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Abstract
Purpose: We consider the following scenario: A radiotherapy clinic has a lim-
ited number of proton therapy slots available each day to treat cancer patients
of a given tumor site. The clinic’s goal is to minimize the expected number of
complications in the cohort of all patients of that tumor site treated at the clinic,
and thereby maximize the benefit of its limited proton resources.
Methods: To address this problem, we extend the normal tissue complication
probability (NTCP) model–based approach to proton therapy patient selection
to the situation of limited resources at a given institution. We assume that,
on each day, a newly diagnosed patient is scheduled for treatment at the
clinic with some probability and with some benefit ΔNTCP from protons over
photons, which is drawn from a probability distribution. When a new patient is
scheduled for treatment, a decision for protons or photons must be made, and
a patient may wait only for a limited amount of time for a proton slot becoming
available. The goal is to determine the ΔNTCP thresholds for selecting a
patient for proton therapy, which optimally balance the competing goals of
making use of all available slots while not blocking slots with patients with low
benefit. This problem can be formulated as a Markov decision process (MDP)
and the optimal thresholds can be determined via a value-policy iteration
method.
Results: The optimal ΔNTCP thresholds depend on the number of available
proton slots, the average number of patients under treatment, and the distribu-
tion of ΔNTCP values. In addition, the optimal thresholds depend on the current
utilization of the facility.For example, if one proton slot is available and a second
frees up shortly, the optimal ΔNTCP threshold is lower compared to a situation
where all but one slot remain blocked for longer.
Conclusions: MDP methodology can be used to augment current NTCP
model–based patient selection methods to the situation that, on any given
day, the number of proton slots is limited. The optimal ΔNTCP threshold then
depends on the current utilization of the proton facility. Although, the optimal
policy yields only a small nominal benefit over a constant threshold, it is more
robust against variations in patient load.
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1 INTRODUCTION

Proton therapy is widely considered a superior form
of radiotherapy compared to photons due to the favor-
able depth–dose curve of proton beams. As a rule of
thumb, protons allow for reducing the integral dose to
normal tissues surrounding the tumor by a factor of 2–
3.1,2 Although the number of proton therapy centers is
increasing worldwide,1 it remains a limited resource due
to cost and size of proton facilities and not all patients
who may benefit from proton therapy have access to
it.3 Consequently, concepts are being developed to opti-
mally select patients for proton therapy to maximize its
benefit for the health care system as a whole.

One approach for that is model-based patient selec-
tion, which has been promoted in the Netherlands and
has been implemented clinically for several disease
sites.4,5 Following this approach, comparative treat-
ment planning for protons and photons is performed in
combination with normal tissue complication probabil-
ity (NTCP) modeling. Patients are selected for proton
therapy if the NTCP reduction of protons over pho-
tons exceeds a threshold. As an example, head and
neck squamous cell carcinoma (HNSCC) is a treatment
site that lends itself to the NTCP model–based patients
selection because (1) the incidence of HNSCC is too
high to treat all patients with protons; (2) many patients
suffer from xerostomia and dysphagia,6,7 leaving room
for clinically significant NTCP reductions through pro-
tons;(3) patients benefit to varying degrees from protons
due to the relative location of tumor and relevant organs
at risk (OAR).8–10 Below,we use HNSCC as an example,
but we would like to stress that none of the methodol-
ogy presented is specific to HNSCC and would equally
apply to other sites.

In this note, we further investigate the problem of pro-
ton patient selection in the context of limited availability
of proton therapy slots. The Netherlands use a nation-
wide proton patient selection scheme with a fixed NTCP
reduction threshold,and it is assumed that every patient
above the threshold can receive proton therapy timely. In
this note,we instead consider proton patient selection in
a single institution, for example, a photon radiotherapy
department with an integrated single-room proton facil-
ity.Such an institution may,on any given day,only have a
limited number of proton slots available to treat HNSCC
patients, which is smaller than the number of HNSCC
patients under treatment. We assume that the goal of
the institution is to maximize the benefit of its proton
therapy resources, that is, to minimize the expected total
number of complications in the population of HNSCC
patients treated at the department. In this context, pro-
ton patient selection faces the following trade-off:A high
ΔNTCP threshold may reject too many patients and lead

1 Particle Therapy Co-Operative Group. Particle therapy facilities in clinical
operation. Available at: https://www.ptcog.ch/index.php/facilities-in-operation

to proton slots being unused. A low ΔNTCP threshold
may admit patients with mediocre benefit, who block
proton slots for patients who would have a larger benefit.

In this note, we present a method to determine the
optimal proton patient selection threshold, depending
on the number of currently available protons slots and
the number of remaining fractions for proton patients
currently under treatment.

2 METHODS

2.1 NTCP modeling

The approach discussed in this work is not limited
to any particular treatment site or side effect. It only
assumes a given probability distribution over ΔNTCP for
the patient population, that is, the NTCP reduction that
protons yield over photons. For our motivating applica-
tion,HNSCC,treatment planning studies have evaluated
the expected dose reduction from proton treatments.8

Additionally, several dose–response models have been
proposed for the two most common side effects, xeros-
tomia and dysphagia, based on clinical data.5,7 Based
on these studies, we model the distribution of the NTCP
reduction by a Gaussian distribution with a mean NTCP
reduction of 10% and a standard deviation of 5%. This is
also consistent with the initial experience in the Dutch
proton patient selection system.5 Thereby, the model
contains the possibility that the photon plan is superior
in rare cases.

2.2 Model of proton facility operation

We consider the operation of a department over discrete
time steps corresponding to one working day, ignoring
days when no treatments are performed. We assume
that, on any given day, there is a probability q that a
new HNSCC patient is scheduled for treatment at the
department and a decision is made whether the patient
is assigned to protons or photons. On that day, the
patient has completed the standard diagnostic process,
and comparative proton–photon treatment planning has
been performed.The parameter q represents the patient
load. As an example, we consider q = 0.4 in this work,
which would correspond to a clinic treating approxi-
mately 100 HNSCC patients per year, and thus, two new
patients starting treatment each week on average. We
further assume a 30-fraction treatment over 6 weeks,
meaning that on average 12 patients are under treat-
ment on any day. The facility is assumed to have N
proton slots available for HNSCC patients, where we
assume N to be smaller than the number of patients
under treatment.

In reality, comparative treatment planning for pro-
tons and photons would be performed for each new

https://www.ptcog.ch/index.php/facilities-in-operation
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F IGURE 1 A cross-section of the optimal policy for
3 proton slots assuming that one of them is immediately
available. The numbers on the two axes represent the
number of days until the other two slots become
available, the colors indicate the optimal ΔNTCP
threshold that a patient needs to exceed to be assigned
a proton slot

patient to obtain NTCP values NTCP𝛾 and NTCPp

for photon and proton plans, respectively. To simu-
late this process, we randomly draw a value for the
benefit ΔNTCP = NTCP𝛾 − NTCPp from a Gaussian
distribution, as outlined above.

When a patient is assigned to proton therapy, the
patient blocks one proton slot for the following 30 work-
days. We assume that each new patient has to start
treatment shortly after they are assigned to a treatment
slot, that is, a patient can wait only for up to T days
for a proton slot to become available. The value of T
is a clinical decision to be made by the department to
limit the adverse effects of treatment delays. For this
work we assume T = 10, meaning that a patient must
be assigned to photons if all proton slots are blocked for
the next 2 weeks.

2.3 Determining the optimal NTCP
thresholds

We now present the methodology to determine the
optimal patient selection thresholds that minimize the
expected number of complications. To that end, the
problem of proton patient selection is formulated as
an (infinite horizon) Markov decision process (MDP).11

MDP is a mathematical framework that enables optimal
sequential decision making under uncertainty in situa-
tions where the goal is to maximize expected (long-term
average) reward in a system whose state evolves partly
at random and partly as a function of the sequential
decisions. The optimal policy (course of action) of the
system is state dependent. The details of the MDP

formulation of the problem of proton patient selection
are as follows:

State.
The state of the MDP represents the state of the pro-
ton facility, which can be described by one integer n ∈

{0,… , 40} per slot indicating for how many additional
days the slot is blocked. (The largest number is, thus,
the length of the treatment plus the maximum wait time
T .) For the example, if N = 3, then the state (5, 14, 27)
would indicate that currently all 3 slots are occupied,and

F IGURE 2 The distribution of the ΔNTCP of patients assigned
to proton therapy by the optimal policy (blue histogram) and the best
constant-threshold policy, with ΔNTCP threshold of 11% (yellow
histogram). Also shown: the ΔNTCP distribution of the patient
population (solid curve). The constant-threshold policy favors
patients with ΔNTCP right above the threshold
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the proton patients under treatment have to complete
another 5, 14, and 27 fractions, respectively.

Actions and policy.
An action amounts to the decision whether or not to
assign a new patient to proton therapy. A policy is given
by a ΔNTCP threshold for every facility state; if a new
patient’s ΔNTCP is above the threshold correspond-
ing to the state of the proton facility at the time the
patient presents, then the patient is assigned a proton
slot.Only those states have an assigned ΔNTCP thresh-
old in which one of the slots are occupied for less than
T remaining days.

State transitions.
Every state has up to two possible successor states,
depending on whether the state of the proton facility
allows a new patient to be assigned a proton slot. For
the example state (5, 14, 27) there are two possible state
transitions. If on that day no new patient presents or
the patient is assigned to photons, the state transitions
to (4, 13, 26). If a new patient presents, it is possible
to assign the patient to the slot that becomes avail-
able in 4 days, and in that case the state transitions
to (34, 13, 26). State transitions are stochastic because
the sequence of incoming patients is. The probabil-
ity for the latter transition is given by the probability
of seeing a new patient q multiplied with the proba-
bility that the patient’s ΔNTCP exceeds the selection
threshold.

Reward.
Our goal is to minimize the expected number of com-
plications over time, or equivalently, to maximize the
(long-term) average ΔNTCP realized by the patients.We
may consider the situation that all patients are treated
with photons as the baseline; if a patient is assigned
to protons, an immediate benefit of ΔNTCP is realized.
The optimal policy is the collection of state-dependent
ΔNTCP thresholds that maximizes the average (per
patient) realized ΔNTCP benefit.

Computing the optimal policy.
The optimal policy of an MDP is characterized by the
Bellman equation. A general algorithm to compute the
optimal policy of an MDP is the iterated value and policy
iteration, which can be briefly summarized as follows11:
Start with any policy, for example, with every threshold
being 0 (which means assigning every patient to protons
if a slot is available), and then iterate the following two
steps until no change is observed in the policy:

1. Policy evaluation. Compute the long-term expected
reward for the current policy and the value of each
state s,defined as the expected reward given that the
system starts at state s. This can be accomplished
by solving a system of linear equations, as follows.

Suppose that S is the number of states, that r ∈ ℝS

is the vector whose ith component is the immediate
reward realized by the given policy in state i, and that
P ∈ ℝS×S is the state transition matrix whose (i, j)th
component is the probability that after the action
determined by the current policy the system’s next
state will be j assuming that its current state is i.
Finally, let 𝛼 < 1 be a positive discount factor.Then the
vector of values of each state v ∈ ℝS is the (unique)
solution of the linear system

v = r + 𝛼Pv. (1)

In our computation,we used 𝛼 = 0.99999,as the ben-
efit realized by a patient arriving later is considered
to be the same as for earlier patients, but 𝛼 < 1 is
necessary for the convergence of the algorithm.

2. Value iteration. For each state s, compute the opti-
mal policy assuming that the long-term rewards
starting from each state are the values computed in
the previous step. In our problem, this is a straight-
forward optimization problem with a closed-form
solution: For every state where a decision is to be
made (there is room in the proton facility for a new
patient), assign the new patient to a proton slot if and
only if their ΔNTCP is at least as large as the differ-
ence between the values of the states and the proton
facility after assigning the patient to protons or pho-
tons, respectively. In other words, the optimal ΔNTCP
threshold is the difference between the values of the
two possible subsequent states.

It can be shown that this iterative process converges to
the optimal policy.We remark that the optimal policy can
also be computed using linear programming, although
that approach was not used in our study.

2.4 Comparison to a constant 𝚫NTCP
threshold

The optimal policy is compared to a simpler patient
selection scheme using a constant ΔNTCP threshold
that is independent of current facility utilization but opti-
mal for the assumed values of N, q, and T and the
assumed distribution over ΔNTCP in the patient popu-
lation. The (approximately) optimal constant threshold
was computed by simulating the operation of the clinic
over an extended period of time for constant thresholds
between 0% and 30% in 1% increments; see Figure 3.

3 RESULTS

We computed the optimal policies assuming that a radio-
therapy facility has up to three concurrent proton therapy
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F IGURE 3 Top panel: observed benefit using a constant ΔNTCP
threshold independent of the current utilization of the facility, with the
number of slots N = 3 and maximum delay T = 10 days fixed.
Bottom panel: the fraction of patients assigned to proton therapy. A
threshold of 0% corresponds to the first-come-first-served policy. The
optimal constant threshold is 11%

slots for HNSCC patients, who receive 30-fraction treat-
ments that begin after a delay of no more than 10 days
in order to wait for an available proton therapy slot.
We also investigated the effect of delayed treatments,
and the robustness of policies against uncertain patient
arrival rates.

Calibrating the expected benefit.
The overall benefit of the patient population is measured
by the long-term average benefit, that is, the expected
value of NTCP reduction, which is equivalent to mea-
suring the average number of prevented side effects.
Based on our ΔNTCP model, the expected benefit if
everyone receives proton treatment is 10%. By defini-
tion, the baseline policy of everyone receiving photon
treatment corresponds to a benefit of 0. Since, with
two new patients presenting each week, we have 12
patients concurrently receiving treatment on average,
but only N ≤ 3 slots, a first-come-first-served assign-
ment of patients (where an available proton slot is
assigned to the next arriving patient) can only yield a
benefit of around 10∕(12∕N)%, that is, around 2.5% for
N = 3.At the other extreme, if we could treat the quarter
of the patients with the highest benefit (corresponding

to a ΔNTCP threshold of 13.4%), the average ΔNTCP
for the proton patients would be 16.4%, increasing the
overall benefit of protons for the population to 4.1%.
However, when the number of proton patients is con-
strained to N ≤ 3 on any given day, the 4.1% represents
an unachievable upper bound and the benefit of the
optimal proton patient selection scheme will lie between
2.5% and 4.1%.

3.1 The structure of the optimal policy

The optimal ΔNTCP threshold depends on the current
utilization of the proton facility. For N = 3 slots, the opti-
mal ΔNTCP threshold varied greatly, from 0.074 in the
state when all proton slots are immediately available, to
0.16 in the state when one slot will be available in T = 10
days and the others have just been taken. Figure 1
shows a two-dimensional cross section of this policy for
the states when one proton slot is immediately avail-
able. Unsurprisingly, the threshold is monotone in the
availability: When a second slot is available sooner, then
admitting a patient with less benefit carries a lower risk
of blocking all slots from a patient with greater benefit.

The long-term benefit of this policy is ΔNTCP =

3.57%; closing 67% of the gap between the first-come-
first-served policy and the unattainable outcome of
filling all treatment slots with patients of the highest
benefit. Simulating the facility operation using this pol-
icy provides further insight into the utilization of proton
slots. Recall that with N = 3 treatment slots and 30-day
treatments the best one can hope for is that 25% of
the patients may receive proton therapy. The policy in
Figure 1 assigns 24% of the patients to proton therapy
and thus uses most of the proton slots. Approximately
5% of all proton slots remain unused and approximately
14% of the treatment days leave at least one proton
slot empty. The blue histogram in Figure 2 shows the
distribution of ΔNTCP values for the patients treated
with protons.

3.2 Comparison to simpler policies
with constant threshold

Figure 3 investigates the simplified strategy of using
a constant ΔNTCP threshold independent of the cur-
rent utilization of the facility, for the nominal parameter
values N = 3, q = 0.4, and T = 10. A threshold of 0%
corresponds to random patient selection, that is, giv-
ing an available proton slot to the next patient who
benefits from proton treatment. This yields an aver-
age NTCP reduction of 2.5%, reflecting that 25% of
patients are treated with protons. The optimal constant
threshold of 11% yields an average NTCP reduction of
3.4% (compared to 3.57% for the optimal facility state–
dependent thresholds). A constant ΔNTCP threshold
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F IGURE 4 The dependence of the average benefit of optimal
proton slot allocation on the maximum allowed delay T until
treatment must begin

higher than the optimal leads to many unused proton
slots (Figure 3, bottom panel), which rapidly reduces
the benefit below even that of the first-come-first-served
policy. The lower average NTCP reduction of the con-
stant threshold policy can be explained by two factors.At
the optimal constant threshold of 11%, 23% of patients
are treated with protons (compared to 24% for the facility
state–dependent policy). In addition, the facility state–
dependent policy results in a distribution of realized
ΔNTCP reductions with higher mean (Figure 2).

3.3 Dependence on parameters

The optimal policy depends on various parameters.Nat-
urally, the ΔNTCP thresholds scale with parameters
of the probability distribution over ΔNTCP . Doubling
both mean and standard deviation would simply dou-
ble the ΔNTCP thresholds and the benefit.Furthermore,
increasing N or decreasing q would increase the per-
centage of patients that can be treated with protons,
and thus corresponds to lower ΔNTCP thresholds and
higher average benefit from protons.

3.3.1 The benefit of treatment delays

We also investigated how the utilization of proton slots
and the overall benefit is impacted by the maximum
allowed delay T . We fixed the number of proton slots
at N = 3 and considered a maximum delay T ranging
from 0 to 10 days. Figure 4 shows the dependence of
the benefit on the maximum delay T until treatment
must begin. In our example it is clear that, as long as
the wait does not compromise the treatment outcome,
allowing longer delays is beneficial. This is explained by
the increasing utilization of the proton facility allowed
by the delayed treatment (Figure 5). When no treatment
delay is allowed (T = 0), approximately 20% of all pro-

F IGURE 5 Availability of proton slots as a function the maximum
delay, with the number of slots N = 3 fixed. Yellow bars (left): the
fraction of days with an immediately available proton slot. Blue bars
(right): the average fraction of proton slots available

F IGURE 6 The frequency of patients who received proton
treatment delayed by t days (t = 0,… , 10). Although the maximum
allowed delay is 10 days, a large number of patients can be assigned
a proton slot immediately

ton slots remain vacant, which is reduced to about 5%
when a delay of 2 weeks (T = 10) is allowed (blue bars
in Figure 5). This is because patients can be assigned a
proton slot even if they present when all slots are taken.
An interesting feature of the optimal policy is that, even
with a relatively long maximum delay of 10 days, most
patients have very little wait; see Figure 6.

3.3.2 Robustness of patient selection
policies

It is also instructive to compare the performances of the
optimal state-dependent threshold policy and the opti-
mal fixed-threshold policy that are computed assuming
a fixed known patient load q under the assumption of
different patient loads than the estimated one. This is
indicative of the policies’ performance under incorrectly
specified or time-varying patient load. Table 1 shows
the computed long-term expected benefit (ΔNTCP) of
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TABLE 1 Investigating the robustness of the ΔNTCP benefit of
the state-dependent slot allocation policy versus the
constant-threshold policy against unknown or varying patient load.
Off -diagonal entries represent scenarios when the assumed patient
load q over- or underestimates the true patient load q∗. Note that, for
constant N = 3, higher patient load q∗ means that a lower
percentage of patients is treated with protons, leading to a reduced
average benefit

State-dependent threshold Constant threshold
q∗ = 0.2 q∗ = 0.4 q∗ = 0.6 q∗ = 0.2 q∗ = 0.4 q∗ = 0.6

q = 0.2 5.72% 5.62%

q = 0.4 5.56% 3.57% 2.56% 5.07% 3.40% 2.42%

q = 0.6 5.19% 2.60% 3.99% 2.49%

both policies assuming different combinations of the
assumed patient loads q ∈ {0.2, 0.4, 0.6} used to com-
pute the optimal policies and the true arrival rate q∗ ∈
{0.2, 0.4, 0.6} (corresponding to 1, 2, 3 new patients per
week).

The table reveals that the reduction in the expected
ΔNTCP benefit that results from a misspecified q is
considerably smaller for the state-dependent threshold
policy than it is for the fixed-threshold policy, particularly
when the true patient load q∗ is overestimated. This is
explained by the fact that the state-dependent threshold
adapts to the lack of new patient arrivals by lowering the
threshold of admittance to the proton facility, whereas
the fixed-threshold strategy is too rigid and results in
a greater underutilization of the proton facility. Figure 3
also explains why overestimating q∗ is worse than under-
estimating it:TheΔNTCP benefit rapidly declines to zero
if the threshold is higher than necessary.

4 DISCUSSION

With the limited availability of proton therapy, efforts
should be made to optimally select proton patients to
maximize the overall benefit of the existing facilities.
NTCP model–based patient selection represents one
approach to this problem.4,5 Currently, the approach is
implemented with a fixed ΔNTCP threshold in coun-
tries with a nation-wide referral system, where one may
assume that a proton slot can be made available to
an eligible patient in a timely manner. In this note, we
instead consider the situation that the number of proton
slots on any given day is limited. This may, for exam-
ple, be the case for an individual clinic with a single
room proton machine. The optimal ΔNTCP threshold
then depends on the number of available proton slots
and their current utilization.

We compared patient selection for the optimal, facil-
ity state–dependent ΔNTCP threshold to the optimal
constant threshold, that is, the ΔNTCP threshold that is
optimal for the number of available slots, the assumed
probability distribution over ΔNTCP in the patient pop-

ulation, and the average number of patients under
treatment, but independent of the current slot utilization.
It was found that the additional benefit of facility state–
dependent thresholds was quite modest if both policies
are evaluated for parameters they were optimized for.
Nevertheless, there are arguments in favor of a state-
dependent policy. (1) Using a state-dependent policy
does neither cause any technical difficulties for imple-
mentation,nor does it increase the workload for the clinic
compared to a constant threshold as the optimal policy
needs to be computed only once. (2) A state-dependent
policy is in line with the intuition that one should lower
the ΔNTCP threshold of the proton facility if underuti-
lized and increase the threshold if the patient load is
high. (3) The latter aspect makes the patient selection
more robust against variations in the patient load.

Calculating the optimal ΔNTCP thresholds (both
state-dependent or constant) depends on parameter
values and model assumptions that may not fully rep-
resent the complexity of clinical reality. In this work, we
assumed that a fixed number of proton slots N is avail-
able each day for treatments of a given disease site
such as HNSCC. In reality, this number would likely fluc-
tuate because the number of patients of other tumor
sites routinely referred to proton therapy will fluctu-
ate. This situation could be modeled via extensions of
the MDP model. For example, one could assume that
patients with certain tumor sites are guaranteed a pro-
ton slot, and that each day there is some probability that
such a patient presents. Then, the next available proton
slot would have to be assigned to this patient, tem-
porarily reducing the number of proton slots available
to HNSCC.

In this note, we assumed that the benefit of protons
is described by a single ΔNTCP value. In reality, differ-
ent toxicities of varying severity may be relevant. The
patient selection method presented in this note may then
be applied with ΔNTCP representing a weighted sum
of ΔNTCP values for different side effects. Although
the relative importance of distinct side effects may be
debatable, this difficulty is not specific to the method
presented here but is inherent to any NTCP model–
based selection scheme. For example, in the Dutch
scheme,5 grade ≥ 2 xerostomia and grade ≥ 2 dyspha-
gia are treated as equally important, corresponding to
equal weights for both toxicities. A reduction of 5% in
tube feeding dependence is considered as worthwhile
as a 10% reduction in grade ≥ 2 toxicity, which could
be represented by double the weight in the sum of
ΔNTCP values.

Another approach to make optimal use of limited
proton slots is combined proton–photon radiotherapy
with optimal slot assignment. In such treatments, for
each patient, some fractions are delivered with protons
and others with photons. Loizeau et al.12 suggested
reassigning proton therapy slots on a daily basis by
calculating the incremental NTCP reduction from one
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additional proton fraction for all patients currently under
treatment. Every day, the proton slots are then assigned
to those patients who benefit the most from one addi-
tional proton fraction. Thereby, all proton slots can be
used in a near-optimal manner.

5 CONCLUSION

In the situation that, on any given day, the number of
proton slots is limited, the optimal ΔNTCP threshold for
proton patient selection depends on the current utiliza-
tion of the proton facility.Such a facility state–dependent
policy yields a modest improvement in the average
ΔNTCP improvement from protons compared to a sim-
plified policy using a constant threshold when evaluated
for the expected patient load.However, the facility state–
dependent policy is more robust against variations in
patient load.
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