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Abstract: Expanded hemodialysis (HD) equipped with a medium cut-off (MCO) membrane provides
superior removal of larger middle molecules. However, there is still little research on the long-
term benefits of expanded HD. Over a three-year period, this observational study evaluated the
efficacy and safety profile of expanded HD for inflammatory cytokines, including IL-6. We conducted
a prospective cohort study to investigate the inflammatory cytokine changes and a retrospective
observational cohort study to investigate long-term clinical efficacy and safety over a three-year
period. We categorized the patients according to dialyzer used: MCO and high-flux (HF) dialyzer.
The inflammatory cytokines, including IFN-γ, IL-1β, IL-6, and TNF-α, were measured annually. The
concentrations and changes of the four cytokines over time did not differ between the HF group
(n = 15) and MCO group (n = 27). In both prospective and retrospective (HF group, n = 38; MCO
group, n = 76) cohorts, there were no significant differences in either death, cardiovascular events,
infections, or hospitalizations. Furthermore, the temporal changes in laboratory values, including
serum albumin and erythropoietin prescriptions, did not differ significantly between the two groups
in either the prospective or retrospective cohorts. In conclusion, clinical efficacy and safety outcomes,
as well as inflammatory cytokines, did not differ with expanded HD compared with HF dialysis
during a three-year treatment course, although the level of inflammatory cytokine was stable.

Keywords: cytokines; interleukin-6; expanded hemodialysis

1. Introduction

Uremic toxins accumulate in body fluids during the course of progressive chronic
kidney disease. Among uremic toxins, larger middle molecules are associated with in-
flammation and cardiovascular events, as well as other dialysis-related comorbidities [1].
Hemodialysis (HD) with high-flux (HF) dialyzers can remove small conventional middle
molecules (0.5–25 kD) such as beta-2 microglobulin. However, clearance of larger middle
molecules (>25 kD) needs either an HD with a higher permeable dialyzer, e.g., expanded
HD, or convection dialysis, e.g., online hemodiafiltration. Expanded HD is a treatment in
which diffusion and convection are integrated inside a dialyzer equipped with a medium
cut-off (MCO) membrane [2]. An MCO membrane (Theranova® dialyzer) is a hollow-fiber,
single-use dialyzer, with improved removal of large proteins (up to 25 kD), as well as
selective maintenance of essential proteins such as albumin [3]. Recently, some studies
have shown that expanded HD provides superior removal of larger middle molecules, as
exemplified by free light chains, compared to a similar size HF dialyzer, while maintaining
serum albumin levels [4–8]. However, the prior studies examined the clinical safety of ex-
panded HD with a limited follow-up duration. Our group had previously published a study
about the one-year effects of expanded HD on middle uremic toxins [9]. We showed that
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expanded HD provides an excellent reduction rate of lambda and kappa free light chains,
but long-term change was not significant. We suggested that expanded HD can be used
effectively and safely in a conventional HD setting. However, there is still little research
on the long-term benefits of using expanded HD. Furthermore, it should also be noted
that the reduction rate of free light chains could have an effect on cardiovascular events,
inflammation, and cytokines, regardless of serum level. Middle uremic toxins have been
predominantly involved in inflammation, immune response, and cardiovascular disease in
patients with end-stage renal disease [1,10]. Among middle molecules, inflammatory cy-
tokines are suspected as being a culprit of cardiovascular comorbidity in hemodialysis. The
uremic state probably increases the peripheral cell release of proinflammatory cytokines,
e.g., interleukin (IL)-1β, IL-6, tumor necrosis factor (TNF)-α, etc., and slows removal of the
latter, resulting in a net increase [11–14]. Short-term implementation of expanded HD to
reduce inflammatory cytokines, including IL-6 [2,6,15], is controversial. Long-term effects
of expanded HD on cytokines is also still unclear. Therefore, this three-year observational
study was conducted to evaluate the efficacy and clinical safety profile of expanded HD
against inflammatory cytokines, including IL-6.

2. Materials and Methods
2.1. Study Population and Study Design

This study included patients who received maintenance HD at the Dialysis Unit of
Soonchunhyang University Cheonan Hospital in Cheonan, Republic of Korea, in October
2017. Firstly, we designed an open-label nonrandomized prospective cohort study to
investigate the long-term cytokine changes according to the dialyzers used. The design
of this prospective study was registered with the Clinical Research Information Service
(CRiS) at the Korea Centers for Disease Control and Prevention (KCT0005557, registration
date: 2 September 2020). Secondly, we executed a retrospective observational cohort
study to investigate the long-term clinical efficacy and safety of expanded hemodialysis.
Given that this retrospective cohort included all hemodialysis patients at the dialysis
facility, the retrospective cohort included the patients of the prospective study as well as
additional patients.

The two cohorts shared identical inclusion and exclusion criteria. Inclusion criteria
included age greater than 20 years and ESRD requiring HD treatment thrice weekly for
at least six months. Exclusion criteria were patients who were not clinically stable, had a
hemolytic disease, or had a history of blood transfusion during the study period. Patients
were followed for three years, from October 2017 to January 2021. In most analyses, patients
who were followed up for the entire period were included, but patients who dropped out
were also included in the survival analysis. We did not alter the patient dialysis regimen,
including blood flow, dialysate flow, and treatment time duration per session. All patients
were treated with bicarbonate dialysate of ultrapure quality. The dialyzers were used
only once.

These studies were conducted in accordance with the ethical principles of the Declara-
tion of Helsinki. The Institutional Review Board of Soonchunhyang University Cheonan
Hospital approved the study protocol (2018-07-033, 2020-08-022). All study participants of
the prospective cohort provided informed written consent before study enrollment, and
informed consent was waived in the retrospective cohort.

2.2. Allocation of the Dialysis Membranes

In the dialysis facility, three different kinds of dialysis machines, including Artis
(Baxter, Chicago, IL, USA), AK200 ULTRA S (Baxter, Chicago, IL, USA), and Fresenius
Medical Care (FMC) 5008 dialysis machines (FMC Deutschland, Bad Homburg, Germany)
were used. The machine assigned to the patients was the machine available at the first
HD in this facility and was not changed thereafter. The membrane selected for use was
either Baxter’s (Revaclear 400 or Theranova 400) or FMC’s (FX CorDiax 80), according to
the particular dialysis machine used by the patient. Before the Theranova 400 dialyzer
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was introduced to the facility (October 2017), all patients were on HD with HF membranes
(Revaclear 400 and FX CorDiax 80). After the introduction of the Theranova 400 dialyzer,
patients who used the FX CorDiax 80 continued to use it, but the Revaclear 400 membrane
was changed to an MCO membrane (Theranova 400). Therefore, there has been an HF group
(FX CorDiax 80) and an MCO group (Theranova 400) in the facility since October 2017.

2.3. Samplings and Analyses

Baseline predialysis blood samples were drawn before the introduction of the MCO
membrane, and predialysis samples had been drawn yearly following baseline. Blood was
collected in serum-separating tubes and allowed to stand for 30 min, then centrifuged for
10 min at 3000 rpm at room temperature within one hour. The serum was extracted and
stored at −70 ◦C until analysis. The levels of serum interferon (INF)-γ, IL-1β, IL-6, and TNF-
α were measured using a 32 × 4 multiplex custom-designed plate on an ELLA™ automated
immunoassay system (Bio-Techne, San Jose, CA, USA) according to the manufacturer’s
instructions.

2.4. Clinical Outcomes

We set four clinical events for survival analysis, including death, cardiovascular
events, infectious events, and hospitalizations. A cardiovascular event was defined as
the combination of myocardial infarction, stroke, hospitalization because of heart failure,
or revascularization, including percutaneous coronary intervention and coronary artery
bypass graft. An infection event was defined as an episode characterized by clinical signs
and symptoms necessitating antibiotic therapy. Hospitalization was defined as any hospital
admission resulting in inpatient status for 24 h or longer.

We investigated changes in laboratory findings, including hemoglobin, platelet, trans-
ferrin saturation, serum albumin, total calcium, phosphorus, intact parathyroid hormone,
and alkaline phosphatase. The average laboratory values were calculated at three-month
intervals. We also investigated the prescriptions of erythropoietin-stimulating agents (ESA),
phosphate binders, cinacalcet, and paricalcitol over a three-month interval. Given that
darbepoetin is the most commonly used ESA in this dialysis facility, we calculated monthly
ESA usage based on it. The prescription amount of phosphate binder and cinacalcet was
calculated as the monthly average number of tablets.

2.5. Statistical Analysis

Statistical analyses were performed using R version 4.0.3 (The R Foundation for
Statistical Computing, Vienna, Austria). Categorical variables are expressed as counts
(percentage), normally distributed continuous variables as means ± SD, and non-normally
distributed continuous variables as medians (interquartile ranges). Differences between two
independent groups were analyzed by Student’s t-tests for normally distributed continuous
variables, and by Mann–Whitney U test for non-normally distributed continuous variables.
Differences between two dependent groups were analyzed by paired samples t-tests for
normally distributed continuous variables and by Wilcoxon signed-rank test for non-
normally distributed continuous variables. Categorical variables were analyzed using the
Pearson’s chi-squared test or Fisher’s exact test, as appropriate.

We used a linear mixed model to determine the relationship between the membrane
used and the sustained outcome over time. Fixed effects included the membranes, age,
gender, dry weight, and presence of diabetes. Random effects for intercepts and slopes were
included in all mixed models. We focused on the interaction between time and membrane
type, revealing the temporal differences in laboratory values between MCO and high-flux
groups. Satterthwaite’s method was used to approximate the degrees of freedom and
statistical significance of linear mixed models.

As appropriate, values of variables with skewed distributions were log transformed
or square-root transformed. p-values < 0.05 were regarded as statistically significant, and
two-tailed tests were performed for all hypothesis tests.
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3. Results
3.1. Characteristics of Study Subjects

A total of 139 patients (HF group, 55 patients; MCO group, 84 patients) were enrolled
in the retrospective cohort study at baseline. After excluding 25 patients who met exclusion
criteria, 114 patients (HF group, 38 patients; MCO group, 76 patients) were selected for
survival analyses of clinical events. We followed up 76 patients during the entire study
period to analyze changes in laboratory findings and drug dosages. In the prospective
cohort, a total of 57 patients were enrolled. After excluding those patients who dropped out
during the study, we selected 42 patients (HF group, 15 patients; MCO group, 27 patients)
for cytokine analysis.

The prospective and retrospective cohorts showed no significant differences in baseline
characteristics between the HF and MCO groups (Table 1). The mean age was 53.5 ± 10.6 years.
Twenty-three (54.8%) patients were male, and the median dialysis vintage in the prospective
cohort was 77 (38–139) months. In the retrospective cohort, the mean age of the 66 (57.9%)
male patients was 54.8 ± 12.6 years, and the median dialysis vintage was 73 (40–140) months.

Table 1. Cohort demographics and clinical characteristics.

Prospective Cohort (n = 42) Retrospective Cohort (n = 114)

HF Group
(n = 15)

MCO Group
(n = 27) p-Value HF Group

(n = 38)
MCO Group

(n = 76) p-Value

Age, years 56.7 ± 11.7 51.7 ± 10.3 0.160 54.7 ± 11.7 54.8 ± 13.1 0.967

Gender, n (%) 0.405 0.070

Male 10 (66.7) 13 (48.1) 27 (71.1) 39 (51.3)

Female 5 (33.3) 14 (51.9) 11 (28.9) 37 (48.7)

Height, cm 165.5 ± 6.7 162.2 ± 9.0 0.228 165.0 ± 7.7 162.1 ± 9.7 0.120

Dry weight, kg 58.2 ± 11.8 58.1 ± 12.5 0.984 59.9 ± 12.5 60.1 ± 14.1 0.953

ESRD cause, n (%) 0.083 0.087

Diabetic nephropathy 5 (33.3) 6 (22.2) 11 (28.9) 25 (32.9)

Hypertensive 5 (33.3) 7 (25.9) 11 (28.9) 14 (18.4)

Glomerulonephritis 3 (20.0) 14 (51.9) 10 (26.3) 33 (43.4)

Others 2 (13.3) 0 (0.0) 6 (15.8) 4 (5.3)

Dialysis vintage, months 131 (35, 214) 56 (45, 119) 0.376 99 (29, 203) 68 (46, 126) 0.643

Hypertension, present 15 (100.0) 25 (92.6) 0.530 36 (94.7) 71 (93.4) 1.000

Diabetes, present 5 (33.3) 10 (37.0) 1.000 11 (28.9) 30 (39.5) 0.370

Heart disease, present 3 (20.0) 2 (7.4) 0.329 5 (13.2) 10 (13.2) 1.000

Vascular access, n (%) 1.000 0.917

Native AV fistula 13 (86.7) 24 (88.9) 33 (86.8) 68 (89.5)

PTFE graft 2 (13.3) 3 (11.1) 5 (13.2) 8 (10.5)

Hemoglobin, g/dL 10.5 ± 1.5 10.1 ± 1.6 0.473 10.3 ± 1.5 10.4 ± 1.4 0.761

Albumin, g/dL 4.11 ± 0.24 3.99 ± 0.34 0.237 4.05 ± 0.32 3.94 ± 0.35 0.093

Urea nitrogen, mg/dL 65.6 ± 16.3 62.7 ± 20.3 0.633 64.0 ± 19.4 58.1 ± 16.8 0.101

Creatinine, mg/dL 9.72 ± 3.50 9.64 ± 2.90 0.940 9.63 ± 3.04 9.59 ± 2.72 0.947

Triglycerides, mg/dL 92 (69, 122) 90 (57, 137) 0.793 96 (64, 149) 95 (59, 133) 0.477

Total cholesterol, mg/dL 134.1 ± 32.4 146.0 ± 29.9 0.238 135.8 ± 31.0 141.0 ± 30.7 0.397

Phosphorus, mg/dL 4.95 ± 1.70 4.81 ± 1.65 0.787 4.69 ± 1.48 4.53 ± 1.67 0.614
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Table 1. Cont.

Prospective Cohort (n = 42) Retrospective Cohort (n = 114)

HF Group
(n = 15)

MCO Group
(n = 27) p-Value HF Group

(n = 38)
MCO Group

(n = 76) p-Value

Calcium, mg/dL 9.07 ± 0.56 9.44 ± 0.67 0.082 9.28 ± 0.69 9.33 ± 0.74 0.757

Ferritin, ng/mL 268 (129, 363) 290 (227, 437) 0.323 269 (153, 385) 252 (139, 419) 0.995

Intact PTH, pg/mL 164 (99, 309) 205 (96, 298) 0.795 152 (78, 281) 185 (106, 286) 0.260

Kt/V per session 1.90 ± 0.37 1.89 ± 0.37 0.917 1.82 ± 0.33 1.87 ± 0.38 0.475

URR, % 0.78 ± 0.06 0.77 ± 0.07 0.801 0.77 ± 0.06 0.77 ± 0.07 0.827

Data are presented as mean ± SD, median (interquartile range), or count (%) as appropriate. AV, arteriovenous;
HF, high-flux membrane; MCO, medium cut-off membrane; ESRD, end-stage renal disease; PTFE, polytetrafluo-
roethylene; PTH, parathyroid hormone; URR, urea reduction ratio.

3.2. Clinical Events during the Three-Year Treatment Period

We investigated the clinical outcomes, including all-cause death, cardiovascular events,
infections, and hospitalizations, in the retrospective cohort according to the membrane
used. During the three-year study period, there were five deaths (two in the HF group and
three in the MCO group, p = 0.74), nine CV events (three in the HF group and six in the
MCO group, p = 0.97), 25 infection events (nine in the HF group and 16 in the MCO group,
p = 0.74), and 55 hospitalizations (17 in the HF group and 38 in the MCO group, p = 0.63).
There were no significant differences between the two groups in the occurrences of these
four clinical events (Figure 1).

Figure 1. Clinical events occurrence according to the hemodialysis membrane types. Clinical
outcomes included all-cause death (A), cardiovascular events (B), infectious events (C), and hospital-
izations (D). HF, high-flux membrane; MCO, medium cut-off membrane; CV, cardiovascular.
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3.3. Serial Changes of Laboratory Findings during the Three-Year Treatment Period

Figure 2 shows important laboratory parameter changes over the three years of treat-
ment. Serum albumin levels were lower in the MCO group as compared to the HF group
(mean difference = −0.180, p = 0.001), but they did not differ over time (mean changes
difference per month = −0.0003, p = 0.855). Serum calcium levels decreased over time
(mean changes per month = −0.012, p < 0.001), and intact PTH levels increased over time
in both groups (mean changes per month = 0.012, p = 0.001). However, there were no
significant differences in serum calcium and intact PTH changes over time between the HF
and MCO groups (mean changes difference of serum calcium per month = −0.004, p = 0.320;
mean changes difference of intact PTH per month = 0.183, p = 0.316). The changes of other
laboratory parameters, likewise, did not differ between the two groups (Supplementary
Table S1).
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Figure 2. Changes of laboratory findings during the three-year treatment period according to the
membrane type. The average values of the laboratory parameters including hemoglobin (A), ferritin
(B), serum albumin (C), total calcium (D), phosphorus (E), and intact PTH (F) are shown. Data are
presented as arithmetic means (black dots) and standard errors (error bars) as an error bar plot. The
values of the high-flux group are represented as solid lines, and those of the MCO group as dash
lines. Ferritin and intact PTH values were log transformed. MCO, medium cut-off membrane; PTH,
parathyroid hormone.
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3.4. Serial Changes of Medication Prescriptions during the Three-Year Treatment Period

The monthly dose of certain drugs and their changes over the study periods are pre-
sented in Figure 3. The drugs used for analyses were darbepoetin, phosphate binders,
cinacalcet, and paricalcitol. The mean erythropoietin-stimulating agent (darbepoetin) doses
and their mean changes over time did not differ between the high-flux group and MCO
group (mean difference = −0.102, p = 0.408; mean changes difference per month = 0.013,
p = 0.258). Likewise, phosphate binders, cinacalcet, and paricalcitol showed no differ-
ences in mean doses or mean changes between the two groups over time (Supplementary
Table S2).
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Figure 3. Changes in medication usage during the three-year treatment period according to the
membrane type. The average monthly doses of darbepoetin (A), phosphate binders (B), cinacalcet
(C), and paricalcitol (D) are shown. Data are presented as arithmetic means (black dots) and standard
errors (error bars) as an error bar plot. The darbepoetin and paricalcitol doses are expressed in
microgram units. The amounts of phosphate binders and cinacalcet are expressed in tablet numbers.
The values of the high-flux group are represented as solid lines and those of the MCO group as dash
lines. Darbepoetin doses were log transformed. The quantities of phosphate binder, cinacalcet, and
paricalcitol were square-root transformed. Phosphate binder included calcium carbonate, calcium
acetate, and sevelamer. MCO, medium cut-off membrane.

3.5. Serial Changes of Inflammatory Cytokines during the Three-Year Treatment Period

The inflammatory cytokines, including IFN-γ, IL-1β, IL-6, and TNF-α, in the prospec-
tive cohort were measured annually. The changes in the inflammatory cytokines during the
study period are presented in Figure 4. The concentrations decreased over time in IFN-γ
(mean changes per year = −0.262, p < 0.001) and IL-1β (mean changes per year = −0.369,
p = 0.001) (Supplementary Table S3). Each annual concentration of IL-1β, IL-6, and TNF-α
is presented in Supplementary Table S4. The IFN-γ values were especially low in the third
year (baseline, 1.27 ± 0.60 pg/mL; first year, 1.16 ± 0.85 pg/mL; second year, 1.15 ± 0.80
pg/mL; third year, 0.48 ± 0.49 pg/mL). The concentrations of these four cytokines did not
differ between the HF group and the MCO group, and the concentration changes over time
also did not differ between the two (Supplementary Table S3).
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Figure 4. Changes in cytokine concentrations during the three-year treatment period according to the
membrane type. The mean values of cytokines during the study periods are presented: (A) interferon-
γ, (B) interleukin-1β, (C) interleukin-6, (D) tumor necrosis factor-α. Data are presented as arithmetic
means and standard errors as an error bar plot. The values of interferon-γ, interleukin-1β, and
interleukin-6 were logarithmically transformed. The values of the high-flux group are represented
as solid lines and those of the MCO group as dash lines. MCO, medium cut-off; IFN interferon; IL,
interleukin; TNF, tumor necrosis factor.

4. Discussion

During the three-year treatment period, our study found no differences between the
two groups in clinical events or laboratory findings, including albumin or medication usage.
Interestingly, in both groups, inflammatory cytokines were stable over the three years and
the IFN-γ and IL-Iβ decreased over the three years.

Expanded HD could remove the middle uremic toxins between 15 and 60 kDa, which
include inflammatory cytokines [13,16]. However, the effectiveness of expanded HD in
clearing cytokines has not been well documented, and it is unknown whether prolonged
HD can lower cytokine levels.

IL-6, an inflammatory cytokine, is one of the most highly regulated mediators of
inflammation (increasing from 1–5 pg/mL to several µg/mL in certain conditions) and
plays a central role in various diseases [17–19]. IL-6 and soluble IL-6 receptors (sIL-6R) are
considered important prognostic markers of clinical outcomes in ESRD patients [19]. High
IL-6 levels contribute to dialysis-associated malnutrition and are prognostic of cardiovascu-
lar risk, which is an adverse outcome of hemodialysis [12,19–21]. Raised serum IL-6 and
sIL-6R levels at the beginning of treatment remain powerful predictors of mortality in HD
patients [12]. Clinical studies on whether expanded HD can effectively remove IL-6 are
controversial.

According to Zickler D et al., at four weeks, the gene expression of TNF-α and IL-6 in
peripheral blood mononuclear cells with the MCO dialyzer was reduced to a significantly
greater extent than with the HF dialyzer [2]. Expanded HD has a greater reduction rate of
TNF-α at 24 weeks but not for IL-6 as compared to HD with HF [4]. However, the changes
in IL-6 and TNF-α levels at baseline before dialysis did not significantly differ [4].

In our study, expanded HD did not reduce serum concentrations of IL-6 in HD patients
over a three-year period. Compared to HF groups, expanded HD was not more effective in
cytokine clearance. We think that the inflammatory cytokines do not increase during HD
with MCO or HF membranes because the biocompatibility of the dialysis membranes is
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excellent. Recent technological advances have improved the biocompatibility of dialyzer
membranes [20,21]. Given that the enrolled subjects were stable during the treatment
period, it is thought that the inflammatory cytokines showed little change, and even IFN-γ
and IL-1β gradually decreased over the three years of treatment.

Cytokine reductions during expanded HD can be subtle because baseline IL-6 levels
are low in HD patients. In our study, the mean IL-6 was 5.70 pg/mL, which is a similar
baseline concentration to previous studies [13]. One observational study showed that
expanded hemodialysis improves survival and effectively removes cytokines in patients
with COVID-19 [22]. Further studies should reveal whether expanded HD could effectively
remove inflammatory cytokines in patients with severe infection.

A recent meta-analysis study showed that expanded HD removed approximately
2 g of albumin per 4 h conventional hemodialysis session, resulting in a decreased serum
albumin level of 1.2 g/dL over the short term (<24 weeks), which returned to baseline
thereafter [15]. In our study, serum albumin was lower at baseline in the MOC group as
compared to the HF group. However, serum albumin did not change during the first six
months. Moreover, the variation of albumin did not differ significantly over the three-year
treatment period. Recently, expanded HD reduced ESA resistance as compared to HD
with HF [23]. However, two other studies showed that expanded HD had no effect on
ESA dosage [24,25]. Our study showed that expanded HD did not reduce the ESA dose as
compared to HF HD. We think that the inflammatory statuses were similar in both groups,
which may have influenced the resistance of EPO in patients with HD. In addition, mineral
bone disease biomarkers and dialysis efficiency were similar in both groups. Meta-analysis
studies have also shown that MCO improves clinical outcomes, such as a reduction in
symptom burdens and infections, recovery time, and length of hospital stay, and quality of
life [23]. The MCO membrane did not improve such clinical outcomes as all-cause death,
cardiovascular events, infections, or hospitalizations as compared to the HF group. Several
factors other than the dialysis membrane are related to the clinical outcomes in patients
with hemodialysis [26]. We think that the effect of MCO membranes was not superior to
HF membranes in our study because all subjects in both groups were well managed.

In our study, two different materials of dialyzers were used. The HF group used a poly-
sulfone membrane and the MCO group used a polyarylethersulfone and polyvinylpyrroli-
done blend membrane. A previous study showed that these two dialyzers have similar
biocompatibility [27]. Our study also supported that recently used synthetic membranes
have very stable biocompatibility.

Our study has some limitations. Firstly, this study was not randomized. Secondly, our
cohort study was at a single center. Thirdly, the number of patients included in the cytokine
analysis was not big, so there was a limitation for catching subtle differences. However,
our study has the advantage of observing changes in inflammatory cytokines over the long
period of three years.

5. Conclusions

Inflammatory cytokines were not lower in expanded HD as compared to HF during a
three-year treatment period, although the level of inflammatory cytokines was stable. This
can explain the biocompatibility of the expanded HD. In addition, there were no significant
differences in clinical efficacy and safety outcomes between expanded HD and HF dialysis.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/jcm11082261/s1, Table S1. The differences in laboratory parameter
values according to the membrane types and time; Table S2. The differences in drug prescriptions
according to the membrane types and time; Table S3. The differences in inflammatory cytokines
levels according to the membrane types and time; Table S4. The annual concentration values of
inflammatory cytokines.
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