
The long shared history between humans and infectious 
disease places ancient pathogen genomics within the inter­
est of several fields such as microbiology, evolutionary 
biology, history and anthropology. Research on this 
topic aims to better understand the interactions between 
pathogens and their hosts on an evolutionary timescale, 
to uncover the origins of pathogens and to disentangle 
the genetic processes involved in their epidemic emer­
gence among human populations. Over the past 10,000 
years, major transitions in human subsistence strategies, 
such as those that accompanied the Neolithic revolution1, 
likely exposed our species to a novel range of infectious 
agents2. Closer contact with domesticated animals would 
have increased the frequency of zoonotic transmission 
events, and higher human population densities would 
have enhanced the potential of pathogens to propagate 
within and between groups. Throughout human his­
tory, a number of epidemics and pandemics have been 
recorded or are hypothesized to have occurred (Fig. 1). 
Although most of their causative agents still remain 
speculative, robust molecular methods coupled with 
archaeological and historical data can confidently 
demonstrate the involvement of certain pathogens in 
these episodes.

The investigation of past infectious diseases has tra­
ditionally been conducted through palaeopathological  
assessment of ancient skeletal assemblages3,4, although 
this approach is limited by the fact that most acute infec­
tions do not leave visible traces on bone. Since the 1990s, 
the field of ancient DNA (aDNA) has brought molecular 

techniques to this study, providing a diachronic genetic 
perspective to infectious disease research. Initial attempts 
relied on PCR technology5–9, which restricted the study 
of ancient microbial DNA to targeted, short genomic 
fragments that were amplified from ancient human 
remains. This method made infectious disease detection 
possible but gave limited information on the evolution­
ary history of the pathogen. In addition, complications 
associated with the study of aDNA, which is typically 
present at low quantities, is heavily fragmented and har­
bours chemical modifications10–12, hampered efforts to 
reproduce and authenticate early findings13–15.

Over the past decade, major advancements in geno­
mics, in particular, the development of high-​throughput 
sequencing, also called next-​generation sequencing 
(NGS)16, radically increased the amount of data that 
can be retrieved from ancient remains. This techno­
logy has assisted the development of quantitative meth­
ods for aDNA authentication11,12,17–19 and has enabled 
the retrieval of whole ancient pathogen genomes from 
archaeological specimens. The first such genome, pub­
lished in 2011 (ref.20), was that of the notorious bacterial 
pathogen Yersinia pestis, the causative agent of plague. 
Since then, the field has expanded its directions to the 
in-​depth study of infectious disease evolution, providing 
a unique resource for understanding human history.

Here, we review the latest methodological innovations 
that have aided the whole-​genome retrieval and evolu­
tionary analysis of various ancient pathogens (Table 1), 
most of which are still relevant to public health today.  

Ancient pathogen genomics
A scientific field focused on  
the study of whole pathogen 
genomes retrieved from 
ancient human, animal or  
plant remains.

Neolithic revolution
The cultural transition 
associated with the adoption 
of farming, animal husbandry 
and domestication as well as 
the practice of a sedentary 
lifestyle among human 
populations.

Zoonotic transmission
The infectious disease 
transmission from animals  
to humans.
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In the second half of this Review, we highlight the util­
ity of this approach by discussing evolutionary events in 
the history of Y. pestis that have been uniquely revealed 
through the study of ancient genomes.

Methods for isolating ancient microbial DNA
The sweet spot for ancient pathogen DNA. The 
retrieval of DNA from ancient human, animal or plant 
remains carries with it a number of challenges, namely, 
its limited preservation and hence low abundance, its 
highly fragmented and damaged state and the perva­
sive modern-​DNA contamination that necessitates a 
confident evaluation of its authenticity21,22. Efficient 
aDNA recovery is best accomplished via sampling of the 
anatomical element that contains the highest quantity 
of DNA from the target organism. For human aDNA 
analysis, bone and teeth have been the preferred study 
material, given their abundance in the archaeological 
record. Recent studies suggest that the inner-​ear por­
tion of the petrous bone23 and the cementum layer of 
teeth24 have the greatest potential for successful human 
DNA retrieval. However, petrous bone sampling and 
shotgun NGS sequencing of aDNA from five Bronze 
Age skeletons previously shown to be carrying Y. pestis 
failed to detect the bacterium in this source material, 
suggesting that its preservation potential for pathogen 
DNA is low25.

Direct sampling from skeletal lesions, where present, 
has proved a rich source of aDNA for some chronic disease-​ 
causing bacteria, such as Mycobacterium tuberculosis, 
which was isolated from vertebrae26; Mycobacterium 
leprae, which could be isolated from portions of the 
maxilla and various long bones27,28; and Treponema  
pallidum subsp. pallidum and T. pallidum subsp.  
pertenue, which have been isolated from long bones29.  

Of note, the sampling methods for recovering pathogen 
DNA do not generally follow a standardized procedure, 
in part because of the great diversity in tissue tropism and 
resulting disease progression. In addition, acute blood-​
borne infections do not typically produce diagnostic 
bone changes as opposed to those that affect their hosts 
chronically3. Therefore, if infections have caused mortal­
ity in the acute phase, as is the case for individuals from 
epidemic contexts who do not display skeletal evidence 
of infection, the preferred study material has been the 
inner cavities of teeth. Pathogen aDNA is thought to 
be preserved within the remnants of the pulp chamber, 
likely as part of desiccated blood8,17. Consequently, 
tooth sampling has proved successful in the retrieval 
of whole genomes or genome-​wide data (that is, low-​
coverage genomes that have provided limited analytical 
resolution) from ancient bacteria such as Y. pestis20,30–39, 
Borrelia recurrentis40 and Salmonella enterica41; ancient 
eukaryotic pathogens such as Plasmodium falciparum42;  
and ancient viruses such as hepatitis B virus (HBV)43,44 and  
human parvovirus B19 (B19V)45. Even M. leprae, which 
commonly manifests in the chronic form, has been 
retrieved from ancient teeth27,28.

Other types of specimen have also shown potential 
for aDNA retrieval. Examples are dental calculus as a 
source of oral pathogens, such as Tannerella forsythia46; 
calcified nodules, which have yielded whole genomes 
from Brucella melitensis47, Staphylococcus saprophyticus 
and Gardnerella vaginalis48; mummified tissues, which 
have yielded Helicobacter pylori49, Variola virus (VARV; 
also known as smallpox)50,51, M. tuberculosis52 and 
HBV53,54; alcohol-​preserved human tissue as a source for 
Vibrio cholerae DNA55; historical blood stains preserv­
ing P. falciparum and Plasmodium vivax56; frozen and 
formalin-​fixed samples, yielding HIV57 and influenza 

5000 BCE 500 CE 1000 CE

Frequent appearance of infectious 
disease in archaeological record and 
molecular detection of Y. pestis31,33,34,37, 
H. pylori49, B19V45 and HBV43,44

5000–1500 BCE

Hittite plague
14th century BCE

Plague of Athens
430–426 BCE

Antonine Plague
165–180 CE

Epidemics among Native Americans, 
e.g. cocoliztli41 and smallpox
15th to 19th century CE

Black Death and 
European plague
epidemics20,30,32,38

1346–1772 CE

Tuberculosis, cholera 
pandemics, third plague 
pandemic, Spanish flu58, 
HIV57,  SARS  and Ebola
19th to 21st century CE

1500 CE1000 BCE 500 BCE 0 CE

Plague of Cyprian
249–262 CE

Plague of Justinian and 
first plague pandemic35,36

541–750 CE

Neolithic Age

Period of the
Roman Empire Period of the Byzantine Empire

Classical and late antiquityBronze Age

Iron Age

Medieval period

Modern era

European 
colonization
of the Americas

Copper
Age

Fig. 1 | Selected cultural time periods and epidemics or pandemics of human history. This overview provides a 
timeline of key events in predominantly Eurasian history since the Neolithic period (upper panel, grey squares), which 
have overlapped temporally and geographically with major historical epidemics or pandemics (lower panel, beige 
squares). The respective citations are indicated, in which whole-​genome or low-​coverage genome-​wide data from 
pathogens implicated in those events have been reconstructed by ancient DNA analysis. B19V, human parvovirus B19; 
bce, before current era; ce, current era; HBV, hepatitis B virus; H. pylori, Helicobacter pylori; SARS, severe acute respiratory 
syndrome; Y. pestis, Yersinia pestis.

Pandemics
Refers to increased, often 
sudden, disease occurrence 
within populations across more 
than one region or continent, 
whereas epidemics refers to 
increased disease occurrences 
within a confined region 
or country.

Palaeopathological 
assessment
The evaluation of the health 
status of ancient individuals or 
populations, usually through 
the analysis of disease marker 
presence on skeletal 
assemblages.

Ancient DNA
(aDNA). The DNA that has 
been retrieved from historical, 
archaeological or 
palaeontological remains.

Tropism
Refers to the type of tissue  
or cell in which infection is 
established and supported.

Pulp chamber
The highly vascularized inner 
tooth cavity that is contained 
within the crown and root 
portions.

Dental calculus
Calcified dental plaque.
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Table 1 | Ancient pathogen genomic data recovered from archaeological or historical specimens

Pathogen Infectious disease Method of retrieval Number of 
genomesa

Biological insights Refs

Bacterial pathogens
Borrelia 
recurrentis

Relapsing fever Shotgun sequencing 1 • Isolation from 15th-​century ce human remains from 
Norway

• Genome signatures of reductive evolution, associated 
with typical virulence profile, and recent ecological 
adaptation

40

Brucella 
melitensis

Brucellosis Shotgun sequencing 1 • Isolation from a calcified nodule identified in an 
individual's pelvic girdle

• Presence of B. melitensis in Sardinia during the 14th 
century ce

47

Gardnerella 
vaginalis

Bacterial vaginosis Shotgun sequencing 1 • Identified in human remains from Troy dating to 13th 
century ce

• Association with women’s mortality during childbirth in 
the past

• The identified strain clusters among modern G. vaginalis 
diversity

48

Helicobacter 
pylori

• Ulcers of the upper 
gastrointestinal tract

• Increased risk of gastric 
carcinoma

In-​solution capture 
followed by NGS

1 • Isolation from European Copper Age, 5,300-year-​old 
mummy (Ötzi)

• Unadmixed strain, contrary to modern European strains, 
which are hybrids of two ancestral populations

49

Mycobacterium 
leprae

Lepromatous leprosy • Shotgun sequencing
• Microarray-​based 

capture followed by 
NGS

27 • First de novo assembled ancient pathogen genome
• Estimated emergence >5,000 years ago
• European origin of leprosy in the Americas
• High M. leprae diversity in medieval Europe

27,28, 

105,201

Mycobacterium 
tuberculosis

Tuberculosis • Shotgun sequencing
• Microarray-​based 

capture followed 
by NGS

19 • Genomes from pre-​Columbian human infections show 
phylogenetic clustering within animal-​adapted lineage 
present today in seals

• Molecular dating analysis suggests emergence of MTBC 
<6,000 years ago

• Analysis of European genomes shows past occurrence 
of multiple infections and suggests origin of lineage 4 
during the 4th to 5th century ce

26,52,123

Salmonella 
enterica 
subsp. enterica 
serovar 
Paratyphi C

Enteric (paratyphoid) fever • Shotgun sequencing
• Microarray-​based 

capture followed  
by NGS

• In-​solution capture 
followed by NGS

11 • S. enterica subsp. enterica serovar Paratyphi C presence 
in 12th-​century ce Norway

• Paratyphi C serovar was also identified among  
16th-​century individuals from Mexico that were 
associated with the major post-​contact ‘cocoliztli’ 
epidemic

41,109

Staphylococcus 
saprophyticus

• Urinary tract infections
• Puerperal fever

Shotgun sequencing 1 • Identified in ~800-year-​old human remains from Troy
• Association with women’s mortality during childbirth in 

the past
• The identified lineage is not commonly associated with 

human disease today

48

Tannerella 
forsythia

Periodontal disease Shotgun sequencing 1 • Isolation from medieval human remains  
(circa 950–1200 ce)

• First pathogen genome reconstructed from ancient 
dental calculus

46

Treponema 
pallidum

• Syphilis (Treponema 
pallidum subsp. pallidum)

• Yaws (Treponema 
pallidum subsp. pertenue)

• Bejel (Treponema pallidum 
subsp. endemicum)

Microarray-​based 
capture followed  
by NGS

3 • Isolated from individuals who lived in Mexico City 
between the 17th and 19th centuries ce

• Different Treponema subspecies (T. pallidum subsp. 
pallidum and subsp. pertenue) caused similar skeletal 
lesions usually identifiable as skeletal syphilis in infants

29

Vibrio cholerae Cholera Microarray-​based 
capture followed  
by NGS

1 • Isolation from 19th-​century alcohol-​preserved intestinal 
specimen from an individual affected during the second 
cholera pandemic

• The identified strain shows highest similarity with the 
classic pathogenic biotype O1

55

Yersinia pestis Bubonic, pneumonic and 
septicaemic plague

• Shotgun sequencing
• Microarray-​based 

capture followed 
by NGS

• In-​solution capture 
followed by NGS

38 • Bacterium affected humans as early as 5,000 years ago
• Both flea-​adapted and non-​adapted variants were 

present in Eurasia during the Bronze Age
• Causative agent of the Plague of Justinian  

(6th century ce)
• Causative agent of Black Death and persistence  

in Europe during the second plague pandemic  
(14th to 18th century ce)

• Possible European origin of third plague pandemic lineage

20,30–39
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virus58 RNA; and dried plant leaves from herbarium 
collections, preserving Phytophthora infestans59,60, the 
oomycete that caused the Irish potato famine.

Segregating the metagenomic soup: methods for 
pathogen detection. Regardless of the source of 
genetic material, most ancient specimens yield complex 
metagenomic data sets. Poorly preserved aDNA usually 
makes up a miniscule fraction of the total genetic mate­
rial extracted from a sample (<1%), and the majority of 
DNA usually stems from organisms residing in the envi­
ronment41. Hence, specialized protocols are necessary 
for the detection and isolation of ancient pathogen DNA 
and its confident segregation from a rich environmental 
DNA background (Fig. 2).

In this context, laboratory-​based techniques are sep­
arated into those that target a specific microorganism 
and those that screen for several pathogenic micro­
organisms simultaneously (Fig. 2). Methods that screen 
for a single microorganism have used species-​specific 
assays of conventional or quantitative PCR (also known 
as real-​time PCR)17,61–64, as well as hybridization-​based 
enrichment techniques17,26,28 (Fig. 2). These methods 
are particularly useful when the target microorganism 
is known, for example, in the presence of diagnostic 
skeletal lesions among the studied individuals26,28, or 
when a hypothesis exists for the causative agent of an 
epidemic17. By contrast, broad laboratory-​based patho­
gen screening in aDNA research has used microarrays 
for both targeted enrichment65 and fluorescence-​based 

Pathogen Infectious disease Method of retrieval Number of 
genomesa

Biological insights Refs

Viral pathogens

HBV Viral hepatitis • Shotgun sequencing
• In-​solution capture 

followed by NGS
• Whole-​genome 

PCRb

17 • Identified in ancient human specimens as early as 
7 ,000 years ago

• Neolithic genome lineage related to contemporary 
strains identified in African non-​human primates

• Complex evolutionary history of HBV and identification 
of ancient recombination event giving rise to genotype 
A strains

43,44, 

53,54

HIV AIDS Whole-​genome PCRb 8 • Analysis of HIV RNA from archival specimens of 
seropositive individuals enrolled in HBV studies during 
the late 1970s

• HIV was introduced into the Americas from the Caribbean 
in the early 1970s

57

B19V • Erythema infectiosum 
(fifth disease) in children

• Arthropathies in adults
• Hydrops fetalis or fetal 

death in pregnant 
women

• Pure red-​cell aplasia

In-​solution capture 
followed by NGS

10 • Genomic signatures of B19V identified in human remains 
dating as early as ~7 ,000 years ago

• Contrary to previous estimates of a most recent common 
ancestor younger than 200 years, phylogenetic and 
molecular dating analysis of ancient genomes showed 
a much lengthier association of B19V with human 
populations

45

Influenza virus Influenza Whole-​genome PCRb 1 • First reconstructed genome from historical RNA virus
• Avian source of 1918 influenza pandemic (Spanish flu, 

1918–1920)
• Reconstructed virus particle displayed increased 

virulence under laboratory conditions

58,202

VARV Smallpox In-​solution capture 
followed by NGS

1 • Genome reconstruction from a 17th-​century mummy 
from Lithuania

• Recent emergence of 20th century VARV lineages 
(divergence during the 18th century ce)

50

Eukaryotic pathogens

Phytophthora 
infestans

Late blight (also known as 
potato blight)

Shotgun sequencing 18 • First sequenced ancient eukaryotic (plant) pathogen 
genomes

• Isolated from historical herbarium specimens
• A unique Phytophthora infestans genotype caused 

the Irish potato famine and during the 1900s became 
replaced by the US-1 lineage that dominated worldwide 
until the 1970s

59,60

Plasmodium 
falciparum and 
Plasmodium 
vivax

Malaria In-​solution capture 
followed by NGS

5 • Oldest Plasmodium falciparum detection from southern 
Italy (1st to 2nd century ce)

• Plasmodium falciparum and Plasmodium vivax 
mitochondrial genome isolation from 20th century 
microscopy slides

• Possible introduction of Plasmodium vivax in the Americas 
through European contact

42,56

B19V, human parvovirus B19; ce, current era; HBV, hepatitis B virus; MTBC, Mycobacterium tuberculosis complex; NGS, next-​generation sequencing; VARV, variola 
virus. aThe indicated numbers include whole pathogen genomes and specimens yielding genome-​wide data. bWhole-​genome PCR amplicons from the studies of 
influenza virus58, HIV57 and HBV54 that were sequenced using capillary sequencing (Sanger method).

Metagenomic
A term used to describe a 
specimen or data set that 
includes nucleic acid 
sequences from all organisms 
within the sampled proportion.

Table 1 (cont.) | Ancient pathogen genomic data recovered from archaeological or historical specimens
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Fig. 2 | Methods for the detection and isolation of pathogen DNA from 
ancient metagenomic specimens. The diagram provides an overview of 
techniques used for pathogen DNA detection in ancient remains by 
distinguishing between laboratory and computational methods. In both 
cases, processing begins with the extraction of DNA from ancient 
specimens183. As part of the laboratory pipeline, direct screening of extracts 
can be performed by PCR (quantitative (qPCR) or conventional) against 
species-​specific genes, as done previously17,61,63,64. PCR techniques alone, 
however, can suffer from frequent false-​positive results and should 
therefore always be coupled with further verification methods such as 
downstream genome enrichment and/or next-​generation sequencing 
(NGS) in order to ensure ancient DNA (aDNA) authentication of putatively 
positive samples. Alternatively , construction of NGS libraries184,185  
has enabled pathogen screening via fluorescence-​based detection on 
microarrays66 and via DNA enrichment approaches17. The latter has been 

achieved, through single locus in-​solution capture26,28 or through 
simultaneous screening for multiple pathogens using microarray-​based 
enrichment of species-​specific loci65 and enables post-​NGS aDNA 
authentication. In addition, data produced by direct (shotgun) sequencing 
of NGS libraries before enrichment can also be used for pathogen screening 
using computational tools. After pre-​processing, reads can be directly 
mapped against a target reference genome (in cases for which contextual 
information is suggestive of a causative organism) or against a multigenome 
reference composed of closely related species to achieve increased 
mapping specificity of ancient reads. Alternatively , ancient pathogen DNA 
can also be detected using metagenomic profiling methods, as presented 
elsewhere41,71,72, through taxonomic assignment of shotgun NGS reads.  
Both approaches allow for subsequent assessment of aDNA authenticity 
and can be followed by whole pathogen genome retrieval through targeted 
enrichment or direct sequencing of positive sample libraries.
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detection66, whereby probes are designed to represent 
unique or conserved regions from a range of pathogenic 
bacteria, parasites or viruses. Although amplification-​
based or fluorescence-​based approaches can be fast and 
cost-​effective for screening large sample collections17,38, 
enrichment-​based techniques are usually coupled with 
NGS and therefore provide data that can be used to 
assess aDNA authenticity.

When shotgun-​sequencing data are generated, com­
putational screening approaches can be used to detect 
the presence of pathogen DNA as well as for meta­
genomic profiling of ancient specimens (Fig. 2). In cases 
for which a causative agent is suspected, NGS reads can 
be directly mapped (for example, using the read align­
ment software Burrows–Wheeler aligner67) against a 
specific reference genome or against a multigenome 
reference that includes several species of a certain genus 
with the purpose of achieving a higher mapping speci­
ficity to the target organism34 (Fig. 2). In addition, broad 
approaches involve the use of metagenomic techniques 
for pathogen screening. Examples of tools that have 
shown their effectiveness with ancient metagenomic 
DNA include the widely used Basic Local Alignment 
Search Tool (BLAST)68; the MEGAN Alignment Tool 
(MALT)41, which involves a taxonomic binning algorithm 
that can use whole-​genome databases (such as the 
National Center for Biotechnical Information (NCBI) 
Reference Sequence (RefSeq) database69); Metagenomic 
Phylogenetic Analysis (MetaPhlAn)70, which is also 
integrated into the metagenomic pipeline MetaBIT71 
and uses thousands (or millions) of marker genes for 
the distinction of specific microbial clades; or Kraken72, 
an alignment-​free sequence classifier that is based on  
k-​mer matching of a query to a constructed database.

Taxonomic sequence assignments from the above 
methods, however, should be interpreted with caution, 
mainly because some pathogenic microorganisms have 
close environmental relatives that are often insuffi­
ciently represented in public databases. For example, a 
>97% sequence identity was shown between environ­
mental taxa and human-​associated pathogens such as 
M. tuberculosis and Y. pestis according to an analysis of 
16S ribosomal RNA genes73. As such, given that envi­
ronmental DNA often dominates ancient remains that 
stem from burial contexts74, analyses should always 
ensure a qualitative assessment of assigned reads, that 
is, an evaluation of their mapping specificity and their 
genetic distance (also called edit distance) to the puta­
tively detected organism. In addition, one should con­
sider the known aDNA damage characteristics as criteria 
for data authenticity. Although several types of chemical 
damage can affect post-​mortem DNA survival, certain 
characteristics have been more extensively quantified. 
The first, termed depurination, is a hydrolytic mecha­
nism under which purine bases become excised from  
DNA strands. This process results in the formation of 
abasic sites and is a known contributor to the fragmen­
tation patterns observed in aDNA. As such, an increased 
base frequency of A and G compared with C and T 
immediately preceding the 5ʹ ends of aDNA fragments 
is often considered a criterion for authenticity12. A sec­
ond type of damage commonly identified among aDNA 

data sets is the hydrolytic deamination of C, whereby  
a C base is converted into U (and detected as its DNA 
analogue, T)12,75. This base modification usually occurs 
at single-​stranded DNA overhangs that are most acces­
sible to environmental insults, resulting in an increased 
frequency of miscoding lesions at the terminal ends of  
aDNA fragments11,12. Consequently, the evaluation  
of DNA damage profiles (for instance, by using map­
Damage2.0 (ref.76)) is a prerequisite for authenticating 
ancient pathogen DNA and is necessary for ensuring 
aDNA data integrity in general. More detailed overviews 
of authentication criteria in ancient pathogen research 
have been reviewed elsewhere19,73.

Targeted enrichment approaches to isolate whole 
ancient pathogen genomes. Evolutionary relationships 
between past and present infectious agents are best 
determined through the use of whole-​genome sequences 
of pathogens. However, the recovery of high-​quality data 
is often challenging owing to the aforementioned char­
acteristics of aDNA and therefore requires specialized 
sample processing. For example, in cases in which aDNA 
authenticity has already been achieved in the detection 
step, U residues resulting from post-​mortem C deami­
nation can be entirely77 or partially78 excised from aDNA 
molecules using the enzyme uracil-​DNA glycosylase 
(UDG) to avoid their interference with downstream read 
mapping and variant calling.

In addition, given the low proportion of patho­
gen DNA in ancient remains, a common and cost-​
effective approach for whole-​genome retrieval involves 
microarray-​based or in-​solution-based hybridization 
capture. Both methods constitute a form of genomic selec­
tion of continuous or discontinuous genomic regions  
through the design and use of single-​stranded DNA or 
RNA probes that are complementary to the desired tar­
get. Microarray-​based capture utilizes densely packed 
probes that are immobilized on a glass slide79. It is cost-​
effective in that it permits the parallel enrichment of 
molecules from several libraries that can be subsequently 
recovered through deep sequencing, although competi­
tion over the probes can impair enrichment efficiencies 
in specimens with comparatively lower target DNA con­
tents. Nevertheless, this type of capture has shown its 
effectiveness in the recovery of both ancient pathogen 
and human DNA20,26,28,41,55,80.

More recently, in-​solution-based capture approaches 
have gained popularity owing to their capacity for greater 
sample throughput without compromising capture effi­
ciency81–83; every sample library can be captured indi­
vidually, thus providing, in principle, an equal probe 
density per specimen. This technique has contributed 
to the increased number of specimens from which 
human genome-​wide single-​nucleotide polymorphism 
(SNP) data could be retrieved84,85, even from climate 
zones that pose challenges to aDNA preservation (pre­
sented elsewhere86–88). In addition, in-​solution-based 
capture has recently become the preferred method for 
microbial pathogen genome recovery for both bacteria 
and DNA viruses (for examples, see refs34,37,41,43,45,49,50). 
Nevertheless, deep shotgun sequencing alone has also 
been used for human89–91 and pathogen28,33,48 high-​quality 

Taxonomic binning
An algorithm that assigns 
metagenomic DNA reads to a 
species or a higher taxonomic 
rank (for example, genus or 
family) based on the sequence 
specificity.

k-​mer matching
The matching, for each read,  
of multiple subsequences of 
length k without mismatches  
to a database.

Depurination
A hydrolytic reaction in which 
the β-​N-glycosidic bond of a 
purine (adenine or guanine) is 
cleaved, causing its excision 
from a DNA strand.

Deamination
The hydrolytic removal of an 
amine group (NH2) from a 
molecule. In ancient DNA 
studies, the term deamination 
most often refers to the 
deamination of cytosine 
residues into uracils.

Variant calling
The identification of 
polymorphisms (nucleotide 
differences) in sequenced data 
by comparison to a reference.
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genome reconstruction, especially for specimens with 
fairly high endogenous DNA yields, although this  
frequently carries with it a greater production cost.

Disentangling microbial evolution
Ancient pathogen genomes as molecular fossils. 
In the absence of ancient pathogen genomes, the tim­
ings of infectious disease emergence and early spread 
are inferred mainly through comparative genomics of 
modern pathogen diversity92,93, palaeopathological eval­
uation of ancient skeletal remains94 or analysis of his­
torical records95,96. Such approaches are highly valuable  
and, when combined, can be used to build an inter­
disciplinary picture of infectious disease history; however,  
limitations also exist. For example, the analysis of con­
temporary pathogen genetic diversity considers only a 
short time depth of available data and cannot predict 
evolutionary scenarios that derive from lineages that 
are now extinct. In addition, skeletal markers of specific 
infections in past populations only exist for a few con­
ditions and, when present, can rarely be considered as 
definitive, as numerous differential diagnoses can exist 
for a given skeletal pathology97. Similarly, historically 
recorded symptoms can often be misinterpreted given 
that past descriptions may be unspecific and do not 
always conform to modern medical terminology98.

In the past decade, the reconstruction of ancient 
pathogen genomes has complemented such analyses 
with direct molecular evidence, often revealing aspects 
of past infections that were unexpected on the basis of 
existing data. The recent identification of HBV DNA in 
a mummified individual showing a vesicopustular rash53, 
which is usually considered characteristic of infection 
with VARV, highlights the importance of molecular 
methods in evaluating differential diagnoses. The oldest 
recovered genomic evidence of HBV to date was from a 
7,000-year-​old individual from present-​day Germany44, 
which shows that this pathogen has affected human 
populations since the Neolithic period. In addition, the 
virus was identified recently in human remains from  
the Bronze Age, Iron Age and up until the 16th century 
of the current era (ce) in Eurasia43,44,53,54.

Regarding bacterial pathogens, the identification of  
B. recurrentis in a 15th-​century individual from Norway40  
showed that — aside from Y. pestis — other vector-​
borne pathogens were also circulating in medieval 
Europe. Furthermore, the causative agents of syphilis 
and yaws, T. pallidum subsp. pallidum and T. pallidum 
subsp. pertenue, respectively, were recently identified in 
different individuals from colonial Mexico29 who exhib­
ited similar skeletal lesions. This study demonstrates the 
power of ancient pathogen genomics in distinguishing 
past infectious disease agents that are genetically and 
phenotypically similar but that differ greatly in their 
public health significance. Finally, the identification of 
G. vaginalis and S. saprophyticus in calcified nodules 
from a woman’s remains (13th-​century Troy)48 directly 
implicates these bacteria in pregnancy-​related com­
plications in the past. These findings, as well as other 
insights gained from analyses of ancient pathogen 
genomes (Table 1), demonstrate the ability of aDNA to 
contribute aspects of infectious disease history beyond 

those accessible by the palaeopathological, historical and 
modern genetic records.

Assessing within-​species evolutionary relationships. 
The reconstruction of whole pathogen genomes has not 
only been a tool for demonstrating infectious disease 
presence in the past but also aided in the robust infer­
ence of microbial phylogeography, which is important 
for understanding the processes that influence pathogen 
distribution and diversity over time.

The evaluation of genetic relationships between 
ancient and modern pathogens is often conducted by 
direct whole-​genome or genome-​wide SNP compari­
sons of bacteria20,27,29,36,48, viruses43,44,50,53 or mitochondrial 
genomes and nuclear genome data from eukaryotic 
microorganisms56,59,60. Hence, accurate variant calling 
is critical for drawing reliable evolutionary inferences, 
although this process is often a challenge when handling 
data sets derived from samples with high rates of DNA 
fragmentation (resulting in ultrashort read data), low 
endogenous DNA content and high levels of DNA dam­
age. In these cases, increased accuracy is best achieved 
through stringent NGS read mapping parameters  
and through visual inspection of the sequences overlap­
ping the studied SNPs35. In addition, histograms of SNP 
allele frequencies — used to estimate the frequency of 
heterozygous calls in haploid organisms26,52 — can often 
demonstrate the effects of environmental contamination 
on ancient microbial data sets41.

Once variant calls are authenticated, one of the most 
common types of evolutionary inference in pathogen  
research is through phylogenetic analysis, which is a 
powerful means of resolving the genetic history of clonal 
microorganisms (Fig. 3). Among the most commonly 
used tools in ancient microbial genomics are MEGA99, 
which comprises several phylogenetic methods; 
PhyML100, RAxML101 and IQ-​TREE102, which implement 
maximum-​likelihood approaches; MrBayes103, which 
uses a Bayesian approach; and programs used for phylo­
genetic network inference, such as SplitsTree104. Two 
notable studies that examined phylogenetic relationships 
among ancient M. leprae genomes revealed a high strain 
diversity in Europe between the 5th and 14th centuries 
ce27,105. Considered alongside the oldest palaeopatholog­
ical cases of leprosy dating to as early as the Copper and 
Bronze Age in Eurasia106,107 and the high frequency of 
protective immune variants against the disease identi­
fied in modern-​day Europeans108, these results may sug­
gest a long history of M. leprae presence in this region. 
Moreover, the phylogenetic analysis of a 12th-​century 
S. enterica subsp. enterica genome from Europe showed 
its placement within the Paratyphi C lineage109. Further 
identification of the bacterium in 16th-​century colonial 
Mexico41 revealed it as a previously unknown candidate 
pathogen that was likely introduced to the Americas 
through European contact. Given the low frequency of  
Paratyphi C today, these results may be indicative  
of a higher prevalence in past populations. Finally, an 
example from viral genomics is the recovery of HIV  
RNA from degraded serum specimens57, which high­
lighted the importance of archival collections in reconcil­
ing the expansion of recent pandemics. Specifically, these 
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data were able to dispute a long-​standing hypothesis  
regarding the initiation of HIV spread in the USA.

When the evolutionary histories of pathogens are 
influenced equally by mutation and recombination, 
additional tools have been used to identify recombining 

loci and to determine genetic relationships within and 
between microbial populations (Fig. 3). For example, 
the programs ClonalFrameML110 and Recombination 
Detection Program 4 (RDP4)111 have been used to 
infer potential recombination regions within ancient 
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bacteria29,37 and viruses43,44,53, respectively. In addition, 
principal component analysis (PCA) and ancient admix­
ture component estimation using the Bayesian modelling 
frameworks STRUCTURE112 and fineSTRUCTURE113  
on both multilocus sequence typing (MLST) and 
whole-​genome data were recently used for population 
assignment of a 5,300-year-​old H. pylori genome49. 
These analyses revealed key information on changes 
of the bacterial population structure that occurred in 
Europe over time. Furthermore, the recent study of 
ancient T. pallidum subsp. pallidum and T. pallidum 
subsp. pertenue29 used the program TREE-​PUZZLE114, 
a maximum-​likelihood-based phylogenetic algorithm, to 
gain a more robust phylogenetic resolution of ambiguous 
branching patterns among bacterial lineages.

Such whole-​genome analyses of both clonal and 
recombining pathogens have helped to elucidate not 
only past infectious disease phylogeography but also 
possible zoonotic or anthroponotic transmission events 
that reveal disease interaction networks through time. 
Among others (Table 1), a notable example is that of 
1,000-year-​old pre-​Columbian M. tuberculosis genomes 
isolated from human remains, which showed a phylo­
genetic placement among animal-​adapted lineages, 
being most closely related to a strain circulating in 
modern-​day seals and sea lions26. Although the extent 
to which these strains were capable of human-​to- 
human transmission is unclear, this study supports 
the existence of tuberculosis in pre-​Columbian South 
America and is helping to delineate the genomic and 
adaptive history of M. tuberculosis in the region before 
European contact26. Another example of intriguing 

evolutionary relationships revealed uniquely through 
the study of ancient pathogen genomes includes analy­
ses of Neolithic and Bronze Age HBV. These genomes 
grouped in extinct lineages that are most closely related 
to modern strains identified exclusively among African 
non-​human primates43,44, a result that raises further 
questions regarding past transmission events in HBV 
history. Finally, the phylogenetic analysis of medieval 
M. leprae genomes suggested a European source for lep­
rosy in the Americas28, reinforcing the hypothesis that 
humans passed the disease to the nine-​banded arma­
dillo, the most common reservoir for this disease in the 
New World115.

Importantly, the resolution of evolutionary analyses 
will depend on the quality, size and evenness of spatial 
sampling in the comparative data set. Therefore, the 
incomplete and often biased sampling of ancient and 
modern microbial strains can introduce challenges for 
discerning true biological relationships and past evo­
lutionary events. Nevertheless, in recent years, marked 
reductions in NGS costs116 have aided the increased pro­
duction of large whole-​genome microbial data sets from 
present-​day strains. Current efforts for centralized data 
repositories that are continuously curated (such as the 
Pathosystems Resource Integration Center (PATRIC) 
database117 and the recently introduced EnteroBase118) 
and the development of robust phylogenetic frameworks 
that can accommodate genome-​wide data from >100,000 
strains (for example, GrapeTree119) are becoming valua­
ble for integrating large sample sizes into microbial evo­
lutionary analyses. In combination with the increasing 
number of ancient microbial data sets, these tools will 
aid in the evaluation of genetic relationships by offering 
higher resolution.

Inferring divergence times through molecular  
dating. Apart from providing a molecular fossil record 
and revealing diachronic evolutionary relationships, 
a third analytical advantage gained from the retrieval 
of ancient pathogen genomes is that their ages can be 
directly used for calibration of a molecular clock. The 
ages of ancient specimens can be determined through 
contextual information, through archaeological artefacts 
or directly through radiocarbon dating, predominantly 
of bone or tooth collagen. Such temporal calibrations 
are required for high-​accuracy estimations of micro­
bial nucleotide substitution rates and in turn lineage 
divergence dates (Fig. 3), particularly because both esti­
mations seem to be highly influenced by the time depth 
covered by the genomic data set120. For such analyses, 
the most widely used program is the Bayesian statistical 
framework BEAST121,122.

A characteristic example of how ancient calibration 
points can considerably affect divergence date estimates 
is that of M. tuberculosis. According to modern genetic 
data and human demographic events, the M. tuberculosis  
complex (MTBC) evolution was suggested to have fol­
lowed human migrations out of Africa, with its emer­
gence estimated at more than 70,000 years ago93. Recently, 
its emergence was re-​estimated to a maximum of  
6,000 years ago on the basis of the 1,000-year-​old myco­
bacterial genomes from Peru26, a result that was further 

Fig. 3 | Methods for whole-​genome analysis of clonal and recombining pathogens. 
The diagram is an overview of whole-​genome analysis applied to date for ancient 
microbial data sets and distinguishes the methods used for clonal and recombining 
pathogens; of note, the depicted summary is not meant to represent an exhaustive 
pipeline of all possible analyses that could be undertaken. Ancient genome reconstruction 
is usually initiated through reference-​based mapping or through de novo assembly of  
the data, although the latter has only been possible in exceptional cases of ancient DNA 
(aDNA) preservation28,44. Subsequently , the genomes are assessed for their coverage 
depth and gene content for evaluation of their quality , which is also relevant for the 
comparative identification of virulence genes over their evolutionary time frames.  
Here, we show an example of virulence factor presence-​or-absence analysis in the form of 
a heat map, as done previously33,34,37,41. In addition, a comparison of the ancient genome 
or genomes with modern genomes can be carried out for single-​nucleotide polymorphism 
(SNP) identification and for assessment of SNP effects (using SnpEff186), which is 
particularly relevant for variants that seem to be unique to the ancient genome or 
genomes. Initial evolutionary inference can often be carried out through phylogenetic 
analysis and by testing for possible evidence of recombination in the analysed data set, 
for example, by comparing the support of different phylogenetic topologies114 and by 
identifying potential recombination regions and homoplasies110,111. If the data support 
clonal evolution, robust phylogenetic inference (for example, through a maximum-​
likelihood approach) is followed by assessment of the temporal signal in the data124,125. 
If the data set shows a sufficient phylogenetic signal, molecular dating analysis and 
demographic modelling are considered possible, although the size of the data set 
will determine whether such analyses will be feasible and meaningful. Alternatively , 
if recombination is confirmed, genetic relationships between microbial clades or 
populations can be determined through phylogenetic network analysis104 or through 
the use of population genetic methods such as principal component analysis (PCA) and 
identification of ancestral admixture components112,113. In this case, the assessment of 
the temporal signal and proceeding with molecular dating analysis is cautioned and 
likely best performed after exclusion of recombination regions from all genomes in the 
data set. MRCA , most recent common ancestor. NGS, next-​generation sequencing.

Molecular clock
A term used to describe that 
genome evolution occurs as a 
function of time and, therefore, 
the genetic distance between 
two living forms is proportional 
to the time of their divergence.

Radiocarbon dating
A technique to estimate the 
age of a specimen on the basis 
of the amount of incorporated 
radiocarbon (14C) that after the 
death of an organism gradually 
becomes lost over time.

Nucleotide substitution rate
Denotes the frequency of 
substitution accumulation in  
an organism within a given 
time; usually represented as 
substitutions per site per year.

Divergence dates
The dates of separation 
between two phylogenetic 
lineages, for example, the split 
between two species.

◀
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corroborated by the incorporation of 18th-​century 
European MTBC genomes in the dating analysis26,52,123.

In molecular phylogenies, the length of each individ­
ual branch usually reflects the number of substitutions 
acquired by an organism within a given period of time 
and, as such, varying branch lengths should represent 
heterochronous sequences. Therefore, an important pre­
requisite for a robust dating analysis is that the nucleo­
tide substitution rate of the species whose phylogeny is to 
be dated behaves in a ‘clock-​like’ manner, meaning that 
phylogenetic branch lengths correlate with archaeological 
dates or sampling times. Such relationships can be assessed 
through date randomization and root-​to-​tip regression tests 
(Fig. 3). The former is used to assess the effect of arbi­
trary exchange of phylogenetic tip dates on the nucleo­
tide substitution rate and divergence date estimates124, 
whereas the latter is used for estimation of a correlation 
coefficient (r) and coefficient of determination (R2)  
by relating the tip date of each taxon to its SNP distance 
from the tree root (using, for example, the program Temp­
Est125). The resulting values determine whether there  
is a temporal signal in the data and suggest whether 
branches within a phylogeny evolve at a constant rate, in 
which case a strict molecular clock126 can be statistically 
tested, for example, using MEGA99 or marginal likelihood 
estimations127,128, and applied. If branches are affected by 
differences in their evolutionary rates, a relaxed clock129 
would be more appropriate. In general, a constant mole­
cular clock will rarely reliably describe the history of a 
microbial species, even more so for infectious pathogens 
whose replication rates vary between active and latent or 
between epidemic and dormant phases120,130. In certain 
cases, neither of the two models may fit the data, such 
as when extensive rate variation weakens the temporal 
signal. This challenge was encountered in initial attempts 
to date the Y. pestis phylogeny using too few ancient cali­
bration points36,130. Similar limitations can arise when 
the evolutionary history of a microorganism is vastly 
affected by recombination, as observed for HBV44,53, 
although HBV molecular dating was recently attempted 
using a different genomic data set and suggested that the 
currently explored diversity of Old and New World pri­
mate lineages (including all human genotypes) may have 
emerged within the last 20,000 years43.

Molecular dating analysis requires the use of an appro­
priate demographic model for the available data, which can 
be determined through model-​testing approaches (for 
example, through marginal likelihood estimations127,128). 
Currently, the most widely used models for estimating 
dates of divergence are the coalescent constant size131, 
which assumes a continuous population size history 
— and is unrealistic for epidemic pathogens — and 
the coalescent skyline132, which can estimate effective 
population size (Ne) changes over time. Moreover, the 
birth–death demographic model133,134, which is cur­
rently unexplored within aDNA frameworks, may prove 
an insightful analysis tool in the future. This model has 
shown its applicability on comprehensive pathogen 
data sets from modern-​day epidemic contexts133. It has 
the ability to incorporate prior knowledge on incom­
plete sampling proportions and sampling biases within 
a data set, a frequent caveat of aDNA studies that is  

currently unaccounted for within molecular dating analy­
ses. Finally, recently developed fast-​dating algorithms  
should also be noted, for example, the least-​squared 
dating (LSD) program, which does not use constrained 
demographic models but can handle uncorrelated rate 
variation among phylogenetic branches and has shown 
potential for analysing large genomic data sets135.

Yersinia pestis evolution
The pathogen best studied using aDNA analysis so far is 
Y. pestis, the causative agent of plague. To date, 38 ancient 
genomes of this bacterium have been published20,30–39 
(Fig. 4), and their analyses have yielded valuable infor­
mation on past pandemic emergence as well as in-​depth 
microbial evolution. Integration of such knowledge 
into human population frameworks has provided key 
insights into the association of human migrations and 
infectious disease transmission in the past31,34. This sec­
tion describes the evolutionary history of Y. pestis with 
the aim of demonstrating aspects of its emergence and 
spread as revealed through aDNA research.

Not a human pathogen: plague ecology. Plague is a 
well-​defined infectious disease caused by the Gram-​
negative bacterium Y. pestis, which belongs to the fam­
ily Enterobacteriaceae. It evolved from a close relative, 
Yersinia pseudotuberculosis, which is an environmental 
enteric-​disease-causing bacterium136. Although the two 
species are clearly distinguishable in terms of their vir­
ulence potential and transmission mechanisms, their 
nucleotide genomic identity reaches 97% among chromo­
somal protein-​coding genes137. In addition, they share 
the virulence plasmid pCD1, which encodes a type III  
secretion system common to three known pathogenic 
Yersinia: Y. pestis, Y. pseudotuberculosis and Yersinia 
enterocolitica. The distinct transmission mechanism and 
pathogenicity of Y. pestis are conferred by the unique 
acquisition of two plasmids, pPCP1, which contributes 
to the invasive potential of the bacterium138, and pMT1, 
which is involved in flea colonization139,140, as well as by 
chromosomal gene pseudogenization or loss throughout 
its evolutionary history141.

Y. pestis is not human adapted. Its primary hosts are 
sylvatic rodents such as marmots, mice, great gerbils, 
voles and prairie dogs, among others, in which it is 
continuously or intermittently maintained in so-​called 
reservoirs or foci142–144. Its global distribution includes 
numerous rodent species144,145 and encompasses regions 
in eastern Europe, Asia, Africa and the Americas (Fig. 4),  
where the bacterium persists in active foci, some of which 
have existed for centuries or even millennia31,33,34,37,130.  
Y. pestis transmission among hosts is facilitated by 
a flea vector (Fig. 5). The best yet characterized is the 
oriental rat flea, Xenopsylla cheopis, although others 
are also known to play important roles in Y. pestis 
transmission142,144,146. Notably, recent modelling infer­
ences suggest important roles for ectoparasites such as 
body lice and human fleas in its propagation during 
human epidemics147. Landmark studies investigating 
the classical model of transmission have shown that 
Y. pestis has the unique ability to colonize and form a 
biofilm within the flea, which blocks a portion of its 

Date randomization
A test that involves random 
shuffling of calibration points 
(tip dates) across a molecular 
phylogeny to evaluate the 
effect of randomizations 
compared to true data on  
the nucleotide substitution  
rate estimates.

Root-​to-tip regression
A test that uses a linear 
correlation to determine the 
relationship between branch 
lengths and sampling times 
within a time-​dependent 
phylogeny.

Demographic model
A mathematical model that 
aims to explain the size and 
density of a population over 
time.
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foregut, the proventriculus (Fig. 5). This phenotype is 
determined by the unique acquisition and activity of 
certain genomic loci in Y. pestis, namely, the Yersinia 
murine toxin (ymt) gene, which is present on the  
pMT1 plasmid140,141 and facilitates colonization of  
the arthropod midgut141. In addition, it is dependent 
on the pseudogenization of certain genes, namely, 
the biofilm downregulators rcsA, PDE2 (also known 
as rtn), PDE3 (also known as y3389)141 and the ure­
ase gene ureD148,149, which are, by contrast, active in  
Y. pseudotuberculosis. The biofilm prevents a blood 
meal from entering the flea’s digestive tract, leaving it 
starving; as a result, the insect intensifies its feeding  
behaviour and promotes bacterial transmission to un­
infected hosts150–152. This continuous transmission cycle  
among fleas and rodents, also called the enzootic phase 
of maintenance (Fig. 5), is thought to drive the preser­
vation of plague foci around the world and is depen­
dent on environmental and climatic factors as well as 
on host population densities142,153–155. Disruption of this 
equilibrium for reasons that are not well understood 
can cause disease eruption among susceptible rodent 
species, leading to so-​called plague epizootics142 (Fig. 5). 

During that time, marked reductions in the rodent pop­
ulations force fleas to seek alternative hosts, which can 
lead to infections in humans and, as a result, trigger the 
initiation of epidemics or pandemics.

Plague manifestation in humans has three disease 
forms, namely, bubonic, pneumonic and septicaemic156. 
Bubonic plague is the most common form of the disease 
and can cause up to 60% mortality when left untreated157. 
Subsequent to the bite of an infected flea, bacteria travel 
to the closest lymph node, where excessive replica­
tion occurs, giving rise to large swellings, the so-​called 
buboes. In addition, following primary bubonic plague, 
bacteria can disseminate into the bloodstream to cause 
septicaemia (secondary septicaemic plague) and to the 
lungs, causing secondary pneumonic disease. Both forms 
are highly lethal disease presentations and cause nearly 
100% mortality when left untreated. Only the pneumonic 
form can result in direct human-​to-human transmission.

Early evolution: plague in prehistory. The time of 
divergence between Y. pestis and Y. pseudotuberculosis 
has been difficult to determine given the wide temporal 
interval produced by recent molecular dating attempts 
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indicate time period distinctions. A set of modern Y. pestis genomes (n = 336), from the following publications (released 
until 2018)92,130,169–173,187–199,200, are shown as grey circles within their geographical country or region of isolation, and the 
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than one genome is shown). The areas highlighted in brown are regions that contain active plague foci as determined 
by contemporary or historical data. ybp, years before present. Adapted with permission from the ‘Global distribution  
of natural plague foci as of March 2016’ from https://www.who.int/csr/disease/plague/Plague-​map-2016.pdf.
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based on aDNA data (13,000–79,000 years before present 
(ybp))33,34. Nevertheless, Y. pestis identification in human 
remains from Neolithic and Bronze Age Eurasia suggests 
that it caused human infections during these periods and 
originated more than 5,000 years ago31,33,34. These data 
have revealed important details about the early evolution 
of the bacterium. Genomic and phylogenetic analyses 
have shown that strains from the Late Neolithic and 
Bronze Age (LNBA) occupy a basal lineage in the Y. pestis 
phylogeny, and a recent study suggests the presence of 
even more basal variants in Neolithic Europe31 (Fig. 6). 
Such analyses have demonstrated that, during its early 
evolution, the bacterium had not yet acquired impor­
tant virulence factors consistent with the complex trans­
mission cycle common to historical and extant strains.  
One of these genes is ymt, whose absence has been asso­
ciated with an inability for flea midgut colonization in 
Y. pestis141. In addition, these strains possess the active 
forms of the rcsA, PDE3, PDE2 and ureD genes, which 
suggests an impaired ability towards biofilm formation 
and blockage of the flea’s proventriculus141,149. Finally, 
they possess an active flagellin gene (flhD), which is pres­
ent as a pseudogene in all other Y. pestis, as it is a potent 
inducer of the innate immune response of the host158. 
As a result, during its initial evolutionary stages, Y. pestis 
may have been unable to efficiently transmit via a flea 
vector. Flea-​borne transmission of Y. pestis is a known 

prerequisite for bubonic plague development141; hence, 
it has been suggested that this disease phenotype was 
not present during prehistoric times33,159. In addition, 
these results have raised uncertainty regarding the pos­
sible vector and host mammalian species of the bacte­
rium. The Bronze Age in Eurasia was a period of intense 
human migrations, which shaped the genomic landscape 
of modern-​day Europe85,160. Remarkably, the Y. pestis 
LNBA lineage was shown to mirror human movements 
during that time34 and was found in regions that do not 
host wild reservoir populations today (Fig. 4). The wide 
geographical distribution of these strains, their supposed 
limited bubonic disease potential and their relationship 
with human migration routes might together be indica­
tive of a different reservoir host species compared to wild 
rodents that have a central role in plague transmission 
in areas such as Central and East Asia, where the disease 
is endemic today.

Nevertheless, an alternative mode of flea transmis­
sion, termed the early phase transmission, which occurs 
during the initial phases of infection and was suggested 
to be biofilm-​independent161, should also be considered 
as a possible way of Y. pestis propagation during its early 
evolution34. Although this transmission mechanism is 
currently not well understood, its comparative mode 
and efficiency in different rodent species have recently 
started to be assessed162. The oldest Y. pestis genomic 

Proventricular
blockage

Oesophagus

Midgut

Fig. 5 | Yersinia pestis ecology and transmission cycle. A simplified version of the Yersinia pestis enzootic cycle, during 
which the bacterium is maintained among wild rodent populations through a flea-​dependent transmission mechanism. 
Under poorly understood circumstances, plague epizootics, which are best explained as animal epidemics, can occur 
among susceptible rodent populations. During those periods, humans and other mammals are at highest risk of 
becoming infected with Y. pestis. Plague can manifest in humans in the bubonic, pneumonic and septicaemic forms. 
Pneumonic plague is the only form that can result in airborne transmission between humans.
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evidence showing the full capacity for flea colonization 
similar to modern and historic strains was identified in 
two 3,800-year-​old skeletons from the Samara region of 
modern-​day Russia37. Although this strain was shown to 
occupy a phylogenetic position among modern Y. pestis 
lineages (Fig. 6), molecular dating analysis indicated that 
it originated ~4,000 years ago, suggesting that it over­
lapped temporally with the other Bronze Age strains that 
lacked the genetic prerequisites for arthropod transmis­
sion. Similar characteristics were previously identified in 
a low-​coverage 3,000-year-​old isolate from modern-​day 
Armenia33, which suggests that multiple forms of the 
bacterium were circulating in Eurasia between 5,000 and 
3,000 years ago that may have had different transmission 
cycles and produced different disease phenotypes. As the 
propagation mechanisms of those strains are still uncer­
tain, and the exact timing of flea-​adaptation in Y. pestis 
is unknown, additional metagenomic screening from 
human and animal remains may provide relevant infor­
mation on disease reservoirs and hosts across Neolithic 
and Bronze Age Eurasia.

It is becoming increasingly apparent that, aside from 
plague, other infectious diseases, such as those caused 

by HBV43,44 and B19V45 (Table 1), were circulating dur­
ing the same time periods. Further pathogen screening 
coupled with a temporal assessment of human immune-​
associated genomic variants84 may reveal key aspects of 
disease prevalence and susceptibility during this pivotal 
period of human history.

Molecular insights from three historical plague pan-
demics. After the Bronze Age, bubonic plague has been 
associated with three historically recorded pandem­
ics. The earliest accounts of the so-​called first plague 
pandemic, which began with the Plague of Justinian 
(541 ce), suggest that it erupted in northern Africa in 
the mid-6th century ce163,164 and subsequently spread 
through Europe and the vicinity until ~750 ce. The sec­
ond historically recorded plague pandemic began with 
the infamous Black Death (1346–1353 ce)96 and con­
tinued with outbreaks in Europe until the 18th century 
ce. The most recent third plague pandemic began in the 
mid-19th century in the Yunnan province of China, and 
it was during that time that Alexandre E. J. Yersin first 
described the bacterium in Hong Kong, in 1894 (Fig. 1). 
The third pandemic spread worldwide via marine routes  
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Fig. 6 | Evolutionary history of Yersinia pestis. A phylogenetic tree graphic depicting the evolutionary history of 
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by phylogenetic analysis are represented with coloured circles among the tree branches as follows: a Middle Neolithic 
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and has persisted until today in active foci in Africa, 
Asia and the Americas. Although the majority of mod­
ern plague cases derive from strains disseminated in 
this global dispersal, the pandemic is considered to have 
largely subsided since the 1950s165.

The association of Y. pestis with the two earlier pan­
demics has, until recent years, been contentious. On 
the basis of their serological characterization, modern 
strains were traditionally grouped into three distinct 
biovars, namely, ‘antiqua’, ‘medievalis’ and ‘orientalis’, 
according to their ability to ferment glycerol and reduce 
nitrate165,166. In addition, historical accounts of the dis­
ease seemed to correlate with the supposed distinct 
geographical distributions of these biovars166, and their 
phylogenetic relationships, as inferred from MLST data, 
reinforced the hypothesis that each was responsible for 
a single pandemic136. By contrast, later studies identified 
additional, atypical biovars167, and more robust phylo­
genetic analysis suggested that phylogeography does 
not correlate clearly with the phenotypic distinctions 
described between these bacterial populations92,130,168.

Recent genomic analyses have revealed high genetic 
diversity of the bacterium in East Asia, which invaria­
bly led to the assumption that Y. pestis emerged there130. 
However, a strong research focus on the diversity of the 
bacterium in these endemic regions, mainly China, has 
contributed to a profound sampling bias in the available 
modern data (Fig. 4). More recent investigations have 
revealed previously uncharacterized genetic diversity in 
the Caucasus region and in the central Asian steppe that 
ought to be further explored169–172 (Fig. 4). Currently, the 
evolutionary tree of the bacterium is characterized by 
five main phylogenetic branches (Fig. 6). The most ances­
tral, branch 0, includes strains distributed across China, 
Mongolia and the areas encompassing the former Soviet 
Union. The more phylogenetically derived branches 
1–4 were formed through a rapid population expan­
sion event and are today found in Asia, Africa and the  
Americas130. Their wide distribution mainly reflects the 
geographical breadth of branch 1, which is associated 
with the third plague pandemic that spread worldwide 
during the 19th and 20th centuries92 and is still respon­
sible for more confined epidemics such as those reported 
in Madagascar173.

The analysis of aDNA from historical epidemic 
contexts has generated important information regard­
ing the evolutionary history of plague. The recovery of 
Y. pestis DNA via PCR from remnants of human den­
tal pulp suggested the involvement of the bacterium in 
both the first and second pandemics; however, these 
results were difficult to authenticate8,174,175. Subsequent 
PCR-​based SNP typing of ancient specimens offered 
some phylogenetic resolution and revealed an expected 
ancestral placement of medieval strains in the Y. pestis 
phylogeny62–64. More recently, full characterization 
and authentication of the bacterium were achieved 
using plasmid and whole-​genome enrichment coupled  
with NGS17,20,35,36.

Historical accounts of the first plague pandemic (6th 
to 8th centuries ce) suggest that the disease expanded 
mainly across the Mediterranean basin; however, its 
exact breadth and impact have been difficult to assess 

given the limited availability of historical and archaeo­
logical data, with the latter being currently under 
revision176. Two recent studies have reconstructed  
6th-​century Y. pestis genomes from southern Germany35,36  
(Fig. 4), a region that lacked historical documentation of 
the pandemic. Phylogenetic analysis showed that both 
genomes belong to a lineage that is today extinct and 
is closely related to strains from modern-​day China35,36, 
which suggests the possibility of an East Asian origin 
of the first pandemic. This hypothesis was recently 
reinforced by the publication of a 2nd-​century to  
3rd-​century Y. pestis genome from the Tian Shan 
mountains of modern-​day Kyrgyzstan39, which shares 
a common ancestor with the Justinianic-​plague lineage 
(Figs 4,6). However, given the >300-year age difference 
between these strains35,36,39, as well as the aforementioned 
East Asian sampling bias of modern Y. pestis data130, the 
geographical origin of the pandemic remains hypothet­
ical. Retrieval of additional Y. pestis strain diversity from 
that time period, particularly from areas known to have 
played an important role in the entry of this bacterium 
into Europe, that is, the eastern Mediterranean region, 
may hold clues about its putative source.

The beginning of the second plague pandemic, 
600 years later, was marked by the notorious Black 
Death of Europe (1346–1353 ce), estimated to have 
caused an up to 60% reduction of the continental pop­
ulation in only 5 years96. Historical records suggest that 
the first outbreaks occurred in the Lower Volga region 
of Russia, and the disease then spread into southern 
Europe through the Crimean peninsula96. Initial analy­
sis of Y. pestis via PCR from victims of the Black Death 
revealed a distinct phylogenetic positioning of two mid-​
to-late-14th-​century strains and led to the proposal that 
the disease entered the continent through independent 
pulses64. By contrast, whole-​genome analysis of ancient 
strains from western, northern and southern Europe 
demonstrated a lack of Y. pestis diversity during the 
Black Death, which suggests its fast spread through 
the continent and favours a single-​wave entry model 
of the bacterium into Europe20,30,38, although the possible 
presence of additional strain diversity during that time 
has recently been explored30. Intriguingly, the phylo­
genetic positioning of the Black Death Y. pestis genomes 
places them on branch 1, only two nucleotide substitu­
tions away from the ‘star-​like’ diversification of branches 
1–4 (Fig. 6), which gave rise to most of the strain diversity 
identified around the world today38,130.

After the Black Death, plague epidemics continued 
to affect Europe until the 18th century177,178. Inferred 
climatic data from tree ring records in central Asia 
and Europe have recently suggested that such epidem­
ics were likely caused by multiple introductions of the 
bacterium into Europe as a result of climate-​driven 
disruptions of pre-​existing Asian reservoirs179. By con­
trast, ancient genetic and genomic evidence supports 
the persistence of the disease in Europe for 400 years 
after the Black Death32,38,62. Analysis of Y. pestis strains 
spanning from the late 14th to the 18th century ce has 
revealed the formation of at least two European lin­
eages that were responsible for the ensuing medieval 
epidemics (Fig. 6). Both lineages derive from the Black 
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Death Y. pestis strain identified in 14th-​century west­
ern, northern and southern Europe30,32,38, suggesting that 
they likely arose locally. The first lineage survives today 
and gave rise to modern branch 1 strains30,38 (which are 
associated with the third plague pandemic), suggesting 
the European Black Death as a source for modern-​day 
epidemics38. The second lineage has not been identified 
among present-​day diversity and currently encompasses 
strains from 16th-​century Germany38 and 18th-​century 
France (Great Plague of Marseille, 1720–1722 ce) (Fig. 6). 
These phylogenetic patterns are consistent with a con­
tinuous persistence of the bacterium in Europe dur­
ing the second plague pandemic. In addition, they are 
supported by analyses of historical records that suggest  
the existence of plague reservoirs in the continent until the  
18th century ce180.

Y. pestis is absent from most of Europe today; specif­
ically, no active foci exist west of the Black Sea. Plague 
is thought to have disappeared from most of Europe 
at the end of the second pandemic (18th century ce).  
This finding is striking given the thousands of outbreaks 
that were recorded in the continent until that time177,178. 
The reasons for its disappearance are unknown, although 
numerous hypotheses have been put forward181, includ­
ing a change in domestic rodent populations in Europe, 
namely, the replacement of the black rat, Rattus rattus, by 
the brown rat, Rattus norvegicus181; an acquired plague 
immunity among humans and/or rodents181 (although 
this hypothesis requires an update to accommodate the 
recent identification of Y. pestis in Europe 5,000 years 
ago31,33,34 and the involvement of the bacterium in the 
first plague pandemic35,36); the increased living standards 
such as the better nutrition and hygienic conditions at 

the beginning of the Early Modern Era, which may have 
contributed to improved overall health conditions in 
Europe and likely decreased the number of rats and ecto­
parasites in human environments181,182; and the poten­
tial disruption of the European wild rodent ecological 
niche owing to habitat loss and industrialization start­
ing in 1700 ce180. Given the contribution that molecular 
data can offer in these discussions, future research on 
ancient sources of Y. pestis DNA will be instrumental in 
further revealing the history of one of humankind’s most  
devastating pathogens.

Conclusions
The analysis of ancient pathogen genomes has afforded 
promising views into past infectious disease history.  
For Y. pestis, aDNA exploration of its evolutionary past 
has revealed how a predominantly environmental bac­
terium and opportunistic gastroenteric pathogen deve­
loped into an extremely virulent form by acquisition of 
only a few virulence factors. We eagerly await revelations 
on a similar scale for other important pathogens that 
are expected to arise from deep temporal sampling and 
genomic reconstruction, as made possible through the 
recent advancements discussed here.

Integration of ancient pathogen genomes into disease 
modelling and human population genetic frameworks, 
as well as their analysis alongside the information offered 
by the archaeological, historical and palaeopathological 
records, will help build a more interdisciplinary and com­
plete picture of host–pathogen interactions and human  
evolutionary history over time.
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