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INTRODUCTION
Individual cancers contain substantial genetic heterogene-

ity arising from an ongoing evolutionary process of random 
somatic mutation and selection (1). Cancers typically arise 
from a small number of founder mutations that confer a 
growth advantage (2). Over time, additional somatic muta-
tions accrue, and their frequency and distribution are shaped 
by evolutionary forces such as selection and genetic drift, 
resulting in the emergence of multiple genetically distinct 
cell subpopulations (ref. 3; Fig. 1A). A clone tree is the evolu-
tionary tree delineating the cell subpopulations in a cancer, 
the genetic mutations specific to each, and the proportions 
of cells in each sample that arose from each subpopulation 
(Fig. 1). Within the tree, subclones correspond to a cell sub-
population and all its descendants.

Clone trees built from bulk cancer samples have important 
biomedical applications. Those built from single samples already 
reveal important genomic events in evolution (3–5) and provide 
insights into heterogeneity (1). But as sequencing costs continue 

to drop, sequencing different regions of the same tumor (6), 
multiple tumors of the same cancer (7), or longitudinal samples 
from different timepoints (8) will become more common. When 
bulk samples have different mixtures of subpopulations, each 
sample can provide unique information about the single clone 
tree that characterizes the cancer’s evolutionary history. This 
can include revealing new subpopulations or deconvolving large 
subpopulations into smaller constituents. Clone trees built from 
multiple samples of the same cancer have helped identify factors 
associated with metastasis (9) and probed how treatment (10–12) 
or tumor microenvironment (13, 14) shaped evolution. This, in 
turn, can inform strategies to counteract treatment resistance 
(15). Beyond cancer, clone trees have applications in other studies 
of somatic genetic heterogeneity (16, 17).

Current subclonal reconstruction methods (18–24) are 
severely limited in their ability to build clone trees based 
on large multi-sample studies. Most of these methods were 
designed for single cancer samples from which no more than 
three subclones can be discerned at typical whole-genome 
sequencing depths (1). Recent studies with greater sequenc-
ing depth and multiple cancer samples have revealed that a 
single cancer can have dozens of resolvable subclones (6, 11). 
Here we show that existing clone tree reconstruction methods 
become highly inaccurate on datasets with many subclones or 
many cancer samples, necessitating a new approach.

We introduce Pairtree, a new method that can accurately 
construct clone trees containing as many as 30 subclones. 
Pairtree outperforms a representative set of state-of-the-art 
clone tree reconstruction packages on simulated bench-
mark datasets of variable complexity. Pairtree is also the only 
method tested that can recover or improve upon expert recon-
structions of clone trees for 14 B-progenitor acute lympho-
blastic leukemias (B-ALLs) containing up to 90 samples and 
26 subclones per cancer. The Pairtree method, along with an 
interactive visual interface for exploring the clone tree pos-
terior, is available at https://github.com/morrislab/pairtree.
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RESULTS
Pairtree Algorithm

Figure 1 outlines the process of constructing a clone tree to 
represent the evolutionary history of a cancer. Pairtree takes 
as input allele frequency data for point mutations detected in 
one or more samples from a single cancer. These data can be 
derived from whole-genome sequencing (WGS), whole-exome 
sequencing (WES), or more targeted sequencing. Each bulk 
cancer sample is a mixture of genetically heterogeneous cells 
(Fig. 1A). For each mutation, Pairtree uses counts of variant 
and reference reads in each sample to estimate the variant 
allele frequency (VAF), that is, the proportion of reads at a 
mutation’s locus that contain the mutation. By correcting a 
mutation’s VAF for copy-number aberrations (CNA) affecting 
the locus, Pairtree computes an estimate of the proportion of 
cells in each sample carrying the mutation, termed the muta-
tion’s subclonal frequency (ref. 25; Fig. 1B).

Pairtree outputs a set of possible clone trees explain-
ing evolutionary relationships between the input mutations. 
Clone tree nodes correspond to cancerous subpopulations, 

while arrows (i.e., directed edges) extend from a subpopula-
tion’s node to the nodes representing its direct descendants 
(Fig. 1C). We define a subpopulation as those cells contain-
ing exactly the same subset of the somatic mutations input 
into Pairtree. In each cancer sample, each subpopulation is 
assigned a population frequency, representing what propor-
tion of cells in that sample share the same mutation subset. 
Note that many, if not most, of a cancer’s mutations will 
not be provided in the input because of incomplete genome 
coverage or because the mutations are too low in frequency 
to be detected.

Each subpopulation and its descendant subpopulations 
(both direct and indirect) form a subclone (Fig. 1A). Pairtree 
assigns a tree-constrained subclonal frequency to each sub-
clone in each cancer sample, which is equal to the sum of the 
population frequencies of all the subpopulations contained 
within the subclone (Fig. 1A and B). This relationship follows 
from the infinite sites assumption (ISA), which states that no 
site is mutated more than once during cancer evolution. The 
ISA implies that subpopulations inherit all the mutations of 
their parent populations, and that each mutation appears 
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Figure 1.  Construction of clone trees from multiple cancer samples. A, Schematic illustrates cancer development under the clonal evolution model. 
Each color represents a genetically distinct subpopulation. Each subpopulation emerges within the mass of its parent. The leftmost point for a subpopu-
lation denotes the cell that was its most recent common ancestor. Dashed vertical lines indicate when and where cancer samples were taken. The relative 
abundance of each subpopulation in a cancer sample, including any nested descendent subpopulations composing a subclone, is represented by the height 
of that subpopulation or subclone along the sample’s dashed line. B, Horizontal bar plot showing idealized input to clone tree reconstruction algorithms. 
Bar length indicates the subclonal frequency of each subpopulation and its descendants (column) in each sequenced sample (row). The clonal evolution 
model asserts that a subpopulation’s point mutations are inherited by its descendants. Consequently, mutation VAFs in DNA sequencing data provide 
estimates of subclonal frequencies, corresponding to the proportion of cells that originated from a subclonal population and its descendants. C, Clone 
tree representing the ancestry of subpopulations (top). Nodes indicate subpopulations. Arrows extend from each subpopulation to its direct descendants. 
Inferred frequencies of each subpopulation in each sample are based on the clone tree and mutation frequency data (bottom).
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only once in the evolutionary history of the cancer. Although 
violations of the ISA occur (26), it remains broadly valid (27), 
and if the input dataset includes ISA-violating mutations, 
Pairtree can detect and discard them before starting to build a 
clone tree (see Supplementary Information). Like most other 
clone tree reconstruction methods, Pairtree assumes the ISA 
when building trees. Other methods permit some, but not all, 
types of ISA violations (28–31).

Pairtree identifies which mutations belong to each sub-
clone based on the estimated subclonal frequencies provided 
by the VAF data (Fig. 1B), then searches for clone trees whose 
structures allow subclonal frequencies that best match these 
estimates (Fig. 1C). This search is performed by inferring the 
evolutionary relationships between subclone pairs (Fig.  2A) 
and then using these to inform overall tree construction 
(Fig.  2B). Pairtree’s output consists of a set of clone trees, 
each scored by a likelihood indicating how well the tree-
constrained subclonal frequencies match the frequency esti-
mates given by the VAF data (Fig.  2C). Although there is a 
single true clone tree explaining how subpopulations are 
related, this tree is not observed directly, and the input data 
often permit multiple solutions.

Grouping mutations into subclones is not necessary—algo-
rithms can instead build clone trees in which each mutation 
is assigned to a unique subclone, yielding a mutation tree. 
However, because of limited resolution in the data’s estimated 
subclonal frequencies, sets of mutations often have subclonal 
frequency estimates that are too similar to separate the muta-
tions into distinct subclones. As such, the first step in clone 
tree reconstruction is often clustering mutations with similar 
estimated subclonal frequencies across all input samples, 
and associating subclones with these clusters. Mutation clus-
tering can be performed with Pairtree (see Supplementary 
Information) or by another method (32–34) and input into 
Pairtree. This step simplifies clone tree reconstruction by 
reducing the number of subclones. In addition, this approach 
permits more precise estimates of each subclone’s subclonal 
frequency by combining data from the subclone’s mutations 
(see Supplementary Information), at the risk of grouping 
together mutations from different subclones. Increasing the 
number of cancer samples provides more subclonal frequency 
estimates for each mutation, thereby reducing the risk of 
improper mutation grouping.

Pairtree Outperformed the State-of-the-art on 
Simulated Data

Figure 3 summarizes how Pairtree and alternative meth-
ods performed on simulated data, with an method’s scores 
reflecting its performance on only the datasets for which it 
produced output (Supplementary Fig. S1 shows untruncated 
distributions). See Methods for how comparison methods 
were chosen and evaluation metrics were established. Pair-
tree was the only method that produced results for all 576 
simulations (Fig. 3A). Nevertheless, Pairtree fared better than 
comparison methods on trees with 30 or fewer subclones, 
succeeding on all datasets while achieving negative median 
VAF losses (Fig.  3B and C). In fact, Pairtree always pro-
duced lower error than other methods for every such dataset 
(Supplementary Fig.  S2), except for two datasets with three 
subclones and a single cancer sample where CALDER had 

negligibly better VAF losses (i.e., 0.002 bits lower or less). 
Pairtree also performed better than comparison methods 
with respect to relationship error. In general, for 30 subclones 
or fewer, relationship error was almost zero when the number 
of cancer samples exceeded the number of subclones (Supple-
mentary Fig. S3 and S3B). For these cases, only one clone tree 
fit the ground-truth subclonal frequencies (Supplementary 
Fig. S4A) and Pairtree achieved low error by finding that tree 
or a close approximation thereof (Supplementary Fig.  S4B 
and S4C). When applied to datasets with 100 subclones, Pair-
tree had higher VAF losses (Fig. 3B) and relationship errors 
(Fig.  3C) than with fewer subclones. Pairtree outperformed 
other methods for 100-subclone trees with respect to VAF 
loss, except for 16 datasets (15%) where PhyloWGS performed 
better (Supplementary Fig.  S2) and 22 where CALDER was 
better. As a complement to relationship error, we also evalu-
ated the methods with the tree error metric defined in other 
studies (23, 35), where Pairtree again showed good perfor-
mance (Supplementary Fig.  S5A and S5B). Furthermore, in 
evaluations limited to low-depth datasets where observations 
of mutation VAFs were less precise, Pairtree continued to 
perform well (Supplementary Figs. S6 and S7).

CITUP failed on all datasets with ten or more subclones, 
and on 32% of three-subclone cases (Fig.  3A). All failures 
on three-subclone datasets and 71% of failures on ten sub-
clone datasets occurred because CITUP crashed (see Supple-
mentary Information). The remaining 29% of ten subclone 
failures occurred because CITUP ran out of time. On the 
three-subclone cases where it ran successfully, its VAF loss 
was poor (Fig. 3B), perhaps because of a mismatch between 
its sequencing error model and the model used for comput-
ing VAF loss. Conversely, the method exhibited better rela-
tionship error than other non-Pairtree methods (Fig.  3C), 
suggesting its tree structures were more accurate.

PASTRI, which cannot run on datasets with more than 
15 subclones, failed for 83% of three-subclone cases and 96% 
of ten-subclone cases (Fig. 3). For datasets with three or ten 
subclones, PASTRI produced output on 10%, terminated 
without producing a result on 84%, and ran out of time on 
the remaining 6% (see Supplementary Information). When it 
produced solutions, PASTRI generally performed well, reach-
ing negative median VAF losses for three- and ten-subclone 
datasets, and relatively low relationship errors.

LICHeE fared better, producing results on all cases with 3, 
10, or 30 subclones (Fig. 3). However, the method ran out of 
time for 92% of 100-subclone datasets. After Pairtree, LICHeE 
was the next-best performing method, with low VAF losses 
and moderate relationship errors on datasets with three or ten 
subclones, beating PhyloWGS on both measures. LICHeE per-
formed less well on 30-subclone cases, where it exhibited lower 
VAF losses than PhyloWGS but higher relationship errors.

PhyloWGS produced clone trees for all datasets with 30 or 
fewer subclones (Fig. 3). In these cases, PhyloWGS generally 
had worse VAF losses and relationship errors than Pairtree 
or LICHeE, except for the 30-subclone datasets, where it had 
better relationship error than LICHeE but worse VAF loss. 
PhyloWGS performed better than other non-Pairtree meth-
ods on 100-subclone cases, where it finished within 24 hours 
for 62% of such datasets, but usually had higher VAF losses 
than Pairtree (Supplementary Fig. S2).
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Figure 2.  The Pairtree algorithm. A, Pairtree uses VAF data to compute the Pairs Tensor. This tensor denotes the probability of every possible 
pairwise ancestral relationship between subclones (left). An initial clone tree is built using relationships scored by the Pairs Tensor. B, Pairtree samples 
trees using Markov Chain Monte Carlo. The method proposes tree modifications by identifying a subclone whose ancestral relationships in the current 
tree are assigned low probability by the Pairs Tensor (top), then ascertaining where that subclone can be moved within the tree to increase its ancestral 
relationship probabilities (bottom right). Proposed trees are then accepted or rejected based on their likelihoods that reflect how well they fit the VAF 
data (bottom left). C, Sampled clone trees are returned along with posterior probability estimates proportional to the likelihood of each tree.
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Figure 3.  Benchmark performance on 576 simulated datasets. Simulations are grouped by number of subclones (rows). A, Bar plots show each meth-
od’s success rate in the group. Successes are reconstruction problems for which the method produced at least one tree in 24 hours (wall-clock time) and 
did not crash. B, Boxplots show distributions of VAF reconstruction losses for a method on a problem group. Scores reflect only datasets where a method 
ran successfully. VAF reconstruction loss is the decrease in average, per-mutation log likelihood of VAF data using subclonal frequencies assigned by the 
method, when compared with the true frequencies used to generate the data. Negative loss indicates better VAF reconstructions than true trees, while 
high loss indicates inaccurate tree structures. Midlines in box plots indicate medians. Plots are truncated at four bits. C, Boxplots show distributions of 
relationship reconstruction error in each group for each method’s successful runs. Relationship reconstruction error is measured as the average Jensen–
Shannon divergence per subclone pair between the true distributions over pairwise relations, and empirical distributions computed from the trees output 
by a method. Errors can range between zero bits (perfect match) and one bit (complete mismatch).
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CALDER in its nonlongitudinal mode failed on 13% of 
three-subclone cases, 34% of ten-subclone cases, 53% of 
30-subclone cases, and 79% of 100-subclone cases (Fig.  3). 
On datasets with 30 or fewer subclones where it succeeded, 
CALDER generally produced VAF losses lower than Phylo-
WGS and on par with LICHeE, and relationship errors that 
were better than all non-Pairtree methods. On the 21% of 
100-subclone cases where it produced a result, CALDER 
exhibited performance that was generally the best of all  
methods, achieving lower VAF loss than Pairtree on 22 of the 
108 datasets with 100 subclones.

Relationship error can also be measured for the Pairs Ten-
sor alone, without requiring trees. The Pairs Tensor estimates 
pairwise relationships well (Fig. 3C), requiring only a fraction 
of the computational resources of the full Pairtree method 
(Supplementary Fig.  S8). Although the Pairs Tensor does 
slightly worse than Pairtree on trees with 30 or fewer sub-
clones, it has less relationship error than any other method. 
On datasets with 100 subclones, the Pairs Tensor was better 

able to delineate pairwise relationships between subclones 
than the full Pairtree method (Fig. 3C).

With respect to computational resources, Pairtree was 
competitive with other methods (Supplementary Figs. S9 
and S10), particularly when compared on only the subset of 
datasets where other methods could produce answers (Sup-
plementary Figs. S8 and S11).

Pairtree Improved with More Cancer Samples; 
Other Methods Worsened

After controlling for other variables, all methods except 
Pairtree performed worse when provided more cancer sam-
ples. CITUP and PASTRI’s failure rates increased with the 
number of cancer samples (Fig.  4A). Although LICHeE and 
PhyloWGS produced output for all cases with 30 subclones 
or fewer, they had higher VAF losses with more cancer sam-
ples (Fig. 4B). By contrast, Pairtree never failed and had nearly 
zero median VAF loss regardless of the number of simu-
lated cancer samples on datasets with 30 subclones or fewer 
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Figure 4.  Performance on simulated datasets as a function of number 
of subclones and cancer samples. CALDER is not shown because it suc-
ceeded only on subsets of the different dataset groups shown, while the 
methods represented here succeeded on all datasets in the depicted 
groups. A, Method success rate. For CITUP and PASTRI, success rate 
depended on the number of subclones and/or cancer samples in datasets. 
Pairtree, LICHeE, and PhyloWGS succeeded on all datasets depicted. 
B, Median VAF reconstruction loss as a function of number of samples. 
For LICHeE and PhyloWGS, VAF loss increases with more cancer samples. 
C, Median relationship reconstruction error as a function of number of 
samples. LICHeE’s error generally increased with more cancer samples, 
while other methods showed the opposite effect. Error bars represent 
the first and third quartiles in (B and C).
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(Fig.  4A and B). Relationship errors decreased for both full 
Pairtree and the Pairs Tensor with more samples (Fig.  4C). 
LICHeE, conversely, exhibited rapidly increasing error with 
more samples, while PhyloWGS’ performance fluctuated. 
Because CALDER failed on subsets of all datasets when par-
titioned by number of subclones, we consider it separately. 
CALDER generally failed more frequently as the number of 
subclones or number of cancer samples increased (Supple-
mentary Fig. S12), while its VAF loss was largely independent 
of the number of subclones (Supplementary Fig. S13).

Pairtree Detected Mutations that Violate the 
Infinite Sites Assumption

Pairtree’s Pairs Tensor can be used to identify mutations 
that violate the ISA (see Supplementary Information). We 
evaluated Pairtree’s ISA violation detection algorithm under 
four different scenarios—technical noise (i.e., sequencing arti-
facts), homoplasy, back mutation, and miscalled CNAs—for 
trees with 10 subclones (Supplementary Fig. S14A and S14C) 
or 30 subclones (Supplementary Fig. S14B and S14D). This 
evaluation was performed under two different strengths of 
evidence, encompassing strong support (i.e., a 5% difference 
in VAF, implying a 10% difference in subclonal frequency; 
Supplementary Fig. S14C and S14D) and weak support (i.e., 
a 0.025% difference in VAF, implying a 0.05% difference in 
subclonal frequency; Supplementary Fig.  S14A and S14B). 
Pairtree had 100% precision and recall for simulated sequenc-
ing artifacts in all scenarios, and its precision for finding 
ISA-violating mutations did not drop below 99% for the 
other three cases. Its recall exceeded 97% for all cases within 
these three except for the weak-support case on 30-subclone 
trees, where its recall dropped to 88% for homoplasy and 
back mutation. This demonstrated that Pairtree could detect 
ISA violations nearly perfectly in most scenarios, save for 
two where its detection was still excellent. Moreover, this 
performance was insensitive to hyperparameters used in the 
algorithm (Supplementary Fig.  S15). Pairtree also provides 
an alternative means of detecting mutations affected by puta-
tive loss of heterozygosity (LOH) events without computing 
pairwise relations, where it again showed strong performance 
(Supplementary Fig. S16A–S16D).

Pairtree Met or Exceeded Expert  
Baselines on Real Data

We applied Pairtree, CALDER, CITUP, LICHeE, PASTRI, 
and PhyloWGS to genomic data from 14 B-ALL patients 
(11). Samples were obtained at diagnosis and relapse for 
each patient. In addition, each sample was transplanted into 
immunodeficient mice, generating multiple patient-derived 
xenografts (PDX). The patient samples were profiled using 
WES, while the PDXs were used targeted sequencing based on 
leukemic variants found in the patient WES data. There were 
16 to 509 mutations called per patient (median 40), clustered 
into 5 to 26 subclones per patient (median 8). By combining 
patient and PDX samples, we obtained between 13 and 90 
tissue samples per cancer (median 42). Across cancers, the 
median read depth was 212 reads.

To define an expert-derived baseline for these datasets, we 
first built high-quality clone trees for each dataset manually, 
subjecting them to extensive review and refinement before 
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evaluating them for biological plausibility (11). Then we 
used the same technique as Pairtree to fit tree-constrained 
subclonal frequency estimates to the VAF data. The data fit 
of these estimates, as computed by likelihood, yielded the 
expert-derived baseline. As a reminder, methods that improve 
on the baseline achieve negative VAF losses.

CITUP and PASTRI failed on 13 of the 14 cancers, and so 
we excluded these methods from the comparison. Pairtree, 
LICHeE, and PhyloWGS produced results for all 14 cancers 
(Fig. 5A; Supplementary Fig. S17), while CALDER failed on 
three of them. Pairtree found trees that fit the sequencing 
data as well as, or slighter better than, the expert baseline for 
12 of 14 cancers (Fig.  5B), achieving VAF losses between 0 
and −0.05 bits. On two cancers, Pairtree inferred clone trees 
that fit the VAF data substantially better than the expert 
baseline, resulting in negative losses of −0.32 bits and −1.42 
bits. LICHeE beat the baseline for one cancer, reaching a 
negative loss of −0.86 bits; (nearly) matched the baseline for 
four other patients, incurring between 0 and 0.11 bits of loss; 
and had substantially worse VAF losses for the remaining 
nine patients. PhyloWGS suffered at least 0.35 bits of loss 
on all patients, reaching a median VAF loss of 4.42 bits. As 
PhyloWGS could not adhere to the expert-derived clustering, 
unlike other methods, it often merged clusters incorrectly, 
causing high VAF loss. CALDER failed on 3 of the 14 cancers 
(Fig.  5A), was worse than Pairtree on all the other 11, and 
worse than LICHeE on 9 of the 11.

Consensus Graphs Illustrate Uncertainties in 
Clone Tree Reconstructions

Pairtree provides interactive visualizations to help navigate 
the multiple clone tree solutions that it produces for each 
dataset (Fig.  6). By using the likelihoods associated with 
each solution as weights, Pairtree produces a weighted con-
sensus graph, in which the nodes represent subclones, and 
each directed edge is assigned a weight equal to the marginal 

probability that it appears in a clone tree drawn from the 
empirical clone tree distribution produced by Pairtree. Thus, 
the consensus graph summarizes the estimated posterior 
probability of each parental relationship between subclones. 
These summaries are useful for interpreting Pairtree’s results, 
as they provide a concise representation of the evolutionary 
relationships supported by the data, alongside the confidence 
underlying each. By taking the maximum-weight spanning 
tree of this graph, the user can generate a single consensus 
tree. To demonstrate the consensus graph’s utility, we ran 
Pairtree multiple times on one of the B-ALL cases from Fig. 5, 
using variable numbers of cancer samples (Fig. 6). As we pro-
vided more cancer samples, confidence in evolutionary rela-
tionships increased, until all parents were resolved with near 
certainty. Providing more samples also corrected erroneous 
inferences—with 30 samples, population 8 appeared to be the 
likely parent of population 15, but with 90 samples, it became 
clear that population 15’s parent is population 6.

DISCUSSION
Pairtree is the first automated method that reliably recov-

ers large, complex clone trees from bulk DNA-sequencing 
data. For simulated clone trees with up to 30 subclones, 
Pairtree’s reconstructed clone trees almost always fit the VAF 
data as well as or better than the original clone trees used 
to generate the data. On 14 B-ALL cancers, with up to 26 
subclones and 90 samples per cancer, Pairtree’s clone trees 
fit the VAF data as well as, or better than, those constructed 
by experts. No other tested method was consistently accurate 
on real or simulated benchmarks containing ten subclones 
or more. Pairtree was also the only method whose clone trees 
reliably became more accurate when more samples were used 
in the reconstructions. This is surprising—as each cancer sam-
ple provides additional information about evolutionary rela-
tionships between subpopulations, subclonal reconstruction 

A B

Pairtree

CALDER

LICHeE

PhyloWGS

100%

Success rate

50% 0% 0 2 4
VAF reconstruction loss

(bits/mutation/tissue sample)

Figure 5.  Method performance loss for 
14 B-ALL patient datasets. The number of 
cancer samples for each dataset ranged from 
13 to 90. A, Pairtree, LICHeE, and PhyloWGS 
succeeded on all 14 datasets. CALDER suc-
ceeded on only 11 of the 14 (79%). CITUP and 
PASTRI each failed on 13 of 14 datasets and 
so are not shown. B, VAF loss on the subset of 
datasets where each method succeeded. VAF 
reconstruction losses are reported as a nega-
tive log likelihood normalized to the number 
of mutations and cancer samples, relative to 
the MAP subclonal frequencies for expert-
derived trees. Lower loss indicates better 
performance, while negative loss corresponds 
to performance better than human experts. 
Mid-lines in box plots indicate medians. The 
axis is truncated at 5 bits.
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problems should become easier with more cancer samples, 
not more difficult.

Identifying the correct clone tree for a given dataset may 
not be possible, and so Pairtree is specifically designed to 
identify and report ambiguities in the clone tree recon-
struction. For example, the relationships among subclones 
with low VAFs in all samples may not be possible to resolve 
because, depending on the read coverage, the low VAFs might 
be consistent with multiple ancestral relationships between 
the subclone pair. In these circumstances, Pairtree is designed 
to capture this uncertainty in both its Pairs Tensor and 
through its MCMC-derived samples from the clone tree 
posterior. In addition, due to incomplete genome coverage 
or the inherent sequencing limits of mutation detection, all 
clone trees provide an incomplete view of a cancer’s evolution. 
Accounting for uncertainty under these conditions becomes 
even more important because of the difficulty of resolving 
the true tree.

A key factor in Pairtree’s success is its efficient search 
through the space of clone trees. Beyond ten subclones, this 
tree space quickly becomes too large for exhaustive enumera-
tion (CITUP) or unguided stochastic search (PhyloWGS). 
Even methods that reduce the search space by applying 
hard constraints to exclude some parent–child relationships 
(LICHeE, PASTRI, CALDER) can fail to recover clone trees 
with more subclones because as the number of samples 
increases, these hard constraints become more likely to be 
incorrect and thus exclude the correct solution (see Sup-
plementary Information). By contrast, Pairtree’s stochastic 
tree search is guided by the Pairs Tensor, which provides soft 

constraints defined by a well-motivated probability model. 
Consequently, Pairtree’s constraints become more precise as 
more cancer samples are provided, without excluding the true 
clone tree.

As Pairtree’s performance degrades on the 100-subclone 
benchmarks, alternative search strategies may be necessary 
for very large clone trees. While Pairtree almost always fails 
to correctly resolve a subclone’s parent (Supplementary 
Fig.  S4C), it achieves relatively low relationship error (Sup-
plementary Fig.  S4D), suggesting it may be capturing the 
coarse tree structure. If so, Pairtree may fare better using a 
tiered approach, in which it would group together subclones 
with similar pairwise relations to others, build subtrees for 
each group separately, and then connect the subtrees using 
the groups’ pairwise relations to compose the full clone tree. 
Given 100 subclones with 10 or more cancer samples, the 
Pairs Tensor is already better than Pairtree itself at captur-
ing the correct evolutionary relationships between subclones 
(Supplementary Fig.  S3A–S3C). Future work should focus 
on understanding what conditions (e.g., high read depth or 
many cancer samples) under which the Pairs Tensor con-
verges to a partial clone tree (36) that succinctly summarizes 
all clone trees with nonnegligible posterior probability.

Future extensions of Pairtree could incorporate alterna-
tive models of cancer evolution by introducing nonuniform 
priors on clone tree structure or subclonal frequencies. Any 
evolutionary model that can assign a likelihood to a given 
clone tree structure and set of subclonal frequencies can be 
immediately incorporated in the Metropolis–Hastings scor-
ing, though some subclonal frequency priors may make the 

Figure 6.  Consensus graph visualization of posterior tree distributions. These consensus graph visualizations are based on one of the 14 B-ALL 
cancers analyzed with Pairtree, for which 90 cancer samples were available. Consensus graphs are shown for variable numbers of samples, ranging from 
a single sample to all 90. All edges with less than 5% posterior probability are hidden. The minimum spanning tree certainty is the minimum of the maxi-
mum parent probabilities of each subclone.
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subclonal frequency optimization nonconvex or reduce the 
accuracy of the MAP approximation to the marginal likeli-
hood of the tree (see Supplementary Information). In addi-
tion, nonuniform priors may decrease the value of the Pairs 
Tensor as a proposal distribution for tree inference, but, 
encouragingly, any prior that permits tractable computation 
of their marginal distributions over subclone pairs can also be 
incorporated into the Pairs Tensor. For example, CALDER’s 
longitudinal constraints (i.e., once a subclone goes extinct at a 
given timepoint, it never returns; ref. 35) can be incorporated 
as time-dependent priors on subclonal frequencies for indi-
vidual subclones and subclone pairs where one is the ancestor 
of the other. The Supplementary Information describes some 
possible alternative evolutionary models in detail.

Throughout this work, we have stressed performance met-
rics that recognize there are often many solutions consist-
ent with observed data (see Supplementary Information), 
extending previous ones that compare single clone trees to 
one another (see (23, 35) and others). We developed new 
metrics that extend ones we previously developed (24) to 
score multiple candidate solutions from a method against a 
single ground-truth tree. Our new metrics permit the ground 
truth to be uncertain, with multiple potential truths equally 
consistent with noise-free observations. In general, character-
izing uncertainty in clone tree reconstructions is critical. Even 
when methods produce multiple solutions, users typically 
want a single answer, and so select the highest-scoring tree 
while neglecting other credible candidates that fit their data 
nearly as well. Consequently, they lose information about 
which evolutionary relationships between subclones are well 
defined by the data, and which are uncertain because they 
have multiple equally likely possibilities. If users are to benefit 
from a method’s ability to produce multiple solutions, the 
method must provide tools for interpreting this uncertainty. 
Pairtree’s weighted consensus graph characterizes the uncer-
tainty present in each evolutionary relationship, depicting 
all credible possibilities and the confidence underlying each 
(Fig.  6). This allows users to make informed conclusions 
about their data.

In summary, Pairtree can reconstruct highly accurate trees 
representing the evolutionary relationships among up to 30 
subclones based on sequencing data from up to 100 sam-
ples from a cancer. Using pairwise mutation relationships, 
Pairtree can detect mutations that violate the ISA (see Sup-
plementary Information) or have technical issues corrupting 
their observed data. By scaling to many more subclones and 
cancer samples than past approaches, and by illustrating 
the uncertainty present in solutions, Pairtree can address 
questions in many cancer research domains. These include 
understanding the origin and progression of tumors, meas-
uring tumor age and heterogeneity, mapping out mecha-
nisms of tumor adaptation to therapy, and understanding 
the relationship between primaries and metastases. Pairtree 
also has applications beyond cancer, where it can be used to 
examine somatic evolution in noncancerous tissues for any 
asexually dividing cell population. In the future, the Pairtree 
framework can be extended to scale to even more complex 
trees, integrate single-cell sequencing data, and permit vio-
lations of the infinite sites assumption (see Supplementary 
Information).

METHODS
Here we provide a nontechnical description of the Pairtree meth-

ods. The Supplementary Information contains a concise, formal 
description of the algorithms and the remaining Supplementary 
Data sections expand on this concise summary, provide motivation 
for some of our design choices, and provide some analysis of the solu-
tion space of the simulations.

Delineating Ancestral Relationships between Pairs of 
Subclones Using the Pairs Tensor

Pairtree uses the estimated subclonal frequencies to predict the 
ancestral relationship between every subclone pair. These pairwise 
relationships then serve as a guide when Pairtree searches for clone 
trees that best fit the VAF data. Under the ISA, one of three mutually 
exclusive ancestral relationships exist between an ordered pair of 
subclones A and B (23, 37).

Ancestor A is ancestral to B. Here, the subpopulation associated 
with A contains A’s mutations but not B’s. No cell subpopulation has 
B’s mutations without also inheriting A’s.

Descendant B is ancestral to A. As above but with the roles of A 
and B switched.

Branching neither A nor B is the ancestor of the other. That is, 
they occur on different branches of the clone tree. Consequently, no 
subpopulations have both A’s and B’s mutations.

Each relationship constrains the frequencies that can be assigned 
to the two subclones (see Supplementary Information). For a given 
subclone pair, Pairtree combines a prior probability distribution 
incorporating these constraints with a likelihood distribution based 
on the VAF data for each subclone’s mutations, then uses Bayesian 
inference to compute the probability of each relationship type for 
the pair (see Supplementary Information). This yields a data struc-
ture termed the Pairs Tensor (Fig. 2A), the elements of which are the 
marginal posterior probability distributions over the three possible 
ancestral relationships for every subclone pair.

Using Pairwise Ancestry to Guide the Search for 
Clone Trees

Pairtree uses the Pairs Tensor to define a proposal distribution for 
a Markov Chain Monte Carlo (MCMC) algorithm (38) that samples 
from the posterior distribution over clone trees (Fig. 2B). The algo-
rithm’s Metropolis–Hastings scheme generates proposal trees using 
two distributions over subclones derived from the Pairs Tensor (see 
Supplementary Information). The first distribution helps choose 
a poorly placed subclone to move within the tree, with each sub-
clone’s selection probability determined by the degree of discordance 
between the data-implied pairwise relationships and those imposed 
by its present position within the tree. The second distribution 
guides the choice of new parent for the selected subclone, evaluat-
ing potential destinations based on how much this discordance is 
decreased. Though other MCMC-based subclonal reconstruction 
methods also modify trees by moving subclones (18, 20, 39) or 
mutations (40, 41), Pairtree is the first to guide this decision with 
data, allowing the algorithm to rapidly navigate to and explore high-
probability regions of the clone-tree posterior.

Pairtree uses a maximum a posteriori (MAP) approximation of the 
clone tree’s marginal likelihood, both for the Metropolis–Hastings 
accept–reject decision and for estimating the tree’s posterior prob-
ability (Fig. 2C). The Bayesian prior enforces tree constraints but is 
otherwise uninformative. By this constraint, the root subclone must 
have a subclonal frequency of 1 in every sample, as it corresponds to 
the germline and all subclones are descended from it. In addition, 
the prior requires that every subclone has a frequency greater than 
or equal to the sum of its direct descendants’ subclonal frequen-
cies. Pairtree can compute the MAP estimate either using a fast 
approximate scheme (42) or a slower exact one (see Supplementary 
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Information). A clone tree’s likelihood scores how well the variant 
and reference read counts for each mutation match the MAP sub-
clonal frequencies under a binomial sequencing noise model that 
includes the provided CNA correction for the mutation.

Benchmarking Pairtree Performance Using  
Novel Scoring Metrics

Evaluating Pairtree against other common subclonal reconstruc-
tion methods required developing new metrics, as existing metrics are 
limited to datasets with single cancer samples (24), do not consider 
uncertainty about the best-fitting clone tree (23), or both. Below, we 
introduce two novel metrics well-suited for the multisample domain 
that also permit uncertainty about the best-fitting clone tree.

The first, termed VAF reconstruction loss, uses likelihood to 
compare the data fit of a tree’s subclonal frequencies to a baseline 
(see Supplementary Information). For simulated data, the base-
line frequencies are the ground-truth frequencies used to generate  
the VAF data. For real data with an unknown ground truth, the 
baseline is MAP subclonal frequencies computed for an expert-
constructed clone tree. If a method outputs multiple clone trees, the 
VAF reconstruction loss of this solution set is the average loss of each 
clone tree, weighted by the likelihood the method associated to the 
tree. Negative VAF losses indicate the evaluated frequencies have bet-
ter data fit than the baseline. Importantly, this is an unbiased metric 
can be used even when the ground-truth is unknown, or when the 
simulated data supports a better-fitting clone tree than the one to 
generate it in the first place.

The second evaluation metric, termed relationship reconstruction 
error, compares the structure of candidate clone trees to the ground 
truth (see Supplementary Information) using the evolutionary rela-
tionships between subclone pairs. This metric is a generalization 
of previous pairwise-relation-dependent metrics (23, 24) to permit 
the comparison of distributions over clone trees to one another.  
The metric permits uncertainty in the ground truth clone tree while 
also rewarding methods that report multiple clone trees when the 
correct solution is indeed uncertain. To compute it, we construct 
an empirical Pairs Tensor from the clone tree solutions found by a 
method, then compare it via the Jensen–Shannon divergence (JSD) to 
a tensor based on the ground truth. As multiple clone trees may be 
consistent with the ground-truth subclonal frequencies, we construct 
the ground-truth Pairs Tensor by enumerating all trees consistent 
with these frequencies (36) and denoting the pairwise relationships 
between subclones that each expresses. Building the ground-truth 
collection of clone trees requires knowing the ground-truth sub-
clonal frequencies with no measurement error, so this metric is best 
suited to simulated data.

Selecting Comparison Methods and Generating  
Simulated Data

Clone tree reconstruction methods use one of two approaches: 
exhaustive enumeration or stochastic search. To evaluate Pairtree, 
a stochastic search method, we compared it against four exhaustive 
enumeration methods [CALDER (35), PASTRI (23), CITUP (19), and 
LICHeE (22)) and one stochastic search method (PhyloWGS (41).] 
All methods produce multiple candidate clone trees that are scored 
based on how well their tree-constrained subclonal frequencies fit the 
observed VAF data (see also ref. 43).

We assessed method performance on 576 simulated datasets with 
variable read depths and numbers of subclones, cancer samples, and 
mutations. These included trees with 3, 10, 30, and 100 subclones. 
Three subclones are the most that can typically be resolved at WGS 
read depths of 50x (1). In multi-sample datasets, ten subclones are 
often discernible (6), while 30 was the approximate maximum we 
could resolve in the high-depth, many-sample B-ALL data evaluated 
here (11). We also included trees with 100 subclones to probe the 

methods’ limits, anticipating challenges presented by future datasets. 
The number of simulated cancer samples ranged from 1 to 100.

We designed the simulation process to generate realistic, diverse, 
and resolvable clone trees (see Supplementary Information). In this 
simulation framework, most large trees consist of subclones com-
prised of only a few subpopulations (Supplementary Fig.  S18). As 
trees grow larger, they are dominated by subpopulations whose 
frequency becomes small (Supplementary Fig. S19A), such that the 
populations become difficult to place in the tree, while the vari-
ance in subclone frequency across cancer samples also becomes less 
(Supplementary Fig. S19B), reducing the value provided by multiple 
samples. We did not include one- or three-sample datasets in the 30- 
and 100-subclone simulations, as resolving so many subclones from 
so few samples would be unrealistic—in these cases, 39% or more of 
subpopulations would have frequencies less than 1% across all cancer 
samples (Supplementary Fig. S20). Building trees from such subpop-
ulations is also difficult, as many subtrees within the larger tree will 
be comprised solely of such small-frequency subpopulations (Sup-
plementary Fig.  S21), so that any arrangement of subpopulations 
within that subtree would be nearly equally consistent with the data.

Methods were allowed up to 24 hours of wall-clock time to pro-
duce results. Some caveats must be noted. LICHeE does not report 
subclonal frequencies for its solutions, so we used Pairtree to fit MAP 
frequencies to LICHeE’s trees. Although LICHeE does not produce a 
likelihood, unlike the other methods here, it reports an error score 
for each tree that we interpreted as a likelihood when weighting its 
solutions. PhyloWGS, unlike other methods, could not use a fixed 
mutation clustering. This led to the method incorrectly merging 
clusters, causing artificially high VAF loss and relationship error. 
More generally, all methods except Pairtree failed to produce output 
on some simulated datasets. These failures stemmed from methods 
terminating without producing output, crashing outright, or failing 
to finish within 24 hours (see Supplementary Information).

Data and Source Code Availability
Real and simulated data used to evaluate the methods are available 

at https://github.com/morrislab/pairtree-experiments. The frame-
work used to generate simulated data is available at https://github.
com/morrislab/pearsim. Pairtree is available at https://github.com/
morrislab/pairtree.
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