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Introduction
Cdk1 and its associated protein cyclin B1 are required for entry 

into and maintenance of the mitotic state in mammalian cells 

(Evans et al., 1983; Minshull et al., 1989; Nurse, 1990). Exit 

from mitosis in mammalian cells requires the inactivation of 

Cdk1, the protein kinase that drives the mitotic state (Murray, 

2004). Inactivation follows the destruction of the Cdk1-activating 

subunit cyclin B1 by proteolysis (Murray et al., 1989; Hershko 

et al., 1991; Holloway et al., 1993), a process normally acti-

vated at metaphase by anaphase-promoting complex/cyclosome 

(APC/C)–driven ubiquitination (Glotzer et al., 1991; Hershko 

et al., 1991). Failure to degrade cyclin B1 results in constitutively 

active Cdk1 and indefi nite arrest in mitosis (Murray et al., 1989; 

Ghiara et al., 1991; Gallant and Nigg, 1992; Holloway et al., 

1993). As Cdk1 inactivation is not required for progression past 

metaphase, vertebrate cells and in vitro cell model systems can 

arrest either in metaphase or in later stages of mitosis in the 

presence of constitutively active Cdk1 (Holloway et al., 1993; 

Wheatley et al., 1997; Stemmann et al., 2001).

Inactivation of Cdk1 itself has been considered to be neces-

sary and suffi cient to induce a rapid exit from mitosis. Exposure 

of cells to specifi c inhibitors of Cdk1 causes rapid mitotic exit 

(Potapova et al., 2006). The APC/C E3 ubiquitin protein ligase 

processively ubiquitinates specifi c sequence tags (Rape et al., 

2006), principally D-box (Glotzer et al., 1991) or KEN-box 

(Pfl eger and Kirschner, 2000) motifs, in multiple target proteins 

in the course of mitotic exit (Peters, 2002) and targets them for 

proteasome destruction. The degradation of two proteins, cyclin 

B1 and securin, is linked to proper mitotic exit. Destruction of 

 cyclin B1 is absolutely necessary for mitotic exit (Gallant and Nigg, 

1992; Holloway et al., 1993). Although the destruction of securin 

is required for proper chromosome segregation, failure to destroy 

securin does not block mitotic exit (Zur and Brandeis, 2001).

In this study, we analyze the state of cells exposed to Cdk1 

inhibitors in combination with the suppression of proteolysis 

and present evidence that the mitotic state (defi ned as the con-

tinuous presence of condensed chromosomes) of a mitotic spindle 

and of mitotic phosphoprotein antigens is sustained for a long 

period in the absence of Cdk1 activity, but only when APC/C-

dependent protein degradation is simultaneously suppressed.

We fi nd that the capacity to sustain mitotic status corre-

lates with the persistence of phosphorylated Cdk1 substrates in 

the absence of Cdk1 activity. Thus, our results demonstrate that 
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ellular transition to anaphase and mitotic exit has 

been linked to the loss of cyclin-dependent kinase 1 

(Cdk1) kinase activity as a result of anaphase-

promoting complex/cyclosome (APC/C)–dependent spe-

cifi c degradation of its cyclin B1 subunit. Cdk1 inhibition 

by roscovitine is known to induce premature mitotic exit, 

whereas inhibition of the APC/C-dependent degradation 

of cyclin B1 by MG132 induces mitotic arrest. In this study, 

we fi nd that combining both drugs causes prolonged 

mitotic arrest in the absence of Cdk1 activity. Different 

Cdk1 and proteasome inhibitors produce similar results, 

indicating that the effect is not drug specifi c. We verify 

mitotic status by the retention of mitosis-specifi c markers 

and Cdk1 phosphorylation substrates, although cells can 

undergo late mitotic furrowing while still in mitosis. Overall, 

we conclude that continuous Cdk1 activity is not essential 

to maintain the mitotic state and that phosphatase activity 

directed at Cdk1 substrates is largely quiescent during 

mitosis. Furthermore, the degradation of a protein other 

than cyclin B1 is essential to activate a phosphatase that, 

in turn, enables mitotic exit.
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Figure 1. Loss of Cdk1 kinase activity in the absence of proteasome activity does not lead to mitotic exit. (A) Mitotic HeLa cells were collected by selective 
detachment after being blocked in mitosis with 7.5 μM STLC (left) or with 0.1 μg/ml nocodazole (right) for 16 h. Cells in the continuous presence of the mi-
totic inhibitors were exposed to 100 μM roscovitine (ROS) or 20 μM MG132 or to both roscovitine and MG132, and samples for 2D FACScan analysis 
were taken 2 h after drug addition. In contrast to roscovitine treatment, cells in the presence of MG132 retained their mitotic state, as indicated by MPM2 
signal. Similarly, the majority of cells coincubated with roscovitine and MG132 remained mitotic. The percentages shown indicate the cell subpopulation 
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Cdk1 inactivation alone is not suffi cient to induce mitotic exit. 

Instead, key serine/threonine protein phosphatases, which are 

required for mitotic exit, are largely inactive during mitosis and 

must be reactivated by a proteolytic event so that they, in turn, 

can dephosphorylate Cdk1 substrates and enable mitotic exit. 

Our results show an unexpected convergence of the mammalian 

system with yeast in which phosphatase activity is required for 

mitotic exit (Stegmeier and Amon, 2004).

Results
Sustained mitosis in cells when both Cdk1 
activity and proteolysis are suppressed
HeLa cells were collected in mitosis by exposure to S-trityl-l-

cysteine (STLC), a potent and specifi c inhibitor of the microtubule 

motor protein Eg5 (Skoufi as et al., 2006), or to noco dazole, an 

inhibitor of microtubule assembly (Zieve et al., 1980). We then 

tested the effect of cell exposure to the specifi c Cdk1 inhibitor 

roscovitine or to the protease inhibitor MG132. The mitotic 

state was determined by fl ow cytometric assay of the presence 

of MPM-2, a well-established mitosis-specifi c phosphoprotein 

substrate and mitotic marker (Davis et al., 1983; Andreassen 

and Margolis, 1994). As previously demonstrated (Payton et al., 

2006; Vassilev et al., 2006), exposure to Cdk inhibitors such as 

roscovitine for 2 h induced rapid mitotic exit (Fig. 1, A and B). 

On the other hand, exposure to MG132 sustained the mitotic 

state (Brito and Rieder, 2006).

We then tested the effect of exposing HeLa cells to the 

combination of roscovitine and MG132. Importantly, the pres-

ence of MG132 substantially prevented roscovitine-treated cells 

from losing MPM-2 phosphoproteins despite the absence of 

Cdk1 activity (Fig. 1). The retention of MPM-2 phosphopro-

teins provides evidence for continued mitotic status in the com-

bined presence of roscovitine and MG132. Quantitation of fl ow 

cytometric data over a time course demonstrated that the per-

centage of mitotic cells exposed to both drugs initially dimin-

ished but then remained stable at �60% of the time 0 value 

(Fig. 1 B). The difference from the fate of cells exposed to 

roscovitine alone was striking. Essentially, no cells remained 

mitotic after 60 or 90 min of exposure to roscovitine in the con-

tinued presence of STLC or of nocodazole (Fig. 1 B).

Continued mitotic status, which is represented by the re-

tention of MPM-2 phosphoantigen, was supported by the reten-

tion of phosphorylated histone H3. Histone H3 is phosphorylated 

on S10 during mitosis by Aurora kinase (Hsu et al., 2000; Giet 

and Glover, 2001; Crosio et al., 2002), and phosphorylated H3 

has been used as a specifi c mitotic marker (Hendzel et al., 1997). 

Western blots showed that phosphorylated H3 was absent after 

2 h of roscovitine exposure but was retained in the combined 

presence of roscovitine and MG132 (Fig. 1 C, (PS10)H3). 

 Aurora A, securin, and cyclin B1, proteins normally degraded 

on mitotic exit (Peters, 2002), were largely absent after 2 h of 

roscovitine treatment but were retained in cells exposed to the 

combination of roscovitine and MG132 (Fig. 1 C).

We obtained similar results after the exposure of cells to 

two other Cdk inhibitors, CGP74514A and purvalanol A. First, 

we conducted dose-response experiments to determine the mini-

mum concentration of inhibitors capable of inducing the com-

plete mitotic exit of nocodazole-arrested cells (unpublished 

data). Then, mitotic cells were exposed to the Cdk inhibitors in 

the presence of MG132. Results were comparable with those 

with roscovitine. Neither 7.5 μM CGP74514A nor 25 μM purv-

alanol A were able to drive mitotic exit in the presence of MG132 

(Fig. 2 A). Furthermore, we also assayed the effect of substitut-

ing MG132 with another proteasome inhibitor, AM114, and 

 obtained similar retention of the mitotic status in the absence 

of Cdk activity (Fig. 2 B). Western blot analysis of the extracts 

from treated cells showed similar patterns of the phosphory-

lation of Cdk substrates and of phosphorylated H3, Aurora A, and 

cdc27 (Fig. 2 C). Chromosome spreads confi rmed the mitotic 

status of cells treated either with CGP74514A + MG132 or 

with CGP74514A + AM114 (Fig. 2 D). The different combina-

tions of inhibitors of Cdk and proteasome argue against the pos-

sibility that our results are artifactually caused by MG132 

specifi cally dampening the inhibitory activity of roscovitine. 

Additionally, we extended our 2D FACScan analysis to another 

human cell line, HCT116, and the results were qualitatively and 

quantitatively similar: compared with nocodazole-blocked cells, 

85% of cells incubated with AM114 + roscovitine were MPM2 

positive (unpublished data). Importantly, a nontransformed  human 

cell line, IMR90, also remained substantially mitotic on exposure 

to combinations of either MG132 + roscovitine in the presence 

of nocodazole, AM114 + roscovitine, or AM114 + CGP74514A 

(Fig. S1, available at http://www.jcb.org/cgi/content/full/jcb

.200704117/DC1). We conclude that nontransformed cells remain 

fully mitotic in different conditions of Cdk1 inhibition, a result 

comparable to that with transformed cells.

Immunofl uorescence microscopy confi rmed mitotic sta-

tus in HeLa lacking Cdk1 activity. Fig. 3 A shows images with 

roscovitine + MG132. As expected, MG132 prevented the 

destruction of proteins normally degraded during mitotic exit. 

On continuous exposure to the Eg5 inhibitor STLC, control cells 

contained condensed chromosomes and a single aster spindle 

(tubulin label). The chromosomes were positive for the mitotic 

markers phosphohistone H3 and MPM-2. Lamin B, a marker 

for interphase nuclear envelopes, was dispersed, as is normal 

during mitosis (Gerace and Blobel, 1980). In contrast, cells 

treated with roscovitine for 2 h in the presence of STLC exited 

that was positive for MPM-2. (B) Quantitation of the percentage of cells positive for MPM-2 calculated relative to the mitotic value of cells at time 0, which 
was defi ned as the time of shake-off and addition of the various drug combinations. (C) Immunoblot analysis of various mitotic markers assayed at 2 h after 
shake-off of mitotic cells and addition of various drug combinations. Mitotic exit induced by roscovitine leads to the degradation of Aurora A, cyclin B1, 
and securin as well as loss of the mitosis-specifi c phosphorylation of residue S10 of H3 ((PS10)H3). In contrast, the addition of MG132, even in the pres-
ence of roscovitine, leads to stabilization of all of the proteins tested as well as retention of the phosphorylated status of H3. Release in medium alone (DME) 
served as a mitotic exit control.
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Figure 2. Absence of mitotic exit after loss of Cdk1 kinase activity is independent of specifi c drugs. (A) Mitotic HeLa cells were collected by selective detach-
ment after being blocked in mitosis with 0.1 μg/ml nocodazole for 16 h. Cells in the continuous presence of nocodazole were exposed to 20 μM MG132 
(MG) for 1 h before the addition of Cdk inhibitors roscovitine (ROS; 100 μM) or CGP74514A (CGP; 7.5 μM), or cells were exposed to 25 μM purvalanol A 
(PURVA) for 2 h in the continuous presence of MG132. Samples for 2D FACScan analysis were taken after drug addition to determine DNA and MPM-2 
content (as in Fig. 1). The percentage of 4N cells positive for MPM-2 was quantitated from FACScan and plotted relative to the mitotic value of cells at time 0, 
which was defi ned as the time of shake-off and addition of the various drug combinations. In contrast to Cdk inhibitor treatments, cells in the presence of 
MG132 retained their mitotic state, as indicated by MPM2 signal. Similarly, the majority of cells coincubated with Cdk inhibitors and MG132 remained 
 mitotic. Error bars represent SD. (B) Cells were treated and analyzed as in A, but MG132 was substituted with 20 μM of the proteasome inhibitor AM114. 
Quantitation of the percentage of 4N cells positive for MPM-2 was calculated as in A. (C) Immunoblot analysis of various mitotic markers assayed at 2 h after 
shake-off of mitotic cells and addition of various drug combinations. Mitotic exit induced by Cdk inhibitors leads to loss of the mitosis-specifi c phosphorylation 
of Cdk substrates as well as the following mitotic markers: residue S10 of H3 ((PS10)H3) and residue T244 of cdc27. In contrast, the addition of MG132, 
even in the presence of Cdk inhibitors, leads to retention of the phosphorylated status of the proteins. Similar results were obtained for purvalanol A in place 
of roscovitine or CGP74514A and AM114 in place of MG132 (not depicted). (D) Chromosome spreads of representative cells in CGP74514A + MG132 
or CGP74514A + AM114 show mitotic status. Results compared with MG132 or AM114 alone. DNA stain is propidium iodide. Bar, 13 μm.
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Figure 3. Loss of Cdk1 activity in the absence of proteasome activity does not lead to mitotic exit. (A) After STLC treatment and mitotic shake-off, cells were 
treated with roscovitine in the absence or presence of MG132 for 2 h. Fixed cells were then stained for immunofl uorescence microscopy with antitubulin, 
phosphorylated histone H3 ((PS10)H3), MPM-2, or anti–lamin B antibodies (green) and were counterstained with propidium iodide (PI; red). Roscovitine in-
duced rapid mitotic exit, as evidenced by loss of the monoastral spindles, (PS10)H3, MPM-2 staining, and the assembly of nuclear lamina surrounding de-
condensed chromatin. However, cells treated with STLC plus roscovitine and MG132 retained monoastral spindles, (PS10)H3, and MPM-2 staining, whereas 
nuclear lamina were absent. These results were parallel to control cells blocked in mitosis with STLC. Microscope settings were held constant for all image ac-
quisitions. (B and C) The percentage of cells with monoastral spindles (B) or positive for (PS10)H3 (C) were quantitated. The data represent the mean of three 
counts of >60 cells per count. Gray bar, cells at time 0, the time of mitotic cell selection by shake-off; white bars, cells treated with roscovitine alone; black 
bars, cells treated with roscovitine plus MG132. In all cases, cells were in the continuous presence of STLC. Error bars represent SD. Bar, 16.5 μm.

mitosis and, thus, lost condensed chromosomes, the monoastral 

spindle, histone H3 phosphorylation, and the MPM-2 phospho-

antigen but had gained a lamin nuclear border (Fig. 3 A). These 

controls showed the status of markers in continued mitotic ar-

rest or in mitotic exit. On exposure to the combination of rosco-

vitine + MG132, cells appeared like the mitotic cells blocked in 
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STLC and showed no sign of mitotic exit by any criterion de-

spite the absence of Cdk1 activity. All Cdk and proteasome 

 inhibitor combinations yielded similar images with respect to 

mitotic exit (unpublished data).

We quantitated the percentage of the mitotic population 

that retained two mitotic markers, monoastral spindles or S10 

phosphorylated histone H3, during 2 h of exposure to either 

roscovitine alone or to the combination of roscovitine and 

MG132 (Fig. 3 B). For this purpose, cells were fi rst collected by 

mitotic shake-off after block in STLC, which yielded �80% 

mitotic cells that were positive for each of the two markers at 

time 0 (Fig. 3 B). By 1 h, roscovitine exposure resulted in al-

most a complete loss of monoastral spindles or phosphorylated H3. 

In contrast, cells exposed to the combination of roscovitine and 

MG132 almost completely retained these markers compared 

with time 0. Similar results were obtained with antiphospho-S10 

histone H3 (Fig. 3 C). Other Cdk and proteasome inhibitors 

yielded similar data (unpublished data).

To exclude the possibility that our results were caused by 

artifactual interference of the proteasome inhibitor with suppres-

sion of Cdk1 activity by Cdk1 inhibitors, we conducted an in vitro 

assay of Cdk1 histone H1 phosphorylation activity in the pres-

ence of purvalanol A or roscovitine alone, or of Cdk1 histone H1 

phosphorylation activity in the combined presence of purvalanol 

A + MG132 or roscovitine + MG132. The result (Fig. 4) clearly 

showed that both purvalanol A and roscovitine substantially sup-

pressed Cdk1 activity and that the further addition of MG132 did 

not interfere with Cdk1 inhibition. All drugs were assayed in vitro 

at the same concentrations that were effective in cells.

Nondegradable cyclin B1 and securin do 
not prevent mitotic exit in the absence of 
Cdk1 activity
The prevention of mitotic exit using the combination of ros-

covitine, purvalanol, or CGP74514A with either MG132 or 

AM114 suggests that the suppression of degradation of a key 

protein protects the cell from mitotic exit in the absence of Cdk1 

activity. To confi rm that retention of mitotic status was not 

 dictated by the continued presence of cyclin B1 or securin, we 

assayed the effect of retention of these two proteins, whose deg-

radation is known to be essential for proper mitotic exit. For this 

assay, we expressed nondegradable mutants (cyclin B1 R4A2 

and securin KEN DM [destruction box mutant]) of the two pro-

teins using either single- or double-transfection protocols. 

Transfection with cyclin B R4A2 showed that the presence of 

nondegradable cyclin B was not suffi cient to maintain mitosis 

because in the presence of roscovitine, expressing cells were 

negative for MPM-2, as was the case in nontransfected controls 

(Fig. 5 A). In contrast, transfected (GFP-positive cells) and non-

transfected cells both remained positive for MPM-2 in the pres-

ence of roscovitine + MG132 after 2 h (Fig. 5 A).

After double transfection, cells retained their mitotic sta-

tus in the presence of MG132 + roscovitine, as indicated by 

Western blot analysis of the mitotic-specifi c phosphorylation of 

Cdk substrates as well as by the presence of mitosis-specifi c 

markers, phosphorylated H3 and cdc27 (Fig. 5 B). We found 

that neither cyclin B1 R4A2 nor securin KEN DM was degraded 

on exposure of mitotic cells to roscovitine (Fig. 5 B). Nonethe-

less, cells rapidly exited mitosis, as assayed by the loss of S10 

phosphohistone H3, PT244cdc27, and Cdk phosphosubstrates. 

As before, the combination of roscovitine and MG132 prevented 

mitotic exit. Endogenous cyclin B1 and securin acted as internal 

controls in these experiments and degraded during mitotic exit 

in the presence of roscovitine (Fig. 5 B). Similar Western blot 

results were obtained after single transfection with either cyclin 

B1 R4A2 or securin KEN DM alone (unpublished data).

Late mitotic events in the absence of Cdk1 
and proteasome activity
The combined presence of a Cdk1 inhibitor and a protease in-

hibitor induced mitotic cells to proceed to cell cleavage (Potapova 

et al., 2006). We have carefully observed the status of cells 

blocked by a combination of roscovitine and MG132, and we 

have found the initiation of monoastral furrowing in a substan-

tial subpopulation of cells. This furrowing event was essentially 

the same as that previously observed in cells treated with mon-

astrol (another inhibitor of Eg5) and forced to exit mitosis by 

suppression of the spindle assembly checkpoint (Canman et al., 

2003). Indeed, cells frequently formed what we interpreted as a 

bud, creating a small daughter cell that contained no chromatin 

(Fig. 6 A). Such bud formation occurred with approximately 

equal frequency in cells treated with roscovitine alone or with 

the combination of roscovitine and MG132. The difference in 

outcome was that treatment with roscovitine alone caused the 

loss of mitotic chromosomes, whereas budded cells treated with 

both roscovitine and MG132 retained mitotic chromosomes.

The budding was a true furrowing event, as the passenger 

proteins survivin (Skoufi as et al., 2000), Aurora B (Adams et al., 

2000), and TD60 (Mollinari et al., 2003) relocalized to the 

neck of the bud both in cells treated with roscovitine alone or 

with the combination of roscovitine and MG132 (Fig. 6 B). 

Furthermore, PRC1 and anillin, two proteins that localize to the 

furrow and are critical to cell cleavage (Jiang et al., 1998; 

Oegema et al., 2000; Mollinari et al., 2002, 2003), were also 

present at the bud necks (Fig. 6 B). The percentage of cells that 

Figure 4. Cdk1 inhibition by purvalanol A and roscovitine but not MG132. 
Immunoprecipitates pulled down with Cdk1 antibody from nocodazole-
 arrested HeLa cell lysates were used for in vitro kinase assays. (top) 25 μM 
purvalanol A or 100 μM roscovitine or the combination of purvalanol A 
or roscovitine with MG132 was added to the kinase assay cocktail 
and incubated with the immunoprecipitates for 30 min at 30°C in the 
presence of [32P]ATP. (bottom) Immunoblot of Cdk1 immunoprecipitates 
(�10% input) cross-blotted using anti-Cdk1 antibody to demonstrate equal 
lane loading.
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exhibited budding is summarized (Fig. 6 C). We interpret these 

results as indicating that furrowing occurs in the absence of 

Cdk1 activity and in the absence of proteolysis. However, such 

furrowing occurs in the absence of mitotic exit.

Because monoastral cells proceeded to furrow in the pres-

ence of roscovitine and MG132, we next addressed the fate of 

cells released from STLC block in the presence of roscovitine 

and MG132. The question was whether cells without Cdk1 

Figure 5. Degradation of cyclin B1 and securin is not necessary for mitotic exit in the absence of Cdk1 activity. (A and B) HeLa cells were transiently trans-
fected with cDNA coding nondegradable cyclin B1 (R4A2GFP) alone (A) or both cDNA coding nondegradable cyclin B1 (R4A2GFP) and nondegradable 
securin (KEN-box mutant myc-securin-KAA-DM; B). At 30 h after transfection, cells were synchronized in mitosis by 16-h exposure to nocodazole. After 
shake-off, mitotic cells were maintained in the continuous presence of nocodazole with either roscovitine (ROS), MG132, or both roscovitine + MG132. 
(A) Immunofl uorescence shows that nondegradable cyclin B is not suffi cient to maintain mitotic status in the presence of roscovitine because GFP-positive 
cells are negative for MPM-2 staining. Both GFP-positive and -negative cells are MPM-2 positive after mitotic shake-off in MG132 and in roscovitine + 
MG132. (B) Immunoblot analysis of cellular extracts from double-transfected cells shows that in the presence of roscovitine, endogenous cyclin B1 and 
 securin were degraded, whereas the ectopically expressed nondegradable proteins were not. Despite the continued presence of cyclin B or securin, exposure 
to roscovitine induced mitotic exit followed by the loss of (PS10)H3, (PT244)cdc27, and Cdk phosphoprotein substrates. In contrast, in cells treated with 
MG132 alone or with MG132 plus roscovitine, there was no loss of these markers, confi rming the continued mitotic status of these cells. Bar, 44.5 μm.
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 activity would proceed through the normal stages of mitosis or 

would proceed directly to furrowing in the absence of Cdk1 ac-

tivity. For this experiment, HeLa mitotic cells were collected by 

shake-off after 18 h of block in STLC and were released from 

STLC in the presence of MG132 alone or roscovitine + MG132. 

When cells were released without further treatment, <17% 

 remained mitotic at 4 h as determined by FACScan analysis 

(Fig. 7 A). In contrast, release into MG132 for 2 h yielded 68% 

in mitosis compared with 73.5% in the initial mitotic popula-

tion. The same result was obtained when cells were released 

into MG132 for 2 h and treated with a combination of roscovi-

tine and MG132 for a further 2 h. Despite the absence of Cdk1 

Figure 6. Cells with monoastral spindles cleave without mitotic exit after loss of Cdk1 activity in the presence of proteasome inhibitor. (A and B) HeLa cells 
collected in mitosis by 16-h exposure to STLC followed by mitotic shake-off were maintained in STLC and treated with roscovitine in the presence or absence 
of MG132 for 2 h. Cells were then fi xed and stained for microscopy with antibodies to tubulin (A) or to the cleavage furrow–associated proteins survivin, 
Aurora B, TD60, PRC1, or anillin (B). Exposure of STLC-treated cells to roscovitine induced a furrowing event, characteristically with formation of a bud de-
void of chromatin. The passenger proteins survivin, Aurora B, and TD60 associated with the furrow, as did PRC1 and anillin. (C) The percentage of cells 
with a bud was quantitated after 1 or 2 h of exposure to drugs. The data represent the mean of three counts of >60 cells per count. White bars, cells 
treated with roscovitine; black bars, cells treated with both roscovitine and MG132. All cells were in the continuous presence of STLC. Error bars represent SD. 
Bar, 16.5 μm.
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activity, there was no further loss of mitotic population (66.2% at 

4 h). Observed by immunofl uorescence microscopy, the popula-

tion of cells treated with the combination of roscovitine and 

MG132 was largely prometaphase (bipolar spindles with most 

chromosomes aligned to the metaphase plate but with a few chro-

mosomes misaligned) or metaphase (bipolar spindles with all 

chromosomes aligned to the metaphase plate), as shown in Fig. 

7 B. Thus, the absence of Cdk1 activity did not prevent cells from 

maintaining a bipolar spindle and a metaphase chromosome array. 

Furthermore, no cells treated in this manner proceeded to furrow 

in this time frame, but all remained in early mitosis in the absence 

of Cdk1 activity (Fig. S2 A, available at http://www.jcb.org/cgi/

content/full/jcb.200704117/DC1). It is of interest to note that co-

incubation with roscovitine and MG132 caused the reproducible 

loss of metaphase cells by reversion to prometaphase (Fig. S2 A).

We conducted a parallel analysis of cells after release 

from STLC into MG132 followed by exposure to Cdk1 inhibi-

tor CGP74514A. Immunofl uorescence yielded metaphase mi-

totic images similar to those seen with roscovitine (Fig. S2 B). 

As with roscovitine + MG132, coexposure of CGP74514A 

with MG132 yielded largely bipolar spindles, but with a small 

increase in monopolar cells (Fig. S2 C). These data suggest that 

Figure 7. The absence of Cdk1 activity does not prevent bipolar spindle formation and metaphase chromosome alignment on release from STLC. (A) After 
16-h STLC block and mitotic shake-off, cells were released from STLC by three washes in drug-free medium and were treated with MG132 for 2 h followed 
by 2-h coincubation with both roscovitine and MG132. Samples were analyzed by 2D FACScan as in Fig 1. Controls were released from STLC for 4 h 
with no further drug treatment. Percentages shown indicate the subpopulations that were positive for MPM-2. (B) Confocal microscopy was performed on 
identically treated cells, which were stained for tubulin (green) and DNA with propidium iodide (PI; red). The combined FACScan and microscopy data in-
dicate that controls released from STLC form normal bipolar spindles and exit normally from mitosis. In contrast, cells released from STLC in MG132 remain 
mitotic but within 2 h have normal mitotic spindles with chromosomes aligned to a normal metaphase plate. After an additional 2 h without Cdk1 activity 
(MG132 plus roscovitine), cells remained mitotic with normal bipolar spindles and metaphase chromosome alignment. Bar, 16.5 μm.
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Figure 8. Phosphatase activity is required for mitotic exit in the absence of Cdk1 activity. (A) Western blot analysis of mitotic markers in extracts. Cells were 
collected in mitosis by STLC block (16 h) and shake-off and were exposed to different conditions for 2 h as indicated. All cells were maintained in STLC during 
this time course. Cells were exposed to 100 μM roscovitine (ROS), 20 μM MG132, both roscovitine and MG132, both roscovitine and 0.5 μM okadaic 
acid (OKAD), or to both roscovitine and 30 nM calyculin A (CALYC). Controls were cells in the continuous presence of STLC (2 h) or STLC + MG132 
(MG132). S/O indicates the time 0 shake-off sample. Cell extracts were probed with a polyclonal antibody specifi c for Cdk substrates phosphorylated on 
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continued Cdk1 activity may be required to maintain the meta-

phase alignment of chromosomes.

Phosphorylation status of most Cdk1 
substrates is retained when both Cdk1 
and proteasome activities are inhibited
Maintenance of the mitotic state in the absence of Cdk1 activity 

might depend on the retention of phosphorylated Cdk1 sub-

strates during combined Cdk1 suppression + MG132 treat-

ment. In Fig. 2 C, using an antibody specifi c for Cdk1 substrate 

consensus motif phosphopeptides, we showed that the phos-

phorylation status of Cdk1 substrates (Stukenberg et al., 1997) 

was indeed retained in cells exposed to the combination of 

roscovitine + MG132 or CGP74514A + MG132. Western 

blots showed that mitotic cells were highly positive for a large 

number of Cdk1 phosphoepitopes and that these substrates were 

absent after 2 h of Cdk1 inhibitor exposure (Fig. 2 C).

These results suggested that protein phosphatases were 

not acting on Cdk1 substrates in the absence of Cdk1 activity. 

As this offered a possible mechanism for sustained mitotic status 

without Cdk1, we directly assayed for the effect of phosphatase 

inhibition in cells treated with roscovitine and found that the 

dephosphorylation of Cdk1 substrates was indeed suppressed 

in mitotic cells exposed to the combination of roscovitine plus 

either okadaic acid or calyculin A (Fig. 8 A), two specifi c in-

hibitors of PP1 and PP2A protein phosphatases (Bialojan and 

Takai, 1988; Ishihara et al., 1989; Cohen et al., 1990). These 

results correlated with FACScan data showing retention of the 

mitotic marker MPM-2 in STLC-treated cells (Fig. 8 B). Re-

sults quantitated for cells collected in mitosis either with STLC 

or with nocodazole (Fig. 8 C) show substantial mitotic reten-

tion with roscovitine + either okadaic acid or calyculin A. 

In comparison, the inhibition of cdc25, a mitotic protein phos-

phatase (for review see Trinkle-Mulcahy and Lamond, 2006), 

was without effect on mitotic exit of roscovitine-treated cells, 

nor did its suppression protect cells from the dephosphoryla-

tion of Cdk1 substrates (Fig. S3, available at http://www.jcb

.org/cgi/content/full/jcb.200704117/DC1).

Chromosome spreads of cells treated with Rosc + either 

okadaic acid or calyculin A showed that condensed mitotic chro-

mosomes were maintained at high levels with the combined sup-

pression of Cdk1 and phosphatase activity (Fig. S4, available 

at http://www.jcb.org/cgi/content/full/jcb.200704117/DC1). 

Representative chromosome spreads are shown in Fig. 8 D.

Condensed chromosomes were equivalently maintained 

with either MG132 alone or Rosc + MG132 but unlike roscovi-

tine alone, in which the majority of cells had reformed nuclei by 

2 h (Fig. S4). Interestingly, mitotic arrest with Rosc + either 

okadaic acid or calyculin A occurred despite the loss of cyclin 

B1 and securin by 2 h (Fig. 8 A). Thus, phosphatase activity did 

not appear to be required for activation of cyclin B1 or securin 

degradation by APC/C-linked proteolysis.

We conclude that phosphatase activity, possibly involving 

either PP1 or PP2A, is an essential prerequisite for mitotic exit 

after Cdk1 inactivation. Furthermore, our data suggest that MG132-

sensitive proteolysis of a proteasome substrate other than cyclin 

B1 is required to activate this phosphatase activity.

Discussion
Maintenance of the mitotic state depends on Cdk1 activity. Loss of 

Cdk1 activity normally occurs at the metaphase to anaphase tran-

sition once the spindle assembly checkpoint and other mitotic 

checkpoints have been satisfi ed (Kops et al., 2005). Mitotic exit 

normally occurs through the cdc20-activated APC/C-dependent 

degradation of two key substrates, cyclin B1 and securin.

We have demonstrated that mitotic cells will remain mi-

totic for several hours in the absence of Cdk1 activity provided 

that APC/C-dependent protease activity is suppressed. Contin-

ued mitotic status in the absence of Cdk1 activity has been veri-

fi ed by several independent criteria: the continued presence of 

condensed chromosomes, the presence of a mitotic spindle, the 

presence of the mitosis-specifi c phosphoantigen markers MPM-2 

and S10 of histone H3, and the presence on chromosomes of 

mitotic passenger proteins. Finally, and most importantly, we 

show that Cdk1 substrates remain phosphorylated in the absence 

of Cdk1 activity.

Thus, our results require a revision of the prevailing para-

digm, which holds that destruction of cyclin B1, which inacti-

vates Cdk1, is itself necessary and suffi cient to induce mitotic 

exit. This paradigm requires that suppression of Cdk1 activity 

should therefore induce mitotic exit even in the absence of 

 cyclin B1 destruction. Instead, our results show there is a path-

way downstream of Cdk1 inactivation that requires both fur-

ther proteolysis and phosphatase activation to complete the 

mitotic exit pathway.

Our results contrast with a recent study that proposed that 

cells exposed to both a Cdk1 inhibitor and an inhibitor of prote-

olysis undergo cell cleavage but remain competent to revert to 

mitosis when the Cdk1 inhibitor is removed (Potapova et al., 

2006). The interpretation of these results as evidence for a re-

versible exit from mitosis dependent on the continued presence 

of cyclin B1 rested on the reversibility of cell cleavage and the 

reappearance of a rounded mitotic cell. Other markers that 

serine (anti P-Ser Cdk substrates), with antibody specifi c for histone H3 phosphorylated on Ser10 ((PS10)H3), and were also probed with securin, cyclin B1, 
and aurora A antibodies. Anti-actin was used as loading control. (B) FACScan analysis of mitotic HeLa cells collected by shake-off after being blocked in mito-
sis with 7.5 μM STLC for 16 h. Cells in the continuous presence of STLC were exposed to 100 μM roscovitine (ROS), 20 μM MG132, both roscovitine and 
MG132, both roscovitine and 0.5 μM okadaic acid (OKAD), or both roscovitine and 30 nM calyculin A (CALYC). Samples for 2D FACScan analysis were 
taken 2 h after the collection of mitotic cells by shake-off. Percentages shown indicate the subpopulations that were positive for MPM-2. Parallel results were 
obtained with nocodazole-treated cells. (C) Comparison of results with nocodazole or with STLC block. Quantitation of the percentage of cells positive for 
MPM2 includes results as shown in B plus a parallel set of data from nocodazole-arrested cells that were otherwise treated identically. Data demonstrate that 
parallel results were obtained with nocodazole or STLC-treated cells. (D) Chromosome spreads 2 h after collection by arrest with nocodazole followed by 
 mitotic shake-off as described in A. Cells were maintained in nocodazole and exposed to various conditions after shake-off as indicated. Bar, 19.36 μm.
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would confi rm that mitotic exit had indeed occurred in the ab-

sence of Cdk1 activity combined with the suppression of prote-

olysis were not examined except phosphorylated nucleolin.

Potapova et al. (2006) suggested that mitotic exit occurred 

with some Cdk1 inhibitors such as purvalanol A but not with 

roscovitine. Importantly, our results have been obtained with 

three different Cdk inhibitors and with two different proteasome 

inhibitors, eliminating the possibility that the capacity to remain 

in mitosis in the absence of Cdk1 activity is dependent on a par-

ticular drug combination.

In accord with Potapova et al. (2006), we fi nd that a por-

tion of blocked monoastral cells undergo transient furrowing. 

This furrowing is accompanied by the relocation of proteins im-

portant to cytokinesis, such as the passenger proteins Aurora B, 

survivin, and TD60, and of PRC1 to the cell cortex along a 

bundle of microtubules. As a result, these cells form a bud that 

contains no chromatin. Such furrowing is quite similar to that 

previously shown to occur in cells with monoastral spindles in 

which the metaphase checkpoint had been suppressed by the in-

troduction of mutant Mad2 (Canman et al., 2003). These results 

and previous work (Martineau et al., 1995; Wheatley et al., 

1997; Stemmann et al., 2001; Niiya et al., 2005) indicate that 

cytokinesis is an event that is independent of, and neither syn-

chronous nor synonymous with, mitotic exit. Furrowing can 

occur well after mitotic exit has occurred or, as in the case 

presented here, can occur in the absence of mitotic exit. However, 

induction to undergo furrowing may depend on the absence of 

Cdk1 activity.

Cells released from STLC arrest in the presence of MG132 

proceed to metaphase and maintain a bipolar metaphase spindle 

for at least an additional 2 h after the suppression of Cdk1 activ-

ity by roscovitine. The absence of Cdk1 activity clearly does 

not, of itself, drive cells forward from metaphase to anaphase. 

It is of interest that a substantial percentage of cells revert from 

metaphase to prometaphase when Cdk1 activity is suppressed 

in MG132-treated cells (Fig. S2), whereas none are driven for-

ward to anaphase. When chromosomes are lost from the meta-

phase plate, they appear to have a merotelic (both kinetochores 

associated with one spindle pole) kinetochore alignment (un-

published data). Therefore, it appears that continuous Cdk1 ac-

tivity is required to maintain proper metaphase chromosome 

alignment. This apparently unique role for Cdk1 activity in main-

taining bipolar kinetochore attachment has not been noted before 

and deserves attention.

Retention of cells in mitosis is not caused by the contin-

ued presence of either cyclin B1 or securin in the absence 

of Cdk1 activity, as nondegradable mutants of these proteins 

do not prevent mitotic exit in the absence of Cdk1 activity. 

As MG132 nonetheless prevents mitotic exit, the reasonable 

conclusion is that a protease substrate other than cyclin B1 or 

securin must be degraded to permit mitotic exit in the absence 

of Cdk1 activity. Two proteins other than cyclin B1 and securin 

must be degraded for mitosis to progress, but these proteins, cy-

clin A (den Elzen and Pines, 2001; Geley et al., 2001) and Emi1 

(Guardavaccaro et al., 2003; Margottin-Goguet et al., 2003), are 

both eliminated very early in mitosis and are unlikely to play a 

role in mitotic exit.

The putative protease substrate must be involved in phos-

phatase activation. Cdk1 substrates remain substantially phos-

phorylated for hours in the combined presence of different Cdk 

and proteasome inhibitors, and we obtain parallel results on 

 exposing cells to the combination of roscovitine with protein 

phosphatase inhibitors (okadaic acid or calyculin A).

Suppression of the PP1 and PP2A protein phosphatase 

families is required for entry into mitosis (Cyert and Thorner, 

1989; Dohadwala et al., 1994; Wera and Hemmings, 1995; 

Kwon et al., 1997; Puntoni and Villa-Moruzzi, 1997), and both 

okadaic acid and calyculin A specifi cally inhibit the PP1 and 

PP2A protein phosphatase families (Ishihara et al., 1989). Rea-

sonable candidates for control of mitotic exit are members of 

the PP1 family, as they remain suppressed in mammalian cells 

by phosphorylation until metaphase and can be prolonged in 

this suppressed state by exposure of mitotic cells to either okadaic 

acid or calyculin A (Kwon et al., 1997). Furthermore, micro-

injection of anti-PP1 antibody arrests mammalian cells at meta-

phase (Fernandez et al., 1992). Similarly, the two PP1 proteins 

in Schizosaccharomyces pombe are suppressed by cdc2 phos-

phorylation in mitosis, and their reactivation is required to 

proceed past metaphase (Ishii et al., 1996). PP1 activity is also 

required for mitotic exit in Aspergillus (Doonan and Morris, 

1989) and Drosophila (Axton et al., 1990; Chen et al., 2007).

Our results with the combination of roscovitine and the 

phosphatase inhibitors okadaic acid or calyculin A indicate that 

phosphatase activity is required for exit from the mitotic state, 

presumably by the dephosphorylation of mitotic Cdk1 sub-

strates, and, importantly, that there is little phosphatase activity 

evident on Cdk1 substrates in the presence of roscovitine and 

MG132. The continuing mitotic state, which is characterized by 

condensed chromosomes and by the presence of MPM-2 and 

S10-phosphorylated histone H3 markers, indicates that the 

phosphatase activity required for mitotic exit is minimal when 

APC/C-dependent proteolysis has been suppressed by MG132. 

The potential role of protease inhibition in the suppression of 

phosphatase-dependent mitotic exit is of substantial interest.

The key phosphatase activity must be downstream of 

the cdc20-driven APC/C-dependent protease activity, as cells 

treated with phosphatase inhibitors in the presence of roscovi-

tine have lost both cyclin B1 and securin (Fig. 8) but remain 

metabolically mitotic through the absence of the phosphatase-

dependent destruction of Cdk1 substrates.

In light of a potential key role for protein phosphatases in 

mitotic exit, it is important to note that both budding and fi ssion 

yeast contain mitotic exit networks that are dependent on unique 

protein phosphatases of the cdc14 family (Visintin et al., 1998; 

Trautmann and McCollum, 2002; Stegmeier and Amon, 2004). 

Although mammalian cdc14A and B are functional homologues 

of cdc14 phosphatases in the yeast system (Vazquez-Novelle 

et al., 2005), suppression of cdc14A in mammalian cells does 

not prevent mitotic exit (Mailand et al.,  2002). We do not be-

lieve that the cdc14 mechanism is likely to play an equivalent 

role in the pathway we describe here, as S. pombe cdc14 (Clp1/

Flp1) directly inactivates cdc2 (the S. pombe homologue of 

Cdk1) by regulating its phosphorylation status. In this scenario, 

phosphatase inhibitors would not be expected to retain mitotic 
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status in the absence of Cdk1 activity. In light of our results with 

combined Cdk and phosphatase inhibitors, it is interesting that 

in Saccharomyces cerevisiae, Cdk activity is required to  activate 

Net1 and, thus, cdc14 in the mitotic exit pathway and that this 

overrides PP2A-dependent metaphase arrest (Queralt et al., 

2006). It will be of substantial interest if a parallel exists be-

tween our results and the yeast pathway that uses Cdk activity 

and phosphatase activation for mitotic exit.

Our results strongly implicate phosphatase activity in key 

events in mitotic exit and protease in activating this pathway. 

Although it remains to be seen whether these effects directly or 

indirectly involve cdc14, it is nonetheless of great interest that 

there appears to be a convergence between the yeast systems 

and the mammalian system in the functional requirement for ac-

tivation of protein phosphatase activity to enable mitotic exit.

In summary, we fi nd that cells without Cdk1 activity re-

main mitotic by several criteria as long as there is no APC/C-

dependent protease activity and that this effect is dependent on 

mitotic suppression of a key protein phosphatase activity. It will 

now be of great interest to elucidate this important pathway, to 

determine the protease substrate that is retaining these cells in 

mitosis, and to identify the protein phosphatase whose activa-

tion is apparently required for mitotic exit.

Materials and methods
Cell culture
HeLa cells were grown in DME (Invitrogen) supplemented with 10% FCS 
and were maintained in a humid incubator in a 5% CO2 environment at 
37°C. Mitotic cells were collected by shake-off after 16-h incubation with 
either 0.1 μg/ml nocodazole (Sigma-Aldrich) or with 7.5 μM STLC (Nova-
biochem). After centrifugation at 1,000 rpm for 5 min at 37°C, cells were 
resuspended in media in the continuous presence of the mitotic inhibitors 
with either 100 μM roscovitine (Calbiochem) or a combination of roscovi-
tine with 20 μM MG132 (Sigma-Aldrich), or cells were resuspended with 
0.5 μM okadaic acid (Calbiochem) or 30 nM calyculin A (Calbiochem) for 
up to 2 h. Alternatively, mitotic cells were resuspended in media in the con-
tinuous presence of the mitotic inhibitors with either 7.5 μM CGP74514A 
(Calbiochem) or 25 μM purvalanol A (Calbiochem) or with the combina-
tion of CGP74514A or purvalanol A with either 20 μM MG132 (Sigma-
Aldrich) or AM114 (Calbiochem) for up to 2 h. In experiments using 
CGP74514A or purvalanol A, proteasome inhibitors were added 1 h before 
addition of the Cdk inhibitors.

HeLa cells were transfected with either wild-type cyclin B1-GFP or 
the nondegradable (R42A)-cyclin B1-GFP in pCMX vector (gifts from J. 
Pines, Gurdon Institute, Cambridge, UK) or were transfected with the wild-
type myc-securin or nondegradable securin mutant myc-securin-KAA-DM in 
pCS2 vector (gifts from M. Brandeis, Hebrew University, Jerusalem, Israel). 
Double transfection of the nondegradable (R42A)-cyclin B1-GFP and the 
nondegradable securin mutant myc-securin-KAA-D was also performed. 
Single or double plasmid transfections were performed with LipofectAMINE 
(Invitrogen) according to the manufacturer’s protocols. Cells were blocked 
in mitosis with nocodazole at 30 h after transfection and treated with the 
various inhibitors as described in the paragraph above.

Flow cytometric analysis
Cells were analyzed by 2D fl ow cytometry using MPM-2 monoclonal anti-
body recognizing mitosis-specifi c phosphoepitopes (Davis et al., 1983) 
and propidium iodide, a marker of DNA content. Cells were fi xed, incu-
bated with MPM-2 antibodies, and labeled with FITC-conjugated anti–
mouse IgG secondary antibodies (Jackson ImmunoResearch Laboratories) 
and propidium iodide as described previously (Andreassen et al., 2004). 
Data were collected with a fl ow cytometer (FACScan; Becton Dickinson) 
using propidium iodide in the fi rst dimension and MPM-2 in the second di-
mension (presented as a dot plot) and were analyzed with CellQuest soft-
ware (Becton Dickinson). For each sample, 10,000 events were collected, 
and aggregated cells were gated out.

Immunofl uorescence microscopy
Mitotic cells were fi xed with 2% PFA in PBS for 20 min at 37°C, permeabi-
lized with 0.2% Triton X-100 in PBS for 3 min, stained in suspension, and 
spun onto coverslips at 215 g for 3 min. The following antibodies were 
used for indirect immunofl uorescence microscopy. Monoclonal antibody to 
β tubulin (Sigma-Aldrich) was used at a 300-fold dilution, MPM-2 mouse 
monoclonal antibody (Upstate Biotechnology) was used at 1:100, and 
 Aurora B was detected with a rabbit polyclonal antibody (Abcam) at a 
500-fold dilution. PRC1 affi nity-purifi ed rabbit antibody (gift from W. Jiang, 
Burnham Institute of Medial Research, La Jolla, CA; Jiang et al., 1998), JH 
human autoimmune serum recognizing human TD60 (Andreassen et al., 
1991), and rabbit polyclonal antisurvivin (Novus Biological) were all used 
at 500-fold dilutions. Goat anti–lamin B (Santa Cruz Biotechnology, Inc.) 
was used at a 300-fold dilution. Rabbit polyclonal antibody to anillin 
(gift from C. Field, Harvard University, Cambridge, MA) was used at a 
600-fold dilution. Secondary antibodies (Jackson ImmunoResearch Lab-
oratories), including FITC-conjugated affi nity-purifi ed goat anti–mouse, 
anti–rabbit, and rabbit anti–goat IgG antibodies, were used at 1:250; 
Cy3-conjugated affi nity-purifi ed goat anti–mouse was used at 1:400. DNA 
was detected by incubation with 0.2 μg/ml propidium iodide in PBS for 
5 min after incubation with secondary antibodies. Samples were observed 
using a microscope (Optiphot; Nikon) coupled to a laser-scanning confo-
cal apparatus (MRC-600; Bio-Rad Laboratories) using the image acquisi-
tion software COMOS (Bio-Rad Laboratories); scans were obtained using 
a 40× NA 1.0 oil objective (Nikon). Treated cells, which were transfected 
with the nondegradable (R42A)-cyclin B1-GFP, were fi xed and stained in 
the same manner as the above samples and were fi nally stained with DAPI 
with Vectashield mounting medium (Vector Laboratories). Images were 
 acquired with an epifl uorescence microscope (BX61; Olympus) equipped 
with a CCD camera (Retiga-SRV; QImaging) driven by Volocity software 
(Improvision) with a binning of 2 using a planApo 60× NA 1.42 objective 
(Olympus). Figures were processed in Photoshop version 7.0 (Adobe) and 
assembled in CANVAS version 8.0 (Denaba Systems).

Cdk1 kinase assay
Kinase assays were performed as described previously (Andreassen and 
Margolis, 1994). In brief, HeLa cells were treated with 0.2 μg/ml no-
codazole for 16 h, and mitotic cells were collected by shake-off, washed 
once with PBS, and lysed in ice-cold buffer C as described previously 
(Panopoulos et al., 2005) containing fresh protease inhibitors (2 μg/ml 
leupeptin, 20 μg/ml aprotinin, 2 μg/ml pepstatin, and 1 mM PMSF), 
phosphatase inhibitor (1.3 mM p-nitrophenyl phosphate), and 2 mM DTT. 
Mouse monoclonal anti-Cdk1 antibody (Abcam) was incubated on ice with 
mitotic lysate (2 μl/100 μg protein) for 30 min before the addition of pro-
tein A–Sepharose beads (Zymed Laboratories). After the addition of beads, 
the lysates were incubated for 5 h at 4°C, rotating end over end. Immune 
complexes were washed once with 600 μl buffer C and twice with kinase 
assay buffer (20 mM Tris, pH 7.6, and 20 mM MgCl2). A master kinase 
cocktail mix was prepared containing kinase assay buffer, 1 μg/ml histone 
H1, 0.2 μCi/μl γ-[32P]ATP, 30 μM ATP (VWR), and 1 μM DTT. Master 
 kinase cocktail was added to separate tubes containing water (vehicle), 
purvalanol A (25 μM fi nal), roscovitine (100 μM fi nal), MG132 (25 μM 
fi nal), purvalanol A and MG132 (25 μM fi nal each), or roscovitine and 
MG132 (100 μM fi nal and 25 μM fi nal, respectively). For immunoblots, 
immunoprecipitated Cdk1 complexes were resolved by SDS PAGE, trans-
ferred to polyvinylidene difl uoride membranes, blocked with 5% nonfat 
milk, and probed with anti-Cdk1 antibody (1:500 dilution; Abcam).

Chromosome spreads
To prepare chromosome spreads, cells in suspension were pelleted by cen-
trifugation at 215 g for 2 min and were resuspended in 75 mM KCl at 
37°C for 30 min. Cells were then centrifuged again (2 min at 215 g) and 
fi xed overnight at –20°C in 75% methanol and 25% acetic acid. Spreads 
were then obtained by resuspension of fi xed cells and centrifugation onto 
coverslips (Cytospin centrifuge; Thermo Scientifi c) at 2,800 rpm for 3 min. 
The chromosome spread was then washed with PBS, stained for 5 min with 
0.5 μg/ml propidium iodide in PBS, washed again twice, and mounted 
for observation.

Immunoblotting
Cells were lysed in 50 mM Tris-HCl, pH 7.4, 250 mM NaCl, 5 mM EGTA, 
and 0.1% NP-40 and were supplemented with protease and phosphatase 
inhibitors for 30 min on ice. 20 μg of lysates was resolved on polyacryl-
amide gels and transferred to nitrocellulose sheets. Materials are listed with 
their dilutions as follows: β tubulin was detected with a mouse anti–β tubulin 
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monoclonal antibody (Sigma-Aldrich), 1:1,000; mouse anti–cyclin B1 
monoclonal antibody (clone GNS1; Santa Cruz Biotechnology, Inc.), 
2,000-fold dilution; rabbit polyclonal anti–Aurora A (Cell Signaling), 
1,000-fold dilution; polyclonal antisecurin antibody (gift from H. Zou, 
 University of Texas Southwestern Medical Center at Dallas, Dallas, TX; Zou 
et al., 1999), 500-fold dilution; polyclonal antiactin, 10,000-fold dilution 
(Sigma-Aldrich); rabbit antiphospho-S10 H3 (Upstate Biotechnology), 
5,000-fold dilution; mouse monoclonal anti-myc (clone 9E10; Santa Cruz 
Biotechnology, Inc.), 1,000-fold dilution; rabbit antiphospho-(serine)-CDK 
substrate antibody (Cell Signaling), 1,000-fold dilution; and rabbit anti-
phospho-(T244)-cdc27 antibody (Abcam), 1,000-fold dilution. Nitrocellu-
lose sheets were then incubated with HRP-conjugated goat anti–mouse and 
anti–rabbit IgG secondary antibodies. Protein–antibody complex was de-
tected by enhanced chemiluminescence (Pierce Chemical Co.).

Online supplemental material
Fig. S1 shows that nontransformed cells are retained in mitosis after loss of 
Cdk activity when proteasome activity is also suppressed. Fig. S2 shows 
that the absence of Cdk1 activity permits bipolar spindle formation and 
metaphase chromosome alignment on release from STLC, but many cells 
revert to prometaphase. Fig. S3 shows that cdc25 phosphatase activity has 
no effect on mitotic exit. Fig. S4 shows quantitation of treated cells for chro-
mosomes versus interphase nuclei. Online supplemental material is avail-
able at http://www.jcb.org/cgi/content/full/jcb.200704117/DC1.
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