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Abstract

This paper presents an adaptive approach to the federated filter for multi-sensor nonlinear

systems with cross-correlations between process noise and local measurement noise. The

adaptive Gaussian filter is used as the local filter of the federated filter for the first time,

which overcomes the performance degradation caused by the cross-correlated noises. Two

kinds of adaptive federated filters are proposed, one uses a de-correlation framework as

local filter, and the subfilter of the other one is defined as a Gaussian filter with correlated

noises at the same-epoch, and much effort is made to verify the theoretical equivalence of

the two algorithms in the nonlinear fusion system. Simulation results show that the proposed

algorithms are superior to the traditional federated filter and Gaussian filter with same-

paced correlated noises, and the equivalence between the proposed algorithms and high

degree cubature federated filter is also demonstrated.

1. Introduction

Federated filters (FF) have been successfully used in a wide range of areas, including integrated

navigation [1, 2], multi-sensor target tracking [3, 4], gyro-less attitude determination [5],

motion capture in virtual reality [6], airborne position & orientation [7] and so on, which have

advantages of good real-time, simple structure and high fault-tolerant capability [8]. The origi-

nal FF proposed by Calson was designed for linear decentralized navigation systems [9, 10].

With the increasing complexity of application systems and environments, many improved FF

have been developed for different practical problems. An improved Tobit regression model is

applied to the traditional FF framework to form a distributed federated Tobit Kalman filter for

censoring and packet delay of a class of discrete time systems [11]. A distributed federated Kal-

man filter with finite length buffer is proposed to deal with measurement delay or loss for a

class of multi-sensor unreliable networked systems with uncorrelated noises [12]. In [1–3, 7, 8,

10–12], the dynamic and measurement models of the system are linear, so the proposed FF

adopts the linear Kalman filter (KF) as the local filter. However, the nonlinear problem is often

unavoidable in practical systems, and the performance of linear KF is obviously unable to meet

the requirements [13–16]. To solve such problems, the information fusion algorithm must be

based on the nonlinear fusion mechanism. For example, in order to solve the filtering
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precision decline and instability problem caused by various factors in the practical application

of the integrated navigation system based on the nonlinear model, [17–20] proposed several

solutions based on the unscented Kalman filter. Therefore, it is necessary to adopt nonlinear

filter as local filter to study federated filter. Different federated UKF are designed for pulsar/

CNS satellite integrated autonomous navigation system and vehicle fusion positioning system

[21, 22]. A federated nonlinear predictive filtering method is proposed for the gyroless attitude

determination system with star sensors and GPS sensors, which combines the nonlinear pre-

dictive filtering with the traditional FF [5].

Measurement noise and process noise in existing nonlinear federated filters (NFF) are gen-

erally considered to be statistically independent [4, 8, 21]. However, according to the research

experience of a single sensor system, the cross-correlation between process noise and measure-

ment noise is an important factor that leads to the degradation of filtering performance, which

also exists in multi-sensor system. In practical application, the problem of noise cross-correla-

tion always exists. For example, in a target tracking system, there would be some cross-correla-

tion between the process and measurement noises if both of them are dependent on the

system state [23]. Also, discretization on real continuous fusion systems may cause the cross-

correlation to the process and measurement noises [24]. Several fusion filtering algorithms

have been brought up to alleviate the negative effects of noise correlation in multi-sensor sys-

tems. For a class of uncertain multi-sensor systems with autocorrelation and cross-correlation

noises, a distributed weighted robust fusion filter is constructed by using the optimal robust

Kalman local filter [23]. The problem of information fusion estimation for multi-sensor sto-

chastic uncertain systems with correlated noises is presented in [24], in which the process and

observation noises are one-step auto-correlated and two-step cross-correlated respectively,

while the observation noises of different sensors are one-step cross-correlated. Based on the

optimal local filter in [25], a distributed fusion filter for multi-sensor systems with finite-step

correlated noises is proposed, in which process noise and observation noise at different sensors

are finite-step auto-correlated and cross-correlated respectively [26]. Decentralized cubic Kal-

man fusion filters are proposed for nonlinear fusion systems with one-step cross-correlations

between the process noise and measurement noise and synchronized cross-correlations

among each measurement noise [27]. However, it can be seen from [23–27] that the aforemen-

tioned algorithms are designed for stochastic uncertain systems with cross-correlated noise or

auto-correlated noise. The time-varying state transition matrix and measurement matrix in

these system equations are linear with the system state, so these improved fusion algorithms

still belong to the category of linear fusion algorithms in a sense. The fusion algorithm pro-

posed in [27] is designed for nonlinear multi-sensor system, but it is mainly used to overcome

the one-step correlation between the process and measurement noises, and the correlations

between different sensor noises. To the best of the authors’ knowledge, few studies have been

done on multi-sensor systems with the same-paced cross-correlation between process and

measurement noise.

In a single sensor system, the problem of filtering under non-standard noise has always

been the focus of researchers. An improved adaptive student’s t-filter for the filtering of the lin-

ear system in the context of independent non-Gaussian heavy-tailed noise was proposed in

[28–30]. A pseudo-measurement noise was constructed to form a pseudo-observation equa-

tion for the filtering of one-step related noise in nonlinear systems, and on this basis, new

Gaussian approximation filters and smoothers are derived [31]. A novel adaptive Kalman filter

based on Variational Bayesian method and Gauss-Inverse-Wishart mixture distribution was

proposed for the linear system filtering problem with unknown system state and observed

noise covariance matrix [32]. Reference [33] further improved the above filter based on the

approximation of slide Window State Vectors based on the work in reference [32]. Nonlinear
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filtering under cross-correlation noise has become an important branch of filtering under

non-standard noise. There are two main solutions, one is de-correlating the noise sequences

by reconstructing a new pseudo process noise sequence and a new process function [34–36]

the other method is to use a Gaussian approximation recursive filter (GASF) for same-paced

cross-correlated noise, which adopts the Gaussian approximation to the two-step state poste-

rior predictive probability density function (PDF) and the one-step measurement posterior

predictive PDF [34]. The equivalence of the above two methods in linear and nonlinear sys-

tems has been proved theoretically [35, 36], but there is a narrow performance gap between

them [37]. It should be noted that the performance of these two filters is not satisfactory when

applied to nonlinear systems. Accordingly, another general framework of the correlated

Gaussian approximated filter (CGAF) for same-paced correlated noises is established by intro-

ducing the Gaussian approximation of the conditional PDF of the process noises [38].

Given the feasibility of the above solutions in single-sensor systems, it can be inferred that

their applications in traditional NFF frameworks should have similar effectiveness. However,

until now, only GASF has been successfully used as a local filter of high degree cubature feder-

ated filter for cross-correlated noises (HCFF-CN) [39]. Therefore, it’s worth discussing

whether the de-correlating filter and CGAF are suitable to modify the NFF. Furthermore, if

they are appropriate, what is the difference between their applications? Inspired by previous

research and above problems, two improved adaptive federated filters for cross-correlated

noises (AFF-CN) are proposed.

The rest of the article is organized as follows: Section 2 formulates the investigated problem.

Section 3 is devoted to systematic procedures for two kinds of AFF-CN. Section 4 provides the-

oretical equivalence of the two algorithms in the nonlinear fusion system. In Section 5, simula-

tion results and discussion are presented. Section 6 draws the conclusion.

2. Problem formulation

Considering a class of nonlinear discrete-time stochastic systems with multi-sensors

xkþ1 ¼ fkðxkÞ þ wk

zm;k ¼ hm;kðxkÞ þ vm;k

ð1Þ

(

where k is the discrete sample time index; m = 1,2,. . .N is the sensor index; xk 2 Rn and zm;k 2

Rpm are the system state and the mth measurement vector at k respectively, where the super-

script n is the dimension of the state vector, Pm is the observation vector dimension of the m
sensor; fk(�) and hm,k(�) are the nonlinear process function and the measurement function of

the mth sensor at k respectively; the process noise {wk} and measurement noise {vm,k} are

cross-correlated zero-mean Gaussian white noise sequences satisfying E½wkw
T
j � ¼ Qkdkj,

E½vm;kv
T
m;l� ¼ Rm;kdkl and E½wkv

T
m;l� ¼ Dm;kdkl, where E denotes the mathematical expectation

and δkl is Kronecker delta function. E½wkv
T
m;l� ¼ Dm;kdkl indicates the cross-correlation between

wk and vm,l, only if the time indexes are the same. Note that the cross-correlation noises for the

rest of the paper are the same as above. The initial state x0 described by the Gaussian distribu-

tion is uncorrelated with {wk} and {vm,k}, and its associated mean and covariance are defined

as x̂0j0 and P0|0.

Assumption 1: The fk(�) and hm,k(�) are known, and the state xk is bounded.

As mentioned above, the traditional NFF method is not suitable for the nonlinear fusion

system described in Eq 1, so an evolutionary filter HCFF-CN is proposed to solve such prob-

lem. However, there are still some defects that limit its further application.
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Assumption 2: The previous measurements satisfy Zm,k-1 = {zm,i,i = 1,� � �,k-1}. Both the

two-step predictive conditional PDF of the state p(xk+1|Zm,k-1) and the one step predictive con-

ditional PDF of the measurements p(zk|Zm,k-1) conform to the Gaussian distribution.

HCFF-CN inherits a disadvantage from cubature Kalman filter (CKF), that is, it is easy to lose

the positive definiteness of system state error covariance in its cycle steps and make the filter

stop running continuously.

Considering the above limitations and assumptions, two kinds of AFF-CN are proposed to

supplement and extend HCFF-CN.

3. Design of AFF-CN

In general, the nonlinear filter assumes that the state, process and measurement noise all con-

form to the Gaussian distribution, and the statistical characteristics of the corresponding

Gaussian PDFs are obtained by using the multivariate Gauss integral. Because Gaussian inte-

grals are often unanalytical, some point-based numerical rules are applied to approximate

these integrals. So The Gaussian integrals with respect to the Gaussian density function are

usually approximated as follows [40, 41].

Z

Rn
mðxÞNðx; x̂;PÞdx �

XB

i¼1

WimðsΛi þ x̂Þ ð2Þ

where m(x) is a known nonlinear function; Nðx; x̂;PÞ is a Gaussian density function with

mean x̂ and covariance P(P = ssT, and s can be obtained by Cholesky decomposition or singu-

lar value decomposition); and B is the number of all points; Λi and Wi are the point generator

and weight at i, which can be directly obtained based on the corresponding numerical rule.

For example, in the 3rd degree cubature rule, Wi and Λi are defined as follows [40].

Wi ¼ 1=2n; i ¼ 1; 2; � � � ; 2n

Λi ¼
ffiffiffi
n
p

ei; i ¼ 1; 2; � � � ; n

Λi ¼ �
ffiffiffi
n
p

ei� n; i ¼ nþ 1; nþ 2; � � � ; 2n

ð3Þ

8
>><

>>:

where ei 2 Rn is a unit vector with the ith element being l, and n is the system state dimension.

B is set to be 2n.

According to Eqs 2 and 3, introducing different point-based numerical rules in the frame-

work of the Gaussian filter leads to different nonlinear Gaussian approximation filters. For

instance, the unscented transformation (UT) gives rise to the unscented Kalman filter (UKF),

and the Gauss–Hermite quadrature rule brings about the Gauss–Hermite Kalman filter [42,

43]. Accordingly, a special kind of single Gaussian filter (SGF), called point-based nonlinear

filter (PNF), is established. Each PNF has its own usage. For example, UKF is applicable to low

dimensions systems (n�3), while the 3rd degree CKF is suitable for higher dimension systems

(n>3) [44].

In order to make the proposed filter have all the advantages of PNF, one derives the point-

based AFF-CN, whose local filters are expressed as the universal framework of the PNF. There-

fore, AFF-CN can select the most appropriate point-based numerical approximation rule

according to the actual application. Later in this section, the general framework of AFF-CN is

firstly described, and then, by virtue of the de-correlating filter and CGAF, two kinds of local

filters are derived respectively. Furthermore, the algorithm with de-correlating filter as local

filter is labeled AFF1-CN, and the other one using CGAF as subfilter is named AFF2-CN.
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3.1 General framework of AFF-CN

The general architecture of the AFF-CN is similar to that of the traditional FF except for their

local filters. To counteract the negative impact on the global approximated optimality caused

by the nonlinear local filter, the fusion-reset mode is still used. The procedure of the AFF-CN

can be described as the following steps.

Step 1: Information Distribution.

Qi; k ¼ b
� 1

i Qk

Pi; kjk ¼ b
� 1

i Pg
kjk

x̂ i; kjk ¼ x̂g
kjk; i ¼ 1; 2; . . . ;N;M

ð4Þ

8
>>><

>>>:

where βi = 1/N and βM = 0 are the information distribution coefficients of each local filter and

the master filter in fusion-reset mode, respectively, and satisfy
XN

i¼1
bi þ bM ¼ 1. The values

of βi and βM are the same as those in [10]. x̂ i;kjk is the local state estimate, and its associated

covariance is Pi,k|k. x̂
g
kjkis the global state estimate and its associated covariance is Pg

kjk. The

information is distributed between the local filters and the master filter according to the above

coefficients.

Step 2: Information Update.

To account for the value of βi, the information update step, which consists of prediction

and update steps, is performed in each local filter. Through this step, x̂ i;kjk and Pi,k|k are updated

to x̂ i;kþ1jkþ1 and Pi,k+1|k+1.

Step 3: Information Fusion.

Since βM equals 0 and b
� 1

M Qk approaches infinity, there is no information assigned to the

master filter. The global state and its associated covariance are generated as follows

Pg
kþ1jkþ1 ¼

XN

i¼1

P� 1

i;kþ1jkþ1

" #� 1

x̂g
kþ1jkþ1 ¼ Pg

kþ1jkþ1

XN

i¼1

P� 1

i;kþ1jkþ1
x̂ i;kþ1jkþ1

" # ð5Þ

Through the above recursive cycling steps, the approximated global optimal solution of system

(1) is obtained.

3.2 Point-based local filter for AFF-CN

In system (1), since wk is correlated with vm,k, and is indirectly correlated with zm,k or Zm,k,

E½wkjZm;k� 6¼ E½wk� ¼ 0. Accordingly, the local state prediction estimates x̂m;kþ1jk and its error

covariance Pm,k+1|k can’t be updated as following.

x̂m;kþ1jk ¼ E½fkðxkÞjZm;k� þ E½wkjZm;k�

6¼

Z

fkðxkÞNðxk; xkjk;PkjkÞdxk

Pm;kþ1jk ¼ E½~xm;kþ1=k~x
T
m;kþ1jkjZm;k�

6¼

Z

fkðxkÞ½fkðxkÞ�
TNðxk; xkjk;PkjkÞdxk � ~xkþ1=k~x

T
kþ1jk þ Qk

ð6Þ
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Therefore, AFF1-CN and AFF2-CN adopt different methods to maintain the information

update procedure in their local filters. The details are set out below.

3.2.1 Point-based local filter for AFF1-CN. According to the observation equation

in Eq 1 zm,k = hm,k(xk)+vm,k, one can get zm,k—hm,k(xk)+vm,k = 0, and then

Dm;kR
� 1

m;k½zm;k � hm;kðxkÞ � vm;k�¼0. Obviously, the substitution of this additional term into

the process equation of Eq (1) will not change the original equation relationship in the

process equation. By introducing an additional term Dm;kR
� 1

m;k½zm;k � hm;kðxkÞ � vm;k�, the

state equation in system (1) can be rewritten as follows.

xkþ1¼fkðxkÞ þ wk þ Dm;kR
� 1

m;k zm;k � hm;kðxkÞ � vm;k

� �

¼ fkðxkÞ þ Dm;kR
� 1

m;k zm;k � hm;kðxkÞ
� �

þ wk � Dm;kR
� 1

m;kvm;k

ð7Þ

Define Fm;kðxkÞ ¼ fkðxkÞ þ Dm;kR
� 1

m;kðzm;k � hm;kðxkÞÞ and w_m;k ¼ wk � Dm;kR
� 1

m;kvm;k, so Eq 7 is

rewritten as follows

xkþ1 ¼ Fm;kðxkÞ þ w_m;k ð8Þ

where w_m;k satisfies Eðw_m;kw
_T

m;jÞ ¼ ðQk � Dm;kR
� 1

m;kD
T
m;kÞδkj, Eðw

_

m;kvTm;jÞ ¼ 0, and Eðw_m;kÞ ¼ 0.

Therefore, w_m;k is zero-mean Gaussian white noise and uncorrelated with vm,k. The

fusion system is reconstructed by Eq 8 and the measurement equation of Eq 1, and the

problem is transformed into a standard Gaussian filtering problem. The local filters of

AFF1-CN can be summarized as follows.

(1) The mean and covariance of the initial state x0 are known.

(2) Evaluate the predicted state x̂m; kþ1jk and its associated covariance Pm,k+1|k.

x̂m;kþ1jk ¼

Z

Rn
Fm;kðxkÞNðxk; x̂m; kjk;Pm; kjkÞdx k

¼
XB

i¼1

WiFm;kðξm;i;kjkÞ

ð9Þ

Pm;kþ1jk¼

Z

Rn
ðFm;kðxkÞ � x̂m;kþ1jkÞðFm;kðxkÞ � x̂m;kþ1jkÞ

TNðxk; x̂m;kjk;Pm;kjkÞdxk þ Qk � Dm;kR
� 1

m;kD
T
m;k

¼
XB

i¼1

WiðFm;kðξm;i;kjkÞ � x̂m;kþ1jkÞðFm;kðξm;i;kjkÞ � x̂m;kþ1jkÞ þ Qk � Dm;kR
� 1

m;kD
T
m;k

ð10Þ

The transformed points in Eqs 9 and 10 are defined as follows.

ξm;i;kjk ¼ Sm;kjkΛi þ x̂m;kjk ð11Þ

where Sm;kjkS
T
m;kjk ¼ Pm;kjk, and sm,k|k can be obtained in the same way as s in Eq 2.

(3) Update

Update the mean and covariance of xk+1.

x̂m;kþ1jkþ1 ¼ x̂m;kþ1jk þ Km;kþ1ðzm;kþ1 � ẑm;kþ1jkÞ

Pm;kþ1jkþ1 ¼ Pm;kþ1jk � Km;kþ1P
zz
m;kþ1jkK

T
m;kþ1

ð12Þ

where the filtering gain Km;kþ1¼P
xz
m;kþ1jkðP

zz
m;kþ1jkÞ

� 1
, and the predicted measurement ẑm;kþ1jk, the
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innovation covariance Pzz
m;kþ1jk and the cross-covariance Pxz

m;kþ1jk are given by

ẑm;kþ1jk ¼

Z

Rn
hm;kþ1ðxkþ1ÞNðxkþ1; x̂m; kþ1jk;Pm; kþ1jkÞdx kþ1

¼
XB

i¼1

Wihm;kþ1ðξm;i;kþ1jkÞ

ð13Þ

Pzz
m;kþ1jk ¼

Z

Rn
ðhm;kþ1ðxkþ1Þ � ẑm;kþ1jkÞðhm;kþ1ðxkþ1Þ � ẑm;kþ1jkÞ

T
� Nðxkþ1; x̂m;kþ1jk;Pm;kþ1jkÞdxkþ1 þ Rm;kþ1

¼
XB

i¼1

Wiðhm;kþ1ðξm;i;kþ1jkÞ � ẑm;kþ1jkÞðhm;kþ1ðξm;i;kþ1jkÞ � ẑm;kþ1jkÞ
T
þ Rm;kþ1

ð14Þ

Pxz
m;kþ1jk ¼

Z

Rn
ðxkþ1 � x̂m;kþ1jkÞðhm;kþ1ðxkþ1Þ � ẑm;kþ1jkÞ

T
�Nðxkþ1; x̂m;kþ1jk;Pm;kþ1jkÞdxkþ1

¼
XB

i¼1

Wiðξm;i;kþ1jk � x̂m;kþ1jkÞðhm;kþ1ðξm;i;kþ1jkÞ � ẑm;kþ1jkÞ
T

ð15Þ

where the propagated points in Eq 13 are defined as follows

ξm;i;kþ1jk ¼ Sm;kþ1jkΛi þ x̂m;kþ1jk ð16Þ

where Sm;kþ1jkS
T
m;kþ1jk ¼ Pm;kþ1jk, and Sm;kþ1jk can be obtained in the same way as sm,k|k.

3.2.2 Point-based local filter for AFF2-CN. The process noises wk in Eq 1 is the zero-

mean Gaussian white noise with covariance Qk and uncorrelated with Zm,k−1, the conditional

PDF p(wk|Zm,k) of wk is presumed to follow the Gaussian distribution, which is defined as fol-

lows

pðwkjZm;kÞ � Nðwk; ŵm;kjk; Pww
m;kjk Þ ð17Þ

where the mean ŵm;kjk and associated error covariance Pww
m;kjk can be estimated as follows

ŵm;kjk ¼ Kw
m;kðzm;k � ẑm;kjk� 1Þ

Pww
m;kjk ¼ Qk � Kw

m;kP
zz
m;kjk� 1

ðKw
m;kÞ

T

Kw
m;k ¼ Dm;kðP

zz
m;kjk� 1

Þ
� 1

ð18Þ

8
>>><

>>>:

where, ẑm;kjk� 1 and Pzz
m;kjk� 1

are as the same as those in Eqs 13 and 14. Based on the above

assumption, the point-based local filters for AFF2-CN are formulated as follows

(1) The mean and covariance of the initial state x0 are known.
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(2) Evaluate the predicted state x̂m; kþ1jk and Pm,k+1|k.

x̂m; kþ1jk ¼

Z

Rn
fkðxkÞNðxk; x̂m; kjk;Pm; kjkÞdx k þ ŵm;kjk

¼
XB

i¼1

Wifkðξm;i;kjkÞ þ ŵm;kjk

ð19Þ

Pm; kþ1jk ¼

Z

Rn
fkðxkÞ þ ŵm;x;kjk

� �
fkðxkÞ þ ŵm;x;kjk

� �T
� Nðxk; x̂m; kjk;Pm; kjkÞdx k � x̂m;kþ1jkx̂

T
m;kþ1jk þΩm;kjk

¼
XB

i¼1

Wi fkðξm;i;kjkÞ þ ŵm;x;kjk

� �
fkðξm;i;kjkÞ þ ŵm;x;kjk

� �T
� x̂m;kþ1jkx̂

T
m;kþ1jk þΩm;kjk

ð20Þ

where

ŵm;x;kjk ¼ ŵm;kjk þ ðP
xw
m;kjkÞ

TP� 1

m;kjkðξm;i;kjk � x̂m;kjkÞ

Ωm;kjk ¼ Pww
m;kjk � ðP

xw
m;kjkÞ

TP� 1

m;kjkP
xw
m;kjk

ð21Þ

8
<

:

where Pxw
m;kjk ¼ � P

xz
m;kjk� 1

ðPzz
m;kjk� 1

Þ
� 1DT

m;k. Wi and ξm;i;kjk are the same as those in Eq 9.

(3) Update

The updated step is identical with that in the local filters of AFF1-CN.

In summary, before local filtering, the AFF1-CN de-correlates the process and measure-

ment noises. And in the AFF2-CN, the posterior PDF of wk is considered to follow the Gauss-

ian distribution, and the maximum a posteriori estimate (MAP) is used to estimate wk.

Therefore, two point-based AFF-CN are established, which can introduce any suitable point-

based numerical approximation rules.

4. Equivalence proof of AFF1-CN and AFF2-CN

The local filters of AFF1-CN and HCFF-CN use the de-correlating filtering framework and the

correlated recursive Gaussian approximated filtering framework, respectively [34, 39]. In [35,

36], the theoretical equivalence had already been proved between the de-correlating filtering

framework and GASF for linear and nonlinear systems, which means that AFF1-CN is equiva-

lent to HCFF-CN when it is approximated for the five-degree cubature rule. Can it be inferred

that AFF1-CN and AFF2-CN also have the theoretical equivalence? This is a problem to be

solved in this section. Obviously, from Eqs 4–21, the only difference existing between

AFF1-CN and AFF2-CN is the estimation computation of the predicted states x̂m; kþ1jkand its

associated error covariance Pm; kþ1jk, which are expressed as Eqs 9, 10, 19, 20 respectively.

Therefore, the following verification of equivalence focuses on the argument that those Eqs 9

and 10 are equivalent to the Eqs and 20.

Proof. According to the definition of Fm,k(xk) in Eqs 8 and 9 is expanded as follows

x̂m;kþ1jk¼

Z

Rn
fkðxkÞNðxk;x̂m; kjk;Pm; kjkÞdx k þ Dm;kR

� 1

m;kðzm;k � ẑm;kjkÞ ð22Þ

where ẑm;kjk¼

Z

Rn
hm;kðxkÞNðxk; x̂m; kjk;Pm; kjkÞdx k.
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Substitute Eq 18 into Eq 19, one can get

x̂m; kþ1jk ¼

Z

Rn
fkðxkÞNðxk; x̂m; kjk;Pm; kjkÞdx k þ Dm;kðP

zz
m;kjk� 1

Þ
� 1
ðzm;k � ẑm;kjk� 1Þ ð23Þ

Thus, the verification of the equivalence between Eqs 9 and 19 is transformed into the verifica-

tion of the equivalence between Eqs 22 and 23. It is obviously that Eqs 17 and 18 in [38] are

similar to Eqs 22 and 23. The de-correlating filter is considered to be different from the CGAF

in [38], which will be discussed further based on Eqs 22 and 23.

Introducing Lemma 1 in [35], ẑm;kjk can be expressed as follows

ẑm;kjk ¼ ẑm;kjk� 1 þ EðΛm;kΛ
T
m;kjZm;k� 1ÞðP

zz
m;kjk� 1

Þ
� 1
ðzm;k � ẑm;kjk� 1Þ ð24Þ

where Λm;k ¼ hm;kðxkÞ � E½hm;kðxkÞjZm;k� 1�.

Substituting Eq 24 into Eq 22, we have

x̂m;kþ1jk¼

Z

Rn
fkðxkÞNðxk;x̂m; kjk;Pm; kjkÞdx k þ Dm;kR

� 1

m;k I � EðΛm;kΛ
T
m;kjZm;k� 1ÞðP

zz
m;kjk� 1

Þ
� 1

� �
ðzm;k

� ẑm;kjk� 1Þ ð25Þ

where I is the identity matrix.

Insert EðΛm;kΛ
T
m;kjZm;k� 1Þ ¼ Pzz

m;kjk� 1
� Rm;k into Eq 25, we can obtain

x̂m;kþ1jk¼

Z

Rn
fkðxkÞNðxk;x̂m; kjk;Pm; kjkÞdx k þ Dm;kðP

zz
m;kjk� 1

Þ
� 1
ðzm;k � ẑm;kjk� 1Þ

¼

Z

Rn
fkðxkÞNðxk;x̂m; kjk;Pm; kjkÞdx k þ Dm;kR

� 1

m;kðzm;k � ẑm;kjkÞ

ð26Þ

Thus, Eq 22 is proved to be equivalent to Eq 23, that is to say, Eq 9 is equivalent to Eq 19.

According to the definition of Fm,k(xk), Eq 10 is expanded as follows

Eq:ð10Þ ¼ E½~f kjkðxkÞ
~f TkjkðxkÞjZm;k� � Dm;kR

� 1

m;kμ
T � μR� 1

m;kD
T
m;k þ Qm;k � Dm;kðR

� 1

m;k

� R� 1

m;kκR
� 1

m;kÞD
T
m;k ð27Þ

where μ ¼ E½~f kjkðxkÞ
~hT

m;kjkðxkÞjZm;k�, and κ ¼ E½~hm;kjkðxkÞ
~hT

m;kjkðxkÞjZm;k�, with

~f kjkðxkÞ ¼ fkðxkÞ� E½fkðxkÞjZm;k�, and ~hm;kjkðxkÞ ¼ hm;kðxkÞ � E½hm;kðxkÞjZm;k�. Then k is linear-

ized as follows

κ ¼ Hm;kE½~xm;kjk~x
T
m;kjkjZm;k�H

T
m;k

¼ Hm;kPm;kjkH
T
m;k

ð28Þ

where Hm;k¼
@hm;kðxkÞ

@xk
jxk¼x̂m;kjk

, ~xm;kjk ¼ xk � x̂m;kjk. Insert Eq 28 into Eq 27, we have

Eq:ð10Þ ¼ E½~f kjkðxkÞ
~f TkjkðxkÞjZm;k� � Dm;kR

� 1

m;kμ
T � μR� 1

m;kD
T
m;k þ Qm;k

� Dm;kðR
� 1

m;k � R� 1

m;kHm;kPm;kjkH
T
m;kR

� 1

m;kÞD
T
m;k

ð29Þ

According to Eq.(A.6) in [35], we can obtainðPzz
m;kjk� 1

Þ
� 1
¼ R� 1

m;k � R� 1

m;kHm;kPm;kjkH
T
m;kR

� 1

m;k. So

Eq 29 can be expressed as follows

Eq:ð10Þ ¼ E½~f kjkðxkÞ
~f TkjkðxkÞjZm;k� � Dm;kR

� 1

m;kμ
T � μR� 1

m;kD
T
m;k þ Qm;k � Dm;kðP

zz
m;kjk� 1

Þ
� 1DT

m;k ð30Þ

where the second and the third items from the right of equal sign satisfy
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ðDm;kR
� 1

m;kμ
TÞ

T
¼ μR� 1

m;kD
T
m;k. Substituting Eqs 18 and 21 into Eq 20, one can obtain

Eq:ð20Þ ¼ E½~f kjkðxkÞ
~f T
kjkðxkÞjZm;k� � Dm;kðP

zz
m;kþ1jkÞ

� 1
ðPxz

m;kþ1jkÞ
TP� 1

m;kjkγ

� γTP� 1

m;kjkP
xz
m;kþ1jkðP

zz
m;kþ1jkÞ

� 1DT
m;k þ Qm;k � Dm;kðP

zz
m;kjk� 1

Þ
� 1DT

m;k

ð31Þ

where γ ¼ E½~xkjk
~f TkjkðxkÞjZm;k�. The second and third terms on the right hand side are

interchangeable.

By comparing Eqs 30 and 31, we can find that the second and third terms on the right side

of the equal sign are different. Firstly, according to the definition of μ, the second item on the

right of equal sign of Eq 30 is expanded as following

Dm;kR
� 1

m;kμ
T ¼ Dm;kR

� 1

m;kfE½~f kjkðxkÞ
~hT

m;kjkðxkÞjZm;k�g
T

¼ Dm;kR
� 1

m;kE½hm;kjkðxkÞ
~f TkjkðxkÞjZm;k�

ð32Þ

Substituting Eq 32 into Eq 30, one can get

Eq:ð10Þ ¼ E½~f kjkðxkÞ
~f TkjkðxkÞjZm;k� � Dm;kR

� 1

m;kE½hm;kjkðxkÞ
~f T
kjkðxkÞjZm;k�

� E½~f kjkðxkÞhT
m;kjkðxkÞjZm;k�R

� 1

m;kD
T
m;k þ Qm;k � Dm;kðP

zz
m;kjk� 1

Þ
� 1DT

m;k

ð33Þ

The second item on the right of equal sign in Eq 31 is expanded as follows

Dm;kðP
zz
m;kþ1jkÞ

� 1
ðPxz

m;kþ1jkÞ
TP� 1

m;kjkγ

¼ Dm;kðP
zz
m;kþ1jkÞ

� 1
ðPxz

m;kþ1jkÞ
TP� 1

m;kjkE½~xm;kjk
~f T
kjkðxkÞjZm;k�

¼ Dm;kG
T
m;kþ1

P� 1

m;kjkE½~xm;kjk
~f TkjkðxkÞjZm;k�

ð34Þ

where GT
m;kþ1

is the Kalman gain. According to the principle of the Kalman filter, we have

Gm;kþ1
¼ Pm;kjkH

T
m;kR

� 1

m;k. Inserting it into Eq 34 yields

Dm;kðP
zz
m;kþ1jkÞ

� 1
ðPxz

m;kþ1jkÞ
TP� 1

m;kjkγ

¼ Dm;kðPm;kjkH
T
m;kR

� 1

m;kÞ
TP� 1

m;kjkE½~xm;kjk
~f T
kjkðxkÞjZm;k�

¼ Dm;kR
� 1

m;kHm;kE½~xm;kjk
~f TkjkðxkÞjZm;k�

¼Dm;kR
� 1

m;kE½hm;kjkðxkÞ
~f TkjkðxkÞjZm;k�

ð35Þ

Consider the mutual transposition items in Eq 31, and substitute Eq 35 into Eq 31 to get

Eq:ð20Þ ¼ E½~f kjkðxkÞ
~f TkjkðxkÞjZm;k� � Dm;kR

� 1

m;kE½hm;kjkðxkÞ
~f TkjkðxkÞjZm;k�

� E½~f kjkðxkÞhT
m;kjkðxkÞjZm;k�R

� 1

m;kD
T
m;k þ Qm;k � Dm;kðP

zz
m;kjk� 1

Þ
� 1
ðDm;kÞ

T

¼ Eq:ð10Þ

ð36Þ

Thus, Eq 20 is proved to be equivalent to Eq 10. Eqs 22–36 show that AFF1-CN is equivalent

to AFF2-CN. The equivalence between the GASF and de-correlating filters has been proved,

and it can be further inferred that AFF1-CN and AFF2-CN is also equivalent to HCFF-CN,

since all three are approximated by the five-degree cubature rule.

5. Simulations and analysis

In this section, maneuvering target tracking simulations are performed to test the effectiveness

of the proposed filters, compared with the traditional GFF and HCFF-CN. The Gaussian
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weighted integrals of all filters are approximated by the fifth-degree cubature rule in [41]. Fur-

thermore, the proposed filters and SGFS-CN are compared to analyze the positive effect of

fusion on AFFs-CN performance.

A classic maneuvering target tracking problem is considered, which performs maneuvering

turns on the horizontal plane at a constant turning rate [40, 41]. The turning motion and mea-

surement model can be generalized as follows

xkþ1 ¼

1 sinODt=O 0 � ð1 � cosODtÞ=O

0 cosODt 0 � sinODt

0 ð1 � cosODtÞ=O 1 sinODt=O

0 sinODt 0 cosODt

2

6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
5

xk þ wk

zm;k ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðxk � xm;rÞ
2
þ ðBk � Bm;rÞ

2
q

tan� 1
Bk � Bm;r

xk � xm;r

 !

2

6
6
6
6
4

3

7
7
7
7
5
þ vm;k

ð37Þ

8
>>>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>>>:

where xk ¼ ½ xk
_xk Bk _Bk �

T
, ξk and Bk denote the target positions in X and Y directions; _xk

and _Bk indicate the velocities in the X and Y directions respectively. ξm,r and Bm,r stand for the

mth radar sensor positions in X and Y directions. O is a known and constant turning rate. Δt is

the time interval between two consecutive measurements. The definition of process noise wk

and observation noise vm,k is the same as Eq 1, where Qk satisfies

Qk ¼ E½wkw
T
k � ¼

Dt3=3 Dt2=2 0 0

Dt2=2 Dt 0 0

0 0 Dt3=3 Dt2=2

0 0 Dt2=2 Dt

2

6
6
6
6
6
4

3

7
7
7
7
7
5

ð38Þ

The true initial states together with its associated covariance are defined as follows

x0 ¼ ½ 1000m 300ms� 1 1000m 0ms� 1 �
T

P0j0 ¼ diag 100m2 10m2s� 2 100m2 10m2s� 2
� �� �

Dt ¼ 1s; O ¼ � 3�s� 1

ð39Þ

where x̂0j0 � Nðx0;P0j0Þ. Two radars are used as tracking sensors; Fig 1 indicates the fixed

radars positions and the true trajectory throughout 10 sample times.

For fair comparisons, independent Monte Carlo tests run 50 (L) times. The total number of

scans per run is 100. All the filters are initialized in the same way each run. To compare differ-

ent nonlinear filters’ performance, the metric are defined to be the root mean square error

(RMSE). For example, the RMSE in position at time k+1 is defined as

RMSEpos
kþ1 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

L

XL

n¼1

ðxkþ1
� x̂n

kþ1
Þ

2
þ ðBkþ1

� B̂n
kþ1
Þ

2
� �

s

ð40Þ

where (ξk+1,zk+1) is the true position at time k+1, and ðx̂n
kþ1
; B̂n

kþ1
Þ is the estimated position at k

+1 from the nth Monte Carlo run. The RMSE in velocity can be obtained in the way as the

RMSE in position.
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(1) Scenario 1

In Scenario 1, let Dm,k = 0, which implies that wk and vm,k are uncorrelated with each

other. The covariance of vm,k satisfies Rm;k ¼ diag½ 1600m2 200mrad2 �. The RMSE results

in the position and velocity for Scenario 1 are indicated in Fig 2, where the SGF type,

including traditional GF, de-correlating filter, CGAF, and GASF, only uses radar 1 for tar-

get tracking.

As shown in Fig 2A, the position and velocity RMSE curves of each Gaussian filter involved

almost coincide. That is to say, in this case, they have almost the same tracking accuracy.

Therefore, the research results in [34–38] are considered to be repeated. In addition, by com-

paring RMSE curves in Fig 2A and 2B, it can be seen that AFF1-CN and AFF2-CN can

improve the tracking accuracy of corresponding de-correlation filter and CGAF. It can be

deduced that AFF1-CN and AFF2-CN can fuse the tracking data of Radar 1 and Radar 2,

rather than just a radar sensor. Comparing the results in Fig 2B, it can be seen that the RMSE

curves of AFF1-CN, AFF2-CN, GFF and HCFF-CN are very close, which is supported by the

results in Table 1. Therefore, it can be concluded that in the case of no correlation between

Fig 1. Target true trajectory ($-radars’ positions).

https://doi.org/10.1371/journal.pone.0246680.g001
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process noise and measurement noise, the performance of the two filters proposed is almost as

good as the traditional GFF and HCFF-CN filters, and better than the SGFs-CN filters.

(2) Scenario 2

In Scenario 2, let vm,k = bmwk, Rm;k ¼ bmQkb
T
m, and Dm;k ¼ Qkb

T
m 6¼ 0 [27]. The correlation

coefficient bm = [0.06 0.06 0.006 0.006; 0.006 0.006 0.006 0.006]. Dm,k 6¼ 0 implies that wk and

vm,k are cross-correlated. RMSE results of position and speed within the range of 10s-100s are

shown in Fig 3 and Table 2. In Fig 3A, traditional GF and SGFs-CN still only use Radar 1 for

target tracking.

It can be inferred from Fig 3A that when the process and measurement noises are cross-

correlated, the de-correlating filter, CGAF, and GASF can improve the accuracy of the tradi-

tional GF. By comparing Fig 3A and 3B, it can be seen that the tracking accuracy of AFF1-CN

and AFF2-CN remains superior to the corresponding SGF types for the same reason as in Sce-

nario 1. As shown in Fig 3B, AFF1-CN and AFF2-CN can achieve the better position and

velocity accuracy than traditional GFF. In addition, the position and velocity tracking accuracy

of AFF1-CN, AFF2-CN, and HCFF-CN keep very close, which is also supported by the result

in Table 2. The AFF2-CN has the best position tracking accuracy and AFF1-CN has the best

velocity tracking accuracy. Therefore, the proposed AFF1-CN and AFF2-CN achieve better

tracking performance than the traditional GFF and SGFs, and similar performance to

HCFF-CN.

(3) Scenario 3

Considering in a practical multi-radar tracking system, the cross-correlations between each

local measurement noise and process noise are different. The correlation coefficients bm of

both radars are set as b1/0.006 = [10 10 1 1; 1 1 1 1] and b2/0.003 = [10 10 10 1; 1 1 10 1]

Fig 2. RMSEs of position and velocity in scenario 1: (a) single filter; (b) fusion filter.

https://doi.org/10.1371/journal.pone.0246680.g002

Table 1. RMSEs of position and velocity in scenario 1.

Algorithms GFF AFF1-CN AFF2-CN HCFF-CN

The Mean of Position RMSEs (m) 29.2037 28.5804 28.6522 28.4419

The Mean of Velocity RMSEs (m/s) 3.9461 4.0231 4.0052 4.0103

https://doi.org/10.1371/journal.pone.0246680.t001

PLOS ONE Adaptive federated filter for multi-sensor nonlinear system

PLOS ONE | https://doi.org/10.1371/journal.pone.0246680 February 19, 2021 13 / 18

https://doi.org/10.1371/journal.pone.0246680.g002
https://doi.org/10.1371/journal.pone.0246680.t001
https://doi.org/10.1371/journal.pone.0246680


respectively. Accordingly, the vm,k, Rm,k and Dm,k in each local filter are also different. In this

Scenario, only the performance of GFF, AFFs-CN and HCFF-CN are compared. The position

and velocity RMSE results are shown in Fig 4.

Judging from Fig 4 and Table 3, the position and speed tracking performance of the four fil-

ters is very good, among which GFF tracking RMSE is still slightly higher than other filters.

The RMSE results of AFFs-CN and HCFF-CN are hard to distinguish just as in Scenario 2.

Only the data in Table 3 show some differences between the two. Therefore, the same conclu-

sion can be drawn as Scenario 2.

Remark 1: Although the above results show that AFF1-CN, AFF2-CN and HCFF-CN are
equivalent, the assumptions of the three filters are different. So we can choose the most appropri-
ate filter according to the practical initial conditions.

6. Conclusion

To adapt the traditional FF to the nonlinear discrete dynamic stochastic system with cross-cor-

relative noises, two AFFs-CN are proposed based on the de-correlating filter and CGAF. These

two filters are suitable for both white noise independent system and noise cross-correlation

system, and the theoretical equivalence of the two algorithms in the nonlinear fusion system

has been verified. The simulation results show that AFFs-CN have almost the same perfor-

mance as GFF and HCFF-CN, and AFFs-CN achieve better performance than SGF in the case

of no correlation between measuring noise and dealing with noise, and AFFs-CN have supe-

rior accuracy and robustness than GFF and SGFs when the measurement noise and process

Fig 3. RMSEs of position and velocity in scenario 2: (a) single filter; (b) fusion filter.

https://doi.org/10.1371/journal.pone.0246680.g003

Table 2. RMSEs of position and velocity in scenario 2 (10-100s).

Algorithms GFF AFF1-CN AFF2-CN HCFF-CN

The Mean of Position RMSEs (m) 0.2873 0.2027 0.1943 0.1984

The Mean of Velocity RMSEs (m/s) 1.0570 0.7307 0.7349 0.7385

https://doi.org/10.1371/journal.pone.0246680.t002
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noise are cross-correlated. The future work will focus on the nonlinear federated filter with

auto-correlated noises.

Supporting information

S1 File. Minimal dataset.

(ZIP)

Fig 4. RMSEs of position and velocity in scenario 3.

https://doi.org/10.1371/journal.pone.0246680.g004

Table 3. RMSEs of position and velocity in scenario 3 (20-100s).

Algorithms GFF AFF1-CN AFF2-CN HCFF-CN

The Mean of Position RMSEs (m) 0.3605 0.3295 0.3352 0.3360

The Mean of Velocity RMSEs (m/s) 0.8989 0.6787 0.7084 0.7085

https://doi.org/10.1371/journal.pone.0246680.t003
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