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Abstract
The accuracy of graph based learning techniques relies on the underlying topological structure and affinity between data
points, which are assumed to lie on a smooth Riemannian manifold. However, the assumption of local linearity in a
neighborhood does not always hold true. Hence, the Euclidean distance based affinity that determines the graph edges may
fail to represent the true connectivity strength between data points. Moreover, the affinity between data points is influenced
by the distribution of the data around them and must be considered in the affinity measure. In this paper, we propose two
techniques, CCGAL and CCGAN that use cross-covariance based graph affinity (CCGA) to represent the relation between
data points in a local region. CCGAL also explores the additional connectivity between data points which share a common
local neighborhood. CCGAN considers the influence of respective neighborhoods of the two immediately connected data
points, which further enhance the affinity measure. Experimental results of manifold learning on synthetic datasets show that
CCGA is able to represent the affinity measure between data points more accurately. This results in better low dimensional
representation. Manifold regularization experiments on standard image dataset further indicate that the proposed CCGA
based affinity is able to accurately identify and include the influence of the data points and its common neighborhood that
increase the classification accuracy. The proposed method outperforms the existing state-of-the-art manifold regularization
methods by a significant margin.

Keywords Graph · Affinity · Euclidean distance · Cross-Covariance · Neighborhoods · Manifold regularization

1 Introduction

Manifold learning and regularization methods have been
widely used for data representation and processing respec-
tively. A given data is represented as a weighted graph
where the weights represent the similarity between data
points. In an ideal case, similar data points should have
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a higher affinity, which satisfies the manifold assumption.
In manifold learning, clusters of data points having larger
affinity are kept spatially close when projected to lower
dimensional space. Similarly, in manifold regularization, the
labels of data points in a large affinity neighborhood are
assumed to be similar and, hence, the approximated func-
tion is penalized of it changes label in such a neighborhood.
This shows that affinity fundamental to both manifold learn-
ing and regularization methods, which also influence the
accuracy of the underlying model.

Any manifold learning or regularization technique can be
decomposed into three steps. (1) computation of the pair-
wise affinity, (2) creation of the graph, and (3) project the
data into low dimensional space or approximate the genera-
tive function and penalize. When only data points are given,
then an appropriate metric needs to be evolved to capture the
similarity between data points. This is crucial as the effi-
ciency of a learning technique hinges on the affinity metric.
The affinity metric must be able to capture the dependence
between data points and account for uneven sampling, if any,
of the data points. Once the affinity is determined, geodesic

/ Published online: 20 November 2020

Applied Intelligence (2021) 51:3844–3864

http://crossmark.crossref.org/dialog/?doi=10.1007/s10489-020-01986-9&domain=pdf
http://orcid.org/0000-0002-7387-5903
mailto: pcl2014003@iiita.ac.in
mailto: rsi2016006@iiita.ac.in
mailto: sverma@iiita.ac.in
mailto: venkat@iiita.ac.in


Table 1 Mathematical notations with their descriptions

Notation Description

X Dataset

D Ambient Dimension

R Space

M Manifold

n Total number of data instances

G Graph

xi Data instance

W Weight matrix

wij Affinity between data point xi and xj

Am. Row sum

A.m Column sum

N(xi) Neighborhood of xi

κ(xi , xj ) Similarity between xi and xj

Q, Z Random variables

F and G Reproducing Kernel Hebert spaces

HSIC(·, ·) Hilbert-Schmidt Independence Criterion

d(xi , xj ) Distance between xi and xj

dN(xi )(·, ·) Distance between points in a neighborhood

κN(xi )(·, ·) kernel defined in a neighborhood

using the heat kernel may be computed between data points
assumed to be lying on the Riemannian manifold. The heat
kernel enforces the smoothness assumption, which depends
on the kernel bandwidth (σ ).

The heat kernel affinity is governed by its bandwidth
or scaling, which drastically reduces the affinity value
for data points assumed to be distant or non-similar. The
local scaling method further optimizes this bandwidth to
fit the local neighborhoods of connected data points [1].
It often takes the distance between the point of interest
and its 7th neighbor as affinity bandwidth, which suggests
an increase in accuracy as compared to baseline methods.
Instead of finding affinity from the given data points, [2]
proposes to recreate optimal affinity assuming the graph
partition has been provided. The removal of noisy edges
that artificially increased or decreased the affinity between
data points based on the maximum cliques further enhanced
the manifold’s modeling[3]. A slightly different approach
introduced in the paper [4] that combined the similar
information from various neighborhoods to enhance the
robustness of kNN. An adaptive neighborhood assigning
technique [5] proposed to learn the graph adjacency. It can
extensively explore the local manifold structure but fails
to decode the global structure of the manifold. A different
approach introduced by [6] that used the information
theoretic approach to decode the similarity information.
These methods directly rely on the Euclidean distance to

construct a data graph that assumes the knowledge of the
extent of the locally linear region and remains susceptible to
noisy and highly correlated features.

In this work, we propose cross-covariance based graph
affinity (CCGA) for the affinity approximation task. CCGA
aims to preserve both linear and non-linear properties
of the manifold accurately. The method initiates by mapping
the data points into reproducing kernel Hilbert space (RKHS)
using an appropriate kernel on the vertices of the underlying
graph, which is followed by similarity measure between data
points identified as neighbors in ambient space using Hilbert-
Schmidt independence criterion (HSIC). The cross-covariance
based affinity metric minimizes the effect of noise and
error measurement by making it independent of its existing
spatial locations. CCGA for the local region (CCGAL)
method aims to strengthen the affinity by discovering the
connectivity between data points, which may or may not
be immediately connected but share one or more common
local neighborhoods that indicate an innate similarity.
Additionally, CCGA for the neighborhood (CCGAN)
weighs the influence of respective neighbors of two
connected data points for a correct measure of similarity.

The major contributions of the paper can be stated as, we
propose Cross-Covariance based Graph Affinity between
two data points that incorporates nonlinear dependence, the
influence of neighboring data points, and the neighborhoods
around data points. The first technique CCGAL, try to
include the influence of the data points in the common
neighborhood in the affinity metric between two points.
The second technique CCGAN, takes into consideration
the influence of the neighborhoods of data points that are
adjacent to both the points. Table 1 describes the important
mathematical symbols used in this paper.

The rest of the paper is organized as follows: Section 2
describes the existing literature that highlights state-of-
the-art techniques and various affinities used in machine
learning techniques. Section 3 illustrates the proposed
technique and describes how measuring the dependence
between the data points leads to a more accurate affinity.
Sections 3.2 and 3.3 explains the affinity obtained based
similarity estimation between two data in a local region
and between two neighborhoods, respectively. Section 4
highlights the experiments performed on various real
world and synthetic data to evaluate the performance of
our techniques in terms of classification accuracy and
dimensionality reduction. Section 5 concludes the findings
and robustness of our techniques.

2 Related work

It is known that the affinity between data points depends
not only on the location but also on the neighborhoods of
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two points. The density of data has been considered by
various metrics in supervised [7], unsupervised [8], semi-
supervised [9] and deep learning [10]. The affinity between
two data points with different neighborhood density is
different from the affinity when both neighborhoods have
the same density [11]. Many of the existing literature
shows that they adjust local data structures to improve
the characteristics of the affinity graph. However, these
techniques are highly susceptible to the occurrence of
noise and irrelevant features. They mainly focus on the
parameter σ of the RBF heat kernel to determine the
similarity between two data points. To solve such issues,
the graph-theoretic approach is applied by [3] that consider
rebuilding the tight neighborhood by picking maximal
clique, which in other words, maximizes the average
pairwise similarity. The use of contextual information is
proposed in [12] to obtain affinity scores between the pairs
of data points. The similarity information propagates as
diffusion on the graph. The SSNMM-isomap framework
[13] employs LLE to preserve the optimal local properties
that minimizes the pairwise distances between intraclass
data points that assumed to lie in the same manifold.
The inter-class distances between data points that lie
over different manifolds are simultaneously maximized.
The LLE based neighborhood reconstruction error for
preserving local topological structures leads to accurate
low dimensional representation and, hence increases the
model’s accuracy. The work in the paper [14] carried out
the diffusion on a locally constrained sparse graph to obtain
a more accurate graph affinity. A similar kind of work
[15] performed the diffusion process on a tensor product
graph that captures the higher order information. However,
in the aforementioned works, the diffusion process is highly
susceptible to noise. This leads to the inaccurate affinity
propagation in a graph.

DSCF-net [16] aims to learn an optimal representa-
tion matrix along with several sets of basis vectors. The
deep factorized coefficient matrix accumulates the similar-
ity information between samples and features. A technique
[17] for 2D image is introduced to extract the neighbor-
hood features by minimizing the Frobenius norm-based
reconstruction error. This makes the distance metric more
reliable and encodes the neighborhood reconstruction error
precisely. The RS2ACF [18] framework optimizes the rep-
resentation by constraining it in both projection and label
space. The basis vector obtained from concept factorization
is used to discover the latent semantic structure hidden in
data proves to be useful for clustering. The label constrained
representation matrix preserves the local geometrical infor-
mation, which propagates accurate labels to unlabeled data.
In [19], a parameter free affinity based clustering is intro-
duced that estimate distance between data points, and a

threshold affinity is obtained. In paper [20], propose Consis-
tent Affinity Graph Learning (CAGL) algorithm for multi-
view data that selects the robust graph Laplacian matrices
from each view. It models the hypergraph Laplacians as
a point on Grassmann manifold and fuses all the views
with CAGL algorithm. In [21], Axiomatic Fuzzy Set-based
Spectral Clustering (AFSSC) is proposed that creates a
highly robust affinity graph by exploiting and identifying
the discriminative features.

Kernel dependency measures like HSIC capture both
linear and nonlinear relationships by mapping the data
into a high dimensional feature space. A kernel defined
on the vertices of a graph gives a representation of the
data and measure of similarity between data points in the
RKHS. HSIC [22, 23] is calculated from the empirical
estimate of the Hilbert-Schmidt norm on the cross-
covariance operator. Empirical HSIC is used to measure
statistical dependence between two random variables or two
datasets assumed to be drawn from different probability
density functions. HSIC has been optimized with greedy
algorithms on data features [23, 24]. In the paper [25],
the proposed feature space independent semi-supervised
kernel matching method for domain adaptation. HSIC Lasso
using dual augmented Lagrangian for global optimum,
has been introduced in [26] for regression with feature
reduction. ICA [27], with contrast function based on
canonical correlation in the RKHS space, has been proposed
for feature selection by finding the minimum correlated
dimensions. The HSIC based supervised feature selection
[24] measures the dependence between the given features
with their respective labels and selects those features that
give the maximum correlation. HSIC has also been used
for dimensionality reduction [28, 29] such that maximum
independent features are identified using the kernel method.
The problem of hyperspectral image classification [30] has
also utilized surrogate kernel based HSIC to further increase
the classification accuracy.

3 Cross-covariance based graph affinity
(CCGA)

CCGA based affinity measure has been proposed to
capture the nonlinear dependence between data points
of a point cloud lying on a Riemannian manifold in
place of Euclidean distance. It is recognized that in
addition to nonlinear dependence, pairwise affinities are
also affected by the presence of common neighbors of
data points. The first technique, CCGAL, considers the
dependence between neighboring points of a neighborhood
to identify innate dependence and to incorporate them in the
affinity measure between data points. The second technique,
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CCGAN assumes that common neighbors do not affect the
affinity measure alone but with their own neighborhoods.
This effect has been captured in the affinity measure
for increased classification accuracy and dimensionality
reduction performance.

A pairwise affinity metric needs to capture the mutual
dependence (linear or nonlinear) between data points. Semi-
supervised learning assumes that the conditional density
of the points given the labels varies smoothly along the
geodesics in the intrinsic geometry of the marginal distribu-
tion of the data points. If two points on the manifold have an
edge i.e. high mutual dependence between them on which
the marginal density is large, then the two points would
generally share the same label. This entails that the affin-
ity metric between two data points must also consider their
neighborhoods. Nonlinear dependence can be computed
using the kernel in an appropriate feature space. However, to
consider the effect of neighborhood requires determination
of the neighborhoods of the nodes. This becomes paradox-
ical as the affinity between data points define edges. More-
over, implicit mapping into the feature space does not preserve
neighborhoods. This can be solved by defining local neigh-
borhoods created by kNN or εNN using Euclidean distance.
This neighborhood is used to determine neighboring points
and the effect of neighborhoods on affinity using kernel
based dependency measure in the feature space. The result-
ing affinity is used to find the geodesic on the Riemannian
manifold using a heat kernel.

Given n data points (xi)
n
i=1 sampled on manifold M,

the local neighborhoods are designed using k-NN or ε-NN
represented as G = (X, W) where, X is collection of all
data points and W contains the affinity between connected
data points. Assume that around each data point xi , the local
neighbors are contained in xj ∈ N(xi). The heat kernel
based affinity between data points are obtained using:

wij = exp−‖ xi − xj‖22
2σ 2

(1)

where, xi is the point of interest, xj ∈ N(xi) is its neighbor,
and σ is the heat kernel bandwidth. In graph-based semi-
supervised learning methods, affinity measures between
labeled and unlabeled data points are used to determine the
labels of unlabeled points. The choice of affinity measure
is vital in determining the classes of the unlabeled points.
A graph is created using kNN such that number of fixed
neighbors in kNN may force data points beyond the linear
region to be considered as a neighbor. In other situation,
genuine linear neighborhood data points may be discarded.
Thus, the neighborhood of a data point cannot be guaranteed
to hold the local linearity assumption. This requires a non
Euclidean measure that can capture the relation between xi

and xj ∈ N(xi).

Kernel methods map the input data into a high-
dimensional RKHS and define a linear method therein. The
model results in a nonlinear relationship with respect to
the input space. The mapping is implicit, and the nonlinear
relations between data in the feature space are captured
through the kernel function. A symmetric positive semi-
definite matrix can be viewed as a proximity measure
that has an inner product representation and satisfies the
criteria required to be a distance metric. Consider for any
proximity κ on a finite set X, if two data points xi and xj

are connected then the distance between them is obtained
using d(xi, xj ) = 1

2

(
κ(xi, xi) + κ(xj , xj ) − κ(xi, xj )

)
.

This also indicates that the proximity measures can be
combined to generate a distance metric that represents the
pairwise affinity or dependence between data points.

In this paper, we follow the proximity approach to
encode the similarity among data points through cross
covariance based affinity. The method captures both linear
and nonlinear properties of the underlying data manifold
by means of statistical independence criterion. The cross-
covariance operator assigns a value between 0 and 1 where,
the former value is assigned for two completely different
data points and the later value signifies that the two data
points are exactly the same. HSIC of a data point to
itself always results in a unity value. As the properties
of underlying manifold M is unknown and the sample
data points cannot be guaranteed to have been drawn
uniformly. Hence, the distribution parameters of resultant
neighborhoods differ from each other. The similarity and
differences of neighborhood distribution parameters can
only be appropriately utilized when the data is mapped to
its full feature space. However, due to the complexity of
the mapping and increased dimensions, the kernel proximity
automatically identifies the small linear subspace where the
manifold properties can be exploited in a linear manner.

The proposed affinity framework relies on defining the
local neighborhood on kNN method based on Euclidean
distance. This is necessary as the neighborhood is not
preserved in the feature space. The implicit kernel mapping
redistributes the points. Hence, a Euclidean distance based
neighborhood is fixed ab initio. Then the affinities between
connected data points are determined through CCGA
methods. The proposed techniques account for both linear
as well as nonlinear relationships between each pair of
connected data points by estimating the HSIC dependence.

3.1 Hilbert-schmidt independence criterion (HSIC)

HSIC is a kernel based similarity measure between two
random variables. Given, Q and Z are two random variables
sampled from their respective probability density functions.
Assume, F and G are the two RKHSs for Q and Z
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respectively. Let the φ(q) and ψ(z) be the feature mapping
functions such that φ(q) : Q → R and ψ(z) : Z → R. The
kernel functions are given by κ(q, q ′) = 〈φ(q), φ(q ′)〉F
and κ̂(z, z′) = 〈φ(z), φ(z′)〉G . The empirical estimation of
HSIC using a finite number of data samples is defined as:

HSIC = 1

n
tr(κCκ̂C) (2)

where, n is the total number of observation, κ , and κ̂ are the
two respective kernel matrix for Q, and Z respectively, and
C is the centering matrix. The similarity value between two
data vectors in the Hilbert space is given by (2).

3.2 CCGA for local region (CCGAL)

Assume a data point xi and its neighbors xj , · · · , xk ∈
N(xi). Based on smoothness assumption, if N(xi) is a local
region with high affinity between neighborhood data points,
then all the neighbors shall share similar label with high
probability. This entails that two data points xj ∈ N(xi)

and xk ∈ N(xi) that are part of the neighborhood N(xi)

of xi but not adjacent to each other i.e. xj �∈ N(xk) and
xk ∈ N(xj ) may also generally share the same label. It
also indicates that the affinity between such data points
xj and xk should be large if they have multiple common
neighborhood. However, in general for affinity calculation,
the relation between such xj and xk is not considered
unless either xj ∈ N(xk) or xk ∈ N(xj ) is true. The
proposed CCGAL tries to identify such similarities among
data points and accumulate them to define revamp affinity
between two data points based on two factors, first, whether

they are neighbors and second, number of common local
neighborhood shared by them.

Figure 1 shows the pictorial representation of CCGAL,
xi as point of interest with data points in the kNN
neighborhood xj ∈ N(xi). Here, xi is denoted by black
filled circle and its neighbors with blue filled circles.
The direct connectivity between xi and xj ∈ N(xi) has
been illustrated using solid lines which is approximated
similarly by both Euclidean distance and CCGAL. This
CCGAL determines the statistical independence between
the neighbors. This is represented by dashed line. If the data
points xj and xk further share common local neighborhood
apart from xi , the next such distance should be added to
previous value between them. The proximity between any
two connected data points xi and xj can be defined as

d(xi, xj ) = 1

2

(
κ(xi, xi) + κ(xj , xj ) − 2κ(xi, xj )

)

= 1

2

(
2 − 2κ(xi, xj )

)

Since, κ of a data point to itself is 1.

∴ d(xi, xj ) = 1 − κ(xi, xj ) (3)

Similarly, when two data points xj , and xj lie in the
neighborhood N(xi), then their distance is calculated using

d(N(xi ))(xj , xk) = 1 − κ(N(xi ))(xj , xk)

where, κ(N(xi ))(·, ·) signifies kernel proximity applied
the neighborhood of N(xi), and w(N(xi )) represents the
respective neighborhood distance. Further, if xj , and xk

are immediately connected or are part neighborhoods of
other data point (N(·)), then the distance between them is

Fig. 1 CCGA for Local Region
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obtained by averaging over all individual distances using
[31]

d(xj , xk) = 1

n

n∑

i=1

(
1 − κ(xj , xk) + κN(·)(xj , xk) + . . .

)
(4)

The final affinity wjk between any two data points xj and
xj where, w(xj , xk) �= 0 can be obtained using the heat
kernel as

wjk = exp−d(xj , xk)

2σ 2
(5)

The algorithm for CCGA for local region has been
explained in Algo. 1.

The CCGAL major steps are as follows,

1. Given a dataset X having n number of points, create a
kNN neighborhood N(xi) around each data point xi

2. Apply kernel κN(xi ) and compute the k × k distance
matrix.

3. Convert this distance matrix to an affinity matrix as in
(5).

4. For each pair of data points xj and xk contained in the
current k × k affinity matrix, add the current affinity
values to the previously computed values.

5. Repeat the step 2 until all n data points are processed.

3.3 CCGA for neighborhood (CCGAN)

CCGAL is based on the assumption that common neighbors
influence the mutual dependence between two data points.

Fig. 2 CCGA for Neighborhood
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These individual influences may be further conditioned by
their own neighborhoods. CCGAN tries to assimilate this
intangible effect of the neighborhoods of the neighbors them-
selves in the affinity metric. Again, to adhere to the mani-
fold assumption, a neighborhood is identified using spatial
proximity based on Euclidean distance. CCGAN proceeds
as follows, given data points in X, a local neighborhood
N(xi) can be constructed using kNN or εNN around every
point xi based on Euclidean distance between all data
points. Once the graph is created, we want to compute the
pairwise affinity, based on their nonlinear dependence, the
effect of neighboring data points, and their respective neigh-
borhoods between the point of interest xi and each of its
neighbor xj ∈ N(xi). As shown in Fig. 2, the pairwise
affinity between every such pair of xi and xj would fur-
ther decide if they are likely to share similar labels. We
have two neighborhoods N(xi) around the xi and other
N(xj ) around the xj such that xj ∈ N(xi). To compute the
nonlinear dependence, we apply RBF kernels: κ(N(xi ) and
κ(N(xj ) for N(xi) and N(xj ) respectively. Each kNN neigh-
borhood contains k + 1 elements including point of interest.
The kernels over N(xi) and N(xj ) allows the algorithm to
appropriately weigh the importance of neighbors. The HSIC
based statistical independence between N(xi) and N(xj ) is

w(N(xi), N(xj )) = κ(N(xi ))Cκ(N(xj ))C (6)

w(N(xi), N(xj )), is converted into distance as follows,

d(N(xi), N(xj )) = 1 −
(
κ(N(xi ))Cκ(N(xj ))C

)
(7)

The resultant d(N(xi), N(xj )) distance matrix consists of
(k + 1) × (k + 1) where each di′j ′ corresponds to distance
between i′th member of N(xi), and j ′

th member of N(xj ):

d(N(xi), N(xj )) =

⎡

⎢⎢⎢⎢⎢
⎣

d11 d12 · · · d1(k+1)

d21 · · · . . . · · · d2(k+1)
... · · · · · · . . . · · ·
... · · · · · · d(k+1)(k+1)

⎤

⎥⎥⎥⎥⎥
⎦

The matrix d(N(xi), N(xj )) now contains the distance calcu-
lated usingHSIC between every pair ofN(xi), andN(xj ) rep-
resented as rows, and columns respectively as shown above.
Finally, the distances between data points being mem-
ber of such N(xi), andN(xj ) are summed up together to
strengthen such relations. w(xi, xj ) = w(N(xi), N(xj )) +
w(N(xi), N(xk))xj ∈N(xk) + w(N(xj ), N(xk))xi∈N(xk) +
w(N(xk), N(xl))xi∈N(xk),xj ∈N(xl) + . . .

This distance is calculated between data point and each of
its neighbors. Inside every neighborhood, w(N(xi), N(xj ))

is computed k times. Over n data points, this algorithm
is repeated k × n times to compute the distance matrix.
The final affinity wij between any two data points can be

obtained using (5). The algorithm for CCGA for local region
has been explained in Algorithm 2.

The CCGAN can be summarized in following steps.

1. Given data points in X, local neighborhood N(xi) is
obtained with kNN algorithm around each data point.

2. After obtaining this graph, based on the Euclidean the dis-
tance, affinity between point of interest xi and each of its
neighbor xj∈N(xi) is computed. In this way, we have two
neighborhoods, N(xi) around xi and N(xj ) around xj .

3. On each of this neighborhood, the RBF kernel κ(N(xi ))

and κ(N(xj )) is applied.
4. The HSIC based statistical independence between two

these neighborhoods is computed as (6).
5. The pairwise HSIC values between data points is

converted into distance (7). This forms a distance matrix
of size (k + 1) × (k + 1).

6. In every neighborhood w(N(xi), N(xj )) is computed k

times which is repeated for n data points (k × n) times.
7. The final affinity matrix is obtained by (3).

3.4 Complexity analysis

The techniques based on CCGA largely depends on the
number of data points n and ambient dimension D. For
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both, CCGAL and CCGAN RBF kernel (O(n)) and kNN
algorithm (O(D × n × k)) has been used. The graph mainly
depends on the k number of nearest neighbors. The time
complexity for both techniques can be expressed as,

– CCGAL, complexity is computed based on steps as
defined in Algorithm 1.

1. Step 5, copying the data points O(1).
2. Step 6, number of element count O(k).
3. Step 7, matrix subtraction O(k × d).
4. Step 8, identity matrix O(1).
5. Step 9, centering matrix O(k × d).
6. Step 10, RBF kernel computation over k data points

O(k).
7. Step 11, affinity approximation over k data point

O(k × k).

The over all time complexity for n data points using
CCGAL technique is given as O(n × k)(d + k).

– CCGAN, complexity is computed based on steps as
defined in Algorithm 2.

1. Step 5, copying the data points O(1).
2. Step 6 & 11, number of element count O(k).
3. Step 7 & 12, matrix subtraction O(k × d).
4. Step 13, identity matrix O(1)
5. Step 14, centering matrix O(k × d).
6. Step 15 & 16, RBF kernel computation over k data

points O(k).
7. Step 17, distance estimation O(k)

8. Step 20, conversion into affinity O(k × k)

The over all time complexity for n data points using
CCGAN technique is given as O(k3 × n × d)(d + k).

4 Experiment and Results

The performance of the proposed graph affinity based
techniques CCGAL and CCGAN have been evaluated
on both synthetic and real world datasets for manifold
learning and graph Laplacian regularized classification, i.e.
manifold regularization. The existing state-of-the-art graph
affinity methods like heat, binary EMR [32] (both 24
and 72 graphs) used for graph construction are compared
against our techniques in terms of classification error. In
order to validate the robustness of our techniques, a wide
range of real world datasets are used. The real world
datasets mainly comprise of images, handwritten characters,
scene recognition and brain computer interface. The binary
classification error is estimated with two models LapSVM
and LapRLSC for both test and unlabeled sets. The mean

classification error1, along with standard deviation by
varying the value of k are summarized in the tables.

4.1 Synthetic datasets

The synthetic datasets contain 3D manifold shapes whose
low dimensional 2D representation is known. Non-linear
dimensionality reduction based 2D projections using
both CCGAL and CCGAN techniques are obtained.
For comparison many existing state-of-the-art non-linear
dimensionality reduction techniques namely LTSA (Local
Tangent Space Alignment) [33], LLE (Local Linear
Embedding) [34], Isomap (Isometric Mapping) [35], LE
(Laplacian Eigenmap) [36], and HE (Hessian Eigenmap)
[37] are employed along with linear dimensionality
reduction technique PCA (Principal Component Analysis)
[38]. The first row of figures in the Table 2 contains the
original 3D manifolds and subsequent rows contain the 2D
output from each of the employed techniques.

1. Punctured Sphere: The second column of the Table 2
shows the punctured sphere dataset. This artificially
generated dataset contains 4000 data points in 3D. It
is originally a 2D disc, which is elevated on the third
dimension to make it a sphere. The results show that
PCA, LLE, Isomap and HE are unable to determine the
true 2D structure as they failed to preserve the intrinsic
geometry of the punctured segment marked with red
color. Both CCGAL and CCGAN, along with LTSA and
LE preserve the true intrinsic geometry and are able to
unfold the true lower space structure. The HSIC based
nonlinear dependence is able to find the true affinity
among data points which leads to a better association
among data points belonging to the same class.

2. Sine on a hyperboloid: The third column of the
Table 2, shows 629 data points, sine wave wrapped
around a hyperboloid in 3D space which is originally
a smooth circle on a 2D plane. As evident, CCGAL,
CCGAN, and Isomap give the best representation in 2D
space while retaining the geometrical characteristics.
All other techniques fail to either preserve the circle
or its smoothness. These techniques only rely on the
Euclidean distance for structural properties estimation
and discard a large chunk of the nonlinear properties.

3. Swiss roll with hole: This dataset contains 3947 data
points modeled in a Swiss roll shape with a small
hole in between green and blue portion. When unrolled
correctly, it should appear as a 2D flat strip with a hole.
Isomap is able to give the closest output to its intrinsic

1The least classification error for each dataset has been highlighted in
bold in Tables 3 to 12
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Table 2 (continued)

Methods Punctured Sine on a Swiss roll with Twin peak with

sphere hyperboloid hole (k = 4) hole ( k = 12)

(k = 15) (k = 3)

representation. LLE, CCGAL, and CCGAN are able to
preserve the shape of the hole along with the strip. Other
methods failed to preserve the connectivity around the
hole. CCGAL, and CCGAN are not able to better unroll
the structure. It seems that they discard some spurious
dependencies between points in the hole perimeter.

4. Twin peak with hole: The last column of the Table 2,
shows the artificially generated Twin peaks with a hole,
which is originally a 2D flat strip with a hole containing
6990 data points. The results show that PCA gave

the most accurate representations, followed by CCGAL
and CCGAN. Other methods either failed to unroll
the strip to its original structure or the boundary data
points remained cluttered. All nonlinear dimensionality
reduction techniques are able to retain the hole, but 2D
shape distortion is maximum for Isomap as the shortest
is not the correct geodesic distance.

Manifold learning results as shown in the Table 2 on the syn-
thetic datasets clearly suggest that both the techniques are able
to determine the optimal affinities that preserve the maxi-
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mum intrinsic geometrical properties. This leads to a better
association among data points belonging to the same class.
It is observed that for all the synthetic datasets, both, CCGAL

and CCGAN are able to unroll the data and project them to 2D
space while retaining the maximum structural characteristics.

4.2 Real world datasets

1. USPS: This dataset [39] contains scanned images
(Fig. 3a) of handwritten digits on envelopes of the US
postal services. The original scanned digits varying in

Fig. 3 Real world Datasets Images
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Table 3 Mean error(± Standard deviation) LapSVM (Test) k = 6

Method → Heat Binary EMR24 EMR72 CCGAL CCGAN

Dataset ↓

USPS 5.9853(±2.0131) 6.0026(±2.0067) 28.4868(±1.2284) 28.4868(±1.2284) 3.5657(±1.4774) 2.4492(±1.152)

Hasy v2 22.9591(±0.65604) 3.3982(±2.5612) 13.1766(±0.60032) 13.1766(±0.60032) 2.5943(±0.35458) 2.4104(±0.33458)

MNIST 38.4751(±0.54756) 10.4451(±1.767) 35.9541(±0.9027) 35.9541(±0.9027) 7.5191(±1.5213) 8.654(±1.9719)

BCI HaLT 20.6458(±0.4408) 20.7146(±0.41966) 21.6187(±0.55034) 21.6187(±0.55034) 20.7254(±0.41862) 20.7732(±0.43116)

CIFAR-10 31.1644(±1.0143) 31.3531(±1.0624) 31.3738(±1.068) 31.3738(±1.068) 31.2954(±1.0459) 30.5624(±0.93737)

Lego 13.9991(±8.1623) 10.2096(±9.077) 18.5477(±5.5793) 17.2964(±5.9808) 8.7628(±9.0811) 8.5574(±9.3981)

Bricks

UC Merced 27.049(±3.5047) 25.1724(±3.6374) 26.8367(±3.5862) 26.8367(±3.5862) 24.9548(±3.4188) 23.8519(±2.8291)

Land

CVPR’09 28.7065(±1.7688) 28.6331(±1.9164) 29.5558(±2.0614) 29.5558(±2.0614) 24.6106(±1.7648) 25.6428(±1.8901)

Natural 21.3264(±2.336) 20.1441(±2.4681) 20.8939(±2.179) 20.7964(±1.9059) 17.5111(±2.6718) 16.1957(±2.5134)

Images

COVID-19 11.4564(±1.4242) 12.2342(±1.7352) 14.2344(±1.5345) 15.3133(±1.4234) 10.3131(±0.9312) 10.0834(±0.6859)

CT Dataset

size and orientation is resized to 16 × 16 grayscale
images with 7291 training and 2007 test instances.

2. Hasy v2: This dataset [40] comprises of 168233
single handwritten latex symbols (Fig. 3b) across
369 different classes extracted from HWRT dataset.
However, only 9 symbols have been used in the
experiment as they contained ≥ 800 samples. The
original data matrix is of size 12701 × 3072.

3. MNIST : This dataset2 contains the images (Fig. 3c)
of handwritten digits (0 − 9). Thus, it has 10 classes,
each corresponds to a different numeric digit. Each of
this image is gray scale of size 28 × 28. The dataset
has total of 70, 000 instances out of 60, 000 has been
used for the training and rest for testing.

4. BCI HaLT : BCI dataset [41] comprises of brain
electroencephalographic (EEG) signals obtained from
different imagery part in micro-volt unit. The recorded
EEG signals correspond to brain activity of imagining
the movement of left leg, right leg, left hand,
right hand and tongue. Across multiple subjects, the
experiment contained 3 HaLT reading for subject A
only of size 2898 × 3570.

5. CIFAR-10 : This dataset [42] comprises of color
images (Fig. 3d) of the objects like cars, cats,
airplanes, deer, birds, ships, dogs, trucks, horses, and,
frogs. It has 10 different classes with a total of 60, 000

2http://yann.lecun.com/exdb/mnist/

colored images. Each of this image is of size 32 × 32
with 6000 images per class.

6. Lego Bricks : This dataset3 comprises of gray scale
images (Fig. 3g) of the bricks manufactured by Lego.
It has total of 16 different classes and each class has ≈
400 images. Each image is of size 200×200 grayscale
pixels.

7. UC Merced Land : This dataset [43] has outdoor
images (Fig. 3e) of land divided into 21 classes.
Each of this image has been obtained from the USGS
National Map Urban Area Imagery collection for
various urban areas around the country. Each of this
class has 100 images and each image is of size 256 ×
256. Out of these 100 images, 50 images per class are
randomly picked for the training set and rest 50 images
per class are used for testing set.

8. CVPR’09 : This dataset [44] comprises of 67 classes
of image data (Fig. 3f). Each class has more then 100
images. Each image has been reduced to equal size of
32 × 32 × 3. Finally, a matrix of size 15620 × 3072
which is further divided into training 70% and testing
set

9. Natural Images : This dataset [45] contains images
(Fig. 3h) of different objects like car, cat, airplane,
motorbike, flower, person and fruit. It has total of 8

3Mecabricks.com
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Table 4 Mean error(± Standard deviation) LapSVM (Unlabeled) k = 6

Method → Heat Binary EMR24 EMR72 CCGAL CCGAN

Dataset ↓

USPS 5.9196(±2.0438) 5.9352(±2.059) 33.4718(±1.1126) 33.4718(±1.1126) 3.0609(±1.6038) 1.6812(±1.1766)

Hasy v2 10.7445(±1.2973) 3.2973(±2.6276) 13.3647(±0.63509) 13.3647(±0.63509) 2.4118(±0.36646) 2.2367(±0.33978)

MNIST 8.2996(±1.8522) 1.5(±2.1197) 36.2816(±0.93587) 36.2816(±0.93587) 1.1498(±1.4258) 1.049(±1.3817)

BCI 19.4467(±0.44692) 19.509(±0.45214) 20.2633(±0.52944) 20.2633(±0.52944) 19.5453(±0.45401) 19.6514(±0.43513)

HaLT

CIFAR-10 31.0024(±1.0302) 31.1762(±1.0589) 31.2028(±1.0641) 31.2028(±1.0641) 31.1123(±1.0555) 30.3794(±0.95679)

Lego 12.2481(±8.4792) 9.2706(±9.1341) 19.0064(±5.8736) 17.6866(±6.0596) 7.771(±9.0185) 6.9222(±8.9307)

Bricks

UC Merced 18.6597(±2.0702) 22.1499(±1.8301) 18.8922(±2.311) 18.8922(±2.311) 26.5602(±2.622) 29.4454(±2.6659)

Land

CVPR’09 25.6905(±1.6005) 25.6246(±1.8902) 27.0735(±1.7924) 27.0735(±1.7924) 22.6165(±1.7756) 22.584(±1.6859)

Natural 19.6906(±1.2029) 17.8456(±1.652) 19.441(±1.7698) 19.4345(±1.7707) 15.2854(±1.3185) 16.8485(±1.3853)

Images

COVID-19 12.4564(±1.9845) 12.4241(±1.0995) 17.5433(±2.6344) 18.2423(±1.2342) 12.0345(±0.5435) 12.4566(±0.9353)

CT Dataset

classes and each this grayscale image has been resized
to 28×28.. The complete dataset is of size 7599×784.

10. COVID-19 CT Scan Dataset : This dataset [46]
contains CT scan images (Fig. 3i) of COVID-19
positive and negative patients. It has a total of 451 CT

scan grayscale images out of which 275 belonged to
positive patients and rest 195 were negative. During
pre-processing, all images were changed to standard
512 × 512pixels. Data was further split to 50% as
training and 50% as testing set. The experiment was

Table 5 Mean error (± Standard deviation) LapRLSC (Test) with k = 6

Method → Heat Binary EMR24 EMR72 CCGAL CCGAN

Dataset ↓

USPS 6.0525(±1.9381) 6.062(±1.9493) 27.7172(±1.7853) 27.7172(±1.7853) 3.6006(±1.4074) 2.5867(±1.1814)

HASY v2 25.2406(±0.96617) 2.1822(±0.32696) 12.2475(±0.69306) 12.2475(±0.69306) 2.4943(±0.34876) 2.3303(±0.34844)

MNIST 38.4103(±0.57778) 10.1852(±1.4786) 35.5803(±0.94473) 35.5803(±0.94473) 13.4018(±2.9515) 18.0368(±3.0749)

BCI 19.5864(±0.58403) 19.5775(±0.56837) 20.2675(±0.61025) 20.2675(±0.61025) 18.0687(±0.58031) 18.73(±0.52904)

HaLT

CIFAR-10 28.6935(±0.7116) 28.7648(±0.71153) 28.7747(±0.70966) 28.7747(±0.70966) 28.7566(±0.71979) 28.6896(±0.71141)

Lego 13.9378(±8.4856) 10.7887(±9.2475) 18.6991(±5.8643) 17.2439(±6.6636) 7.9037(±9.1091) 6.5089(±9.4058)

Bricks

UC Merced 27.0733(±3.4778) 26.1643(±3.7012) 26.4614(±3.4997) 26.4581(±3.4752) 23.5705(±3.6623) 22.2962(±3.4904)

Land

CVPR’09 28.7285(±1.8327) 28.6894(±1.7715) 29.5571(±2.065) 29.5571(±2.065) 28.7167(±1.9946) 28.7214(±1.8789)

Natural 21.1371(±1.6499) 20.0112(±2.5415) 20.991(±2.2732) 21.0072(±2.2715) 18.911(±2.7065) 17.8757(±2.3333)

Images

COVID-19 13.2383(±1.5345) 13.4234(±1.4232) 16.4322(±2.5545) 17.3133(±2.9891) 14.3131(±0.93423) 15.2342(±0.9859)

CT Dataset
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Table 6 Mean error (± Standard deviation) LapRLSC (Unlabeled) k = 6

Method → Heat Binary EMR24 EMR72 CCGAL CCGAN

Dataset ↓

USPS 5.8922(±2.0385) 5.8928(±2.0405) 30.2328(±1.5825) 30.2328(±1.5825) 3.0793(±1.4541) 1.7102(±0.9751)

Hasy v2 10.5111(±1.2068) 2.0817(±0.33731) 12.3712(±0.71244) 12.3712(±0.71244) 2.4037(±0.35836) 2.2252(±0.36416)

MNIST 8.0237(±1.8893) 1.3303(±2.0178) 35.6724(±1.034) 35.6724(±1.034) 1.1592(±1.4827) 1.0551(±1.3974)

BCI 18.7148(±0.58304) 18.6783(±0.59023) 19.1057(±0.46685) 19.1057(±0.46685) 18.6926(±0.59944) 18.796(±0.58017)
HaLT

CIFAR-10 28.6764(±0.67734) 28.7455(±0.66441) 28.7507(±0.66312) 28.7507(±0.66312) 28.7434(±0.66381) 27.5794(±0.68236)

Lego 11.5328(±8.1146) 8.9066(±8.7905) 18.6421(±5.3925) 18.4514(±5.9489) 7.198(±8.9484) 6.7162(±8.6574)
Bricks

UC Merced 18.6723(±2.067) 28.2353(±2.1595) 18.3936(±2.277) 18.3936(±2.277) 24.0322(±2.5972) 25.5714(±2.8975)
Land

CVPR’09 25.8091(±1.6133) 25.7981(±1.7799) 27.0735(±1.7923) 27.0735(±1.7923) 24.7966(±1.8538) 23.7501(±1.7327)

Natural 19.7043(±1.2225) 18.0463(±2.4952) 19.419(±1.777) 19.4072(±1.7758) 18.7154(±2.436) 16.632(±1.4767)
Images

COVID-19 15.3423(±1.4564) 14.5435(±1.0543) 12.4322(±1.3785) 14.6453(±1.5354) 13.5433(±1.5453) 14.2342(±1.5859)
CT Dataset

Table 7 Mean error(± Standard deviation) LapSVM (Test) k = 10

Method → Heat Binary EMR24 EMR72 CCGAL CCGAN

Dataset ↓

USPS 5.0859(±2.1001) 5.0326(±1.9367) 27.8768(±1.1293) 26.4564(±0.9583) 3.1552(±1.2774) 1.2462(±1.003)

Hasy v2 10.4718(±0.69454) 3.1924(±2.2765) 12.872(±0.70001) 12.2332(±0.50045) 1.9943(±0.3623) 2.0301(±0.13543)

MNIST 36.7321(±0.32343) 9.1432(±1.773) 32.1237(±0.6037) 33.7543(±0.7047) 6.3123(±1.1314) 6.3654(±2.001)

BCI 18.4658(±0.3206) 17.2564(±0.4016) 19.4881(±0.5932) 20.5057(±0.51053) 18.1453(±0.43827) 17.7732(±0.43116)
HaLT

CIFAR-10 30.0544(±1.0093) 30.5231(±1.0443) 30.2723(±1.068) 31.5732(±1.108) 30.054(±1.0309) 29.4214(±0.8334)

Lego 12.3784(±7.2413) 9.1209(±8.134) 16.3517(±4.4453) 17.1943(±5.1908) 7.4651(±7.0421) 6.3574(±4.5941)
Bricks

UC Merced 25.105(±3.4276) 24.0922(±3.6374) 25.1233(±2.1352) 25.1267(±3.1532) 23.1344(±3.4188) 22.4519(±1.92191)
Land

CVPR’09 26.5405(±1.7556) 26.2122(±1.8141) 27.3788(±2.7789) 28.1258(±2.0614) 26.1162(±1.4555) 27.1232(±1.7821)

Natural 20.1624(±2.1326) 19.1214(±2.4323) 19.1282(±2.0238) 19.8732(±1.8009) 18.0051(±2.6718) 17.9899(±1.9134)
Images
COVID-19 10.6564(±1.3672) 12.3696(±1.45784) 13.9689(±2.0123) 17.2343(±2.1533) 10.7565(±0.8312) 9.645(±0.5645)
CT Dataset
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Table 8 Mean error(± Standard deviation) LapSVM (Unlabeled) k = 10

Method → Heat Binary EMR24 EMR72 CCGAL CCGAN

Dataset ↓

USPS 5.1132(±2.1423) 5.0642(±2.059) 31.3341(±1.1214) 31.4123(±1.1335) 2.0103(±1.3448) 1.2834(±1.3442)

Hasy v2 10.1125(±1.2334) 2.9936(±1.5244) 12.3347(±0.5389) 12.3347(±0.43509) 2.4118(±0.36646) 1.9367(±0.33978)

MNIST 7.1294(±1.3452) 1.4345(±2.0497) 35.2312(±0.73327) 35.2336(±0.9232) 1.3434(±1.4348) 1.0445(±1.3284)

BCI 18.3251(±0.3445) 18.1649(±0.45214) 19.4343(±0.52944) 19.3453(±0.5434) 18.5443(±0.45401) 19.6514(±0.43513)

HaLT

CIFAR-10 30.1334(±1.1342) 30.1342(±1.1549) 30.3434(±1.0445) 30.1048(±1.0441) 30.0120(±1.04233) 29.3234(±0.89569)

Lego 11.348(±8.1272) 8.3206(±8.2311) 17.7764(±5.5343) 17.5466(±6.0496) 6.4231(±8.0435) 6.0334(±8.9307)

Bricks

UC Merced 17.23597(±2.0212) 20.1323(±1.2323) 17.3235(±2.7371) 17.5422(±2.551) 24.4302(±2.6656) 27.6654(±2.6566)

Land

CVPR’09 24.1105(±1.2305) 24.2346(±1.3202) 26.4555(±1.7454) 26.0554(±1.7543) 24.6543(±1.5335) 23.5345(±1.3535)

Natural 18.6546(±1.5353) 16.84536(±1.4622) 18.6541(±1.5548) 18.4665(±1.6457) 16.2634(±1.36455) 16.0065(±1.2856)

Images

COVID-19 11.764(±1.6445) 13.46411(±1.0645) 15.5644(±2.7664) 17.6463(±1.7552) 11.0646(±0.7465) 10.34434(±0.7647)

CT Dataset

Table 9 Mean error (± Standard deviation) LapRLSC (Test) with k = 10

Method → Heat Binary EMR24 EMR72 CCGAL CCGAN

Dataset ↓

USPS 5.03425(±1.3243) 5.0432(±1.3443) 26.6642(±1.7424) 26.7432(±1.4353) 2.1734(±1.30755) 1.9867(±1.0445)

Hasy v2 24.2456(±0.953417) 2.1545(±0.3457) 11.25455(±0.6454) 11.2454(±0.7656) 2.8937(±0.34876) 2.3324(±0.34564)

MNIST 36.3134(±0.44578) 9.4152(±1.4386) 34.4403(±0.94473) 34.5423(±0.8443) 12.4434(±2.0955) 17.3448(±2.34749)

BCI 19.5864(±0.58403) 19.5775(±0.56837) 20.2675(±0.61025) 20.2675(±0.61025) 19.5687(±0.58031) 19.63(±0.52904)

HaLT

CIFAR-10 26.6434(±0.6766) 27.4348(±0.6453) 26.7437(±0.70966) 27.4237(±0.70966) 27.7436(±0.6146) 26.3496(±0.742341)

Lego 12.6487(±6.46456) 9.64487(±8.2665) 17.65641(±4.8664) 16.6459(±6.5666) 7.637(±8.16446) 6.5645(±7.4456)

Bricks

UC Merced 26.5345(±3.5345) 25.15656(±2.4534) 25.5345(±2.4557) 25.45381(±2.4442) 23.5445(±2.64523) 23.2423(±2.4544)

Land

CVPR’09 27.7565(±1.3236) 27.4564(±1.7715) 28.6453(±1.8565) 28.6772(±1.7665) 24.6567(±2.0046) 23.6214(±1.8789)

Natural 20.14471(±1.6543) 19.052(±1.5535) 19.4491(±1.9732) 20.0552(±2.4515) 17.9331(±2.7065) 17.5357(±1.3543)

Images

COVID-19 11.3423(±1.7225) 12.2426(±1.5345) 17.6444(±2.6423) 18.4543(±1.9644) 15.4531(±0.9354) 14.5154(±1.9565)

CT Dataset
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repeated 20 times, and in each round, 8 images from
both classes were randomly labeled.

Extensive experiments are performed with LapSVM and
LapRLSC classifiers. Root mean square error with standard
deviation is reported in separate tables for unlabeled and
test set Experiments on these datasets are performed by
varying the kNN paramete as the affinity matrix used
for constructing the graph depends on k, the number of
neighbors. This parameter k is varied from 6 to 15. It is
observed that the classification accuracy for all datasets
increases, thus, with enriched neighborhood more accurate
affinity is learned. On further increasing the value (k = 16)
the accuracy suddenly dips and similar trend is followed
on further increasing the neighborhood. The classification
error for value of k = 6 and k = 10 for both LapSVM and
LapRLSC are reported in the Tables 3, 4, 5, 6, 7, 8, 9, and
10.

On USPS dataset, CCGAL and CCGAN have highest
classification accuracy as compared to the existing state-
of-the-art techniques for both test and unlabeled set. On
USPS test set, CCGAN achieves the classification accuracy
of > 98% and CCGAL stands closest to it with accuracy
> 97%. On the other hand, classification accuracy with
heat and binary affinities are > 95% and > 94%
respectively. In contrast, EMR24 and EMR72 have < 72%
classification accuracy, which is least among all. A similar
trend in the classification accuracy is obtained for the

unlabeled set, where CCGAN has the best accuracy of
> 95.5% and EMR72 has the least accuracy of < 67%.
This reveals that HSIC based dependence value obtained
between data points is able to capture the nonlinear
dependence between data points. This leads to better
classification accuracy. On HASY v2 dataset for test as
well as unlabeled set CCGAN has most accurate result
> 98% followed by CCGAL (> 98%) and binary (>

97%). EMR24 and EMR72 have almost same accuracy (≈
87%). Heat affinity has the worst classification accuracy
≈ 78% against others. Both LapRLSC and LapSVM
have approximately similar result for Hasy v2 dataset. This
result trend suggests that the CCGAN better decodes the
neighborhood connectivities to determine a more enriched
affinity matrix. On MNIST dataset for test set, CCGAL

provides the most accurate result for handwritten digits
with classification accuracy ≈ 87% whereas other proposed
technique CCGAN has the classification accuracy ≈ 82%.
Only accuracy obtained with binary affinity stand closest
to our techniques (> 90%). Other techniques have
comparatively very poor classification accuracy (< 65%).
On other hand for unlabeled set, results are much better
for all techniques like CCGAN, CCGAL and binary weight
have ≈ 98% accuracy. Again EMR24 and EMR72 have
the least accuracy. On BCI HaLT dataset, all techniques
have almost same classification accuracy for both test
and unlabeled set under LapSVM as well as LapRLSC.
Binary weight and CCGAN have the highest accuracy

Table 10 Mean error (± Standard deviation) LapRLSC (Unlabeled) k = 10

Method → Heat Binary EMR24 EMR72 CCGAL CCGAN

Dataset ↓

USPS 5.0491(±2.1335) 5.8348(±2.1465) 29.2432(±1.3425) 28.2248(±1.4245) 2.4553(±1.0541) 1.2153(±0.7756)

Hasy v2 9.7811(±1.2068) 1.9987(±0.23361) 10.42342(±0.64243) 11.4422(±0.61424) 1.4237(±0.35836) 2.2122(±0.3123)

MNIST 7.31237(±1.3893) 1.9903(±2.9178) 33.6231(±1.3384) 32.4244(±1.3324) 1.4394(±1.43447) 1.0001(±0.24234)

BCI 17.42348(±0.48423) 17.623483(±0.4243) 18.4457(±0.3645) 18.1237(±0.5623) 17.4232(±0.5234) 17.7423(±0.48047)

HaLT

CIFAR-10 27.6424(±0.62374) 27.7425(±0.5241) 27.75237(±0.56312) 27.72307(±0.36312) 26.7434(±0.4481) 25.5794(±0.6446)

Lego 10.5428(±7.1426) 7.9446(±8.79423) 17.6321(±4.425) 17.444(±5.94239) 7.23438(±7.92344) 5.7424(±7.64224)

Bricks

UC Merced 17.6323(±2.5547) 26.2443(±2.1595) 17.3936(±2.277) 17.536(±2.277) 23.5622(±2.5372) 24.5524(±1.93975)

Land

CVPR’09 24.5391(±1.5553) 24.7531(±1.7534) 26.0355(±1.534523) 26.053(±1.7923) 22.3426(±1.8442) 21.4244(±1.1424)

Natural 18.7423(±1.22425) 17.2423(±2.4422) 17.2424(±1.4234) 18.4534(±1.5335) 16.7534(±2.5356) 16.053(±1.3453)

Images

COVID-19 12.9423(±1.5345) 12.4131(±1.3445) 14.4272(±1.9554) 15.3533(±2.7232) 12.3645(±0.65434) 14.2534(±0.5485)

CT Dataset
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(> 83%). Whereas, others like heat affinity, CCGAL,
EMR24 and EMR72 have accuracy that lies between 78%
to 80%. This shows that dataset intrinsic geometry has
been well explored by the given techniques in order to
determine the connectivities by accommodating both linear
and nonlinear characteristics. On CIFAR-10 dataset, there
is a similar trend in the classification result. For both test
and unlabeled sets classification accuracy has not much
variation, the accuracy is ≈ 70%. CCGAN leads among
all by 1% with classification accuracy 71%. On another
object detection dataset, like Lego Bricks, CCGAL and
CCGAN give best label prediction results. They achieve
an accuracy of > 94% for both test and unlabeled sets.
The next most accurate one is binary weight with accuracy
> 91%. EMR24 and EMR72 are the worst performer with
only > 86% accuracy. These result values indicate that
the graphs obtained with EMR24 and EMR72 discard the
major chunk of information present in the feature matrix of
dataset. On other hand CCGAL and CCGAN better explore
the feature matrix to build a high information contained
graph. On UC Merced dataset, CCGAN has the highest
accuracy (> 77%) under LapSVM and LapRLSC for
test set. Whereas EMR24 (> 78%) under LapSVM for

unlabeled set and binary weight (72%) for test set under
LapRLSC. There is a slight increase in the accuracy for all
techniques under both LapSVM and LapRLSC for k = 10.
ForCVPR’09 dataset, the proposed techniques CCGAL and
CCGAN outperform others for both test and unlabeled sets.
The average accuracy for all techniques is ≈ 72% under
both LapSVM and LapRLSC. On Natural image dataset,
CCGAN outperform other techniques by a non negligible
factor. Both CCGAL and CCGAN techniques have > 84%
classification accuracy for both test and unlabeled set. Other
techniques have accuracy ≈ 80% under LapSVM and
LapRSLC. For COVID-19 CT dataset, heat affinity has
the maximum classification accuracy of ≈ 90% and other
techniques have accuracy > 92% for both unlabeled and
test sets. The nonlinear dependencies estimated with HSIC
determine the connectivities among data points which leads
to better association among same class data points.

In order to further validate the efficacy of CCGAL and
CCGAN, random walk plots are constructed with state-of-
the-art graph affinities on BCI the dataset are shown in the
Fig. 4. An affinity matrix is considered to be better than
other affinity matrices if its random walk plot has clear
clusters. As evident, the random walk is shown in Fig. 4b

Fig. 4 Random walk on BCI 5F dataset
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constructed using CCGAN contains cluster patches that
define a strong intra-neighbor connectivity and sparse inter-
neighbor edges. This supports the superior performance of
CCGAN during classification as the affinity matrix helps in
identifying clear clusters on the data points. The random
walk using CCGAL (Fig. 4a) gives a comparable result
wherein different classes of the dataset are discernible.
The plots for EMR24 (Fig. 4c) and EMR72 (Fig. 4d) have
less clear clusters. On the other hand, the random walk
over non-parametric methods KTA4 and HHG4 do not have
much recognizable clusters, while the former affinity do
define some high strength groups, the later gave uniform
affinity to all data points. Similarly, the heat affinity random
walk also diluted the distinguishable clusters by assigning
high affinity to every edge (Fig. 4e) as it captures linear
dependencies only.

It is evident from the results of non-linear dimension-
ality reduction and the random walk plots that CCGAL

and CCGAN are capable of preserving the smooth intrinsic
geometrical properties better than other methods. Similarly,
increased classification accuracy across the standard hand-
written, BCI, object and scene detection dataset show that
the graph affinity obtained gives information about the
unexplored connectivities in the data which outperform the
other affinity methods by a considerable margin.

4.3 Non parametric statistical tests

CCGAL and CCGAN are based on HSIC, which is a non-
parametric statistical measure. While in the previous experi-
ments, they have been compared with existing state-of-the-
art parametric affinity methods, it is essential to compare
them with state-of-the-art non-parametric statistical test
measures. We have selected two such methods, namely ker-
nel target alignment (KTA) [47] and Heller Heller Gorfine
(HHG) [47]. As KTA works in feature space by aligning
two kernel functions or a kernel and a target function which
makes it very similar to HSIC based affinity method. On
the other hand, HHG computes the statistical measure from
the underlying Euclidean metric, which further allows the
comparison to explore if statistical test based on Euclidean
norm can appropriately enforce the smoothness constraint
in the presence of nonlinear relation. Both KTA and HHG
aim to compute the dependence between the samples of two
random variables assuming they are not independent of each
other.

KTA tries to learn data embedding in feature space
such that the data points follow nice clustering properties
i.e. data points belonging to the same class should be
mapped spatially closer to each other as compared to

4For explanation refer Section 4.3.

data points from different classes. Thus, the intra-class
distance between data points in feature space remains close
to zero, and inter-class distance, greater than zero. Over
the data points in X, KTA employs two kernels κ1 =∑n

i=j=1 κ1(xi, xj ) and κ2 = ∑n
i=j=1 κ2(xi, xj ). Further,

the alignment between κ1 and κ2 is performed through

W = 〈κ1, κ2〉F√〈κ1, κ1〉F〈κ2, κ2〉F
where, 〈κ1, κ2〉F = ∑n

i=j=1 κ1(xi, xj )κ2(xi, xj ). It is also
interpreted as the cosine angle between two bi-dimensional
vectors κ1 and κ2. The measure of alignment between
two different kernels on same pair of data points allows
to identify true linear neighbors situated in feature space,
this corresponds to small spatial distance or larger affinity.
Similarly, the non-aligning kernels of data points would
result in smaller affinity values representing absence of
linear relationship as required by regularization to enforce
function smoothness across the dense linear regions.

The other non-parametric statistical test HHG estimates
the dependence between two random variables through
norm distance. HHG assumes that if the two random
variables X and X′ are dependent then there exists a
point (x0, x

′
0) and radii Rx and Rx′ such that the joint

distribution of X and X′ should be different from product
of the marginal distribution of balls around (x0, x

′
0). The

independence test performed with HHG is given by,

HHG =
n∑

i=1

n∑

j=1,j �=i

= S(i, j)

where, S(i, j) is computed by observing the two dichoto-
mous random variables for n observation in both random
variables,

S(i, j)= (n − 2){A12(i, j)A21(i, j)−A11(i, j)A22(i, j)}2
A1·(i, j)A2·(i, j)A·1(i, j)A·2(i, j)

Both KTA and HHG values have been used as an affinity
metric in place of CCGAN. Further, LapSVM and LapRLSC
were executed for both methods on all benchmark datasets.
The performance of all three non-parametric affinity
methods have been compared on the mean classification
error over both unlabeled and test set. The mean error for
test and unlabeled set have been reported in Table 11 and
Table 12. On USPS dataset, for both test and unlabeled set,
CCGAN outperformed both KTA and HHG by achieving
an accuracy of > 98%. KTA also gave a close result
and remained at second position whereas HHG gave poor
accuracy for LapSVM (> 71%). In case of Hasy v2 dataset,
result of all three non-parametric affinity methods remained
close and CCGAN managed to marginally outperform
others. A similar trend can be observed in other datasets
like MNIST, BCI HaLT, CIFAR-10 and Lego brick dataset.
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Table 11 Mean error (± Standard deviation) for Test set (k = 6)

Method → KTA HHG CCGAN

Dataset ↓
LapSVM LapRLSC LapSVM LapRLSC LapSVM LapRLSC

USPS 3.3(±1.5344) 3.8447(1.9252) 24.0332(±1.6126) 23.4384(±1.8533) 2.4104(±0.33458) 2.5867(±1.1814)

Hasy v2 5.0219(±0.3899) 4.7491(0.39956) 3.5963(±2.5182) 2.2731(±0.3316) 2.4104(±0.33458) 2.3303(±0.34844)

MNIST 9.2015(±2.0432) 18.511(3.0134) 10.4607(±1.7727) 10.214(±1.4854) 8.654(±1.9719) 18.0368(±3.0749)

BCI 24.8703(±0.39415) 29.7855(0.57972) 20.7107(±0.42489) 19.5775(±0.56837) 20.7732(±0.43116) 18.73(±0.52904)

HaLT

CIFAR-10 33.7413(±1.3908) 35.212(±1.454) 31.3532(±1.0618) 30.7642(±0.7105) 30.5624(±0.93737) 28.6896(±0.71141)

Lego 13.321(±9.323) 12.983(±8.546) 10.1609(±9.0374) 10.0636(±9.0922) 8.5574(±9.3981) 6.5089(±9.4058)

BricksS

UC Merced 26.763(±3.2439) 26.1543(±3.6545) 25.0995(±3.5483) 26.0824(±3.7675) 23.8519(±2.8291) 22.2962(±3.4904)

Land

CVPR’09 32.765(±1.652) 24.22(±1.232) 28.6259(±1.8406) 26.0824(±3.7675) 25.6428(±1.8901) 28.7214(±1.8789)

Natural 25.1902(±3.978) 26.1624(3.6115) 19.9342(±2.1742) 20.3912(±2.7141) 16.1957(±2.5134) 17.8757(±2.3333)

Images

Though for all these datasets, the classification accuracy
of CCGAN remained only marginally better than KTA
and HHG. In remaining datasets, out of the three non-
parametric affinity methods, HHG gave the least accurate
results whereas the accuracy results of KTA and CCGAN

remained very close.

The non parametric statistical evaluation carried out
on various datasets in terms of classification accuracy
suggests that HSIC based affinity gave more accurate
intrinsic information. From Tables 11 and 12, it can be
concluded that KTA and CCGAN are performed similar in
classification accuracy and same trend has been repeated

Table 12 Mean error (± Standard deviation) for Unlabeled set (k = 6)

Method → KTA HHG CCGAN

Dataset ↓
LapSVM LapRLSC LapSVM LapRLSC LapSVM LapRLSC

USPS 2.7856(±1.065) 2.8805(±1.0663) 26.2032(±1.3588) 25.6689(±1.4892) 1.6812(±1.1766) 1.7102(±0.9751)

Hasy v2 3.8451(±0.411) 4.8413(±0.41825) 3.5037(±2.5778) 2.176(±0.35363) 2.2367(±0.33978) 2.2252(±0.36416)

MNIST 1.106(±4.3124) 4.1049(±1.3093) 3.5013(±2.1274) 2.3337(±2.0545) 1.049(±1.3817) 1.0551(±1.3974)

BCI 19.832(±0.40552) 19.0049(±0.56849) 19.5145(±0.45644) 18.6783(±0.59023) 19.6514(±0.43513) 18.796(±0.58017)

HaLT

CIFAR-10 32.834(±1.178) 30.512(±1.768) 31.1762(±1.0589) 28.7446(±0.6641) 30.3794(±0.95679) 27.5794(±0.68236)

Lego 10.418(±7.432) 11.623(±6.445) 8.9558(±8.8238) 8.9379(±8.6683) 6.9222(±8.9307) 6.7162(±8.6574)

Bricks

UC Merced 25.765(±1.232) 26.141(±1.242) 21.5084(±1.8051) 27.3655(±2.183) 29.4454(±2.6659) 25.5714(±2.8975)

Land

CVPR’09 27.758(±1.653) 28.637(±1.23) 25.6181(±1.8376) 25.8012(±1.8334) 22.584(±1.6859) 23.7501(±1.7327)

Natural 22.9309(±3.1456) 23.5219(±2.6424) 17.8556(±1.6498) 17.8501(±1.693) 16.8485(±1.3853) 16.632(±1.4767)

Images
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for all datasets. However, HHG based error values remained
very high in comparison to both KTA and CCGAN. This
reason for this poor performance of HHG is the Euclidean
distance based metric. As this Euclidean distance, which
proves to be inefficient in encoding the relations between
the data points accurately.

5 Conclusion

In this paper, we proposed Cross-Covariance based Graph
Affinity between two data points that incorporates nonlinear
dependence, the influence of neighboring data points, and
the neighborhoods around data points. The first technique
CCGAL, tried to include the influence of the data points in
the common neighborhood in the affinity metric between
two points. The second technique CCGAN, took into
consideration the influence of the neighborhoods of data
points that are adjacent to both the points. Both these
techniques were able to determine the linear and nonlinear
affinity between each data point. The classification accuracy
and dimensionality reduction on both real world and
synthetic datasets clearly suggested that the influence of
adjacent points must be considered in pairwise affinity. The
classification accuracy on different categories of datasets
like Object detection, handwritten, and scene detection was
found to be consistently better in comparison to other
methods by a margin of ≈ 1% to 5% under both LapSVM
and LapRLSC. CCGAN, has better classification accuracy
and dimensionality reduction results that suggest that
nonlinear dependence and neighborhoods have significant
influence on affinity between data points.
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