanson et al., 2015). Consistently,
inhibition of GluN2B-NMDARs was shown to prevent or reverse
some of the synaptic deficits in animal models (Paoletti et al.,
2013; Zhou and Sheng, 2013). If BDNF signaling disruption is
prevented in the presence of memantine and given that BDNF is
thought to play important neuroprotective effects, it is intriguing
that the clinical benefit of memantine is only moderate, at best
(Folch et al., 2017). The present work was not designed to answer
this question. However, given that Aβ build-up is known to
begin many years before symptomatic presentation, we argue
that, at the time patients are commonly started on memantine,
BDNF signaling will already be severely compromised, with
little margin for such prophylactic effect (Caselli and Reiman,
2013).

In summary, our data revealed that inhibition of Aβ25–35-
induced NMDAR activation by memantine: (i) prevents TrkB-FL
truncation and (ii) prevents BDNF loss of effect on structural
(spine density) and functional outcomes (LTP magnitude).
Furthermore, we have shown that calpain activation is
downstream of NMDARs and that calpain inhibition prevented
Aβ25–35-induced BDNF loss of effect on dendritic protrusions.
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Thus, we propose that NMDAR activation, particularly at
extrasynaptic sites, is mechanistically involved in Aβ-triggered
intracellular Ca2+ build-up, consequently leading to calpain
activation, TrkB-FL receptor cleavage and BDNF signaling
impairment (Figure 5). By detailing the mechanisms involved in
Aβ-induced cleavage of TrkB receptors and in the early functional
consequences of this dysregulation, these findings highlight the
role of eNMDAR activation upon BDNF signaling dysregulation
in excitotoxic conditions leading to the neuronal dysfunction
occurring in AD.
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