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Abstract
Older adults with treatment-resistant depression are at signi�cant risk for cognitive impairment. The
relationship between treatment response and cognitive function in this population is not well-
established. We examined neural correlates of executive and memory function, and their relationship
with prospective treatment outcomes. In the context of a longitudinal biomarker study embedded within
a multi-center randomized controlled trial for late-life treatment-resistant depression, 397 participants
completed baseline neuropsychological testing, and of these 234 adults successfully completed a
baseline MRI scan. Multivariate regressions were used to test for brain-cognition associations between
memory and executive function and brain functional connectivity, white matter integrity, and gray matter
structure. Further, we employed regularized elastic net regressions to identify biomarkers predicting
depression remission (MADRS≤10) in the clinical trial. Among participants who completed neuroimaging
better cognition was associated with lower connectivity between components of the default mode and
the frontoparietal networks and within the frontoparietal network (multivariate r=0.37, p<0.01). Using
diffusion imaging data, lower tract integrity in a distributed set of tracts was associated with poorer
executive function (multivariate r=0.27, p<0.05). Additionally, gray matter structure was positively
associated with cognition (multivariate r=0.38, p<0.05). Education and better structural brain
maintenance but not overall health were associated with better cognition. Ongoing treatment resistance
was predicted by poorer cognition and gray matter structure. We identi�ed distinct cross-sectional
associations between speci�c neural circuits and variation in cognitive function in people with
treatment-resistant late-life depression. We also found worse cognitive function and gray matter
structure predicted ongoing treatment resistance to medication offered in the clinical trial.

Key points
Question Older adults with treatment-resistant late-life depression (LLD) are at signi�cant risk for
cognitive impairment. The relationship between treatment response and cognitive function in this
population is not well-established. We examined neural correlates of executive and memory function,
and their relationship with prospective treatment outcomes. 

Findings In older adults with treatment-resistant LLD, higher connectivity between components of the
default mode network and the frontoparietal network and within the frontoparietal network predicted
worse cognitive function across memory, executive function and language, while white matter circuit
impairment predicted worse executive function. Lower cortical thickness and hippocampal volumes
were also associated with worse memory and verbal �uency. Higher education duration was associated
with better cognition. Both poorer cognitive performance and loss of gray matter predicted lower
likelihood of remission to 10 weeks of protocolized antidepressant treatment.

Meaning Our �ndings suggest that domains of cognitive function in treatment-resistant late-life
depression have distinct neural correlates related to white matter and functional connectivity
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respectively, with education operating as a protective factor. We also identify potential neural and
cognitive markers of ongoing treatment resistance.

INTRODUCTION
Treatment-resistant depression (LLD) is a chronic, debilitating disorder de�ned by the presence of
persistent depressive symptoms despite two adequate trials of antidepressant medications. It presents
a multitude of challenges in treatment, as less than one-third of patients with treatment-resistant LLD
remit, even in augmentation treatment trials1–3. In addition, high rates of cognitive impairment in this
population signi�cantly increase the risk of dementia4, with up to 4–6 fold increases following a recent
LLD episode (i.e., within 10 years)5. Conversely, remission may be protective from cognitive impairment
as remitted LLD patients do not show signi�cant differences in brain structure and function from healthy
controls6. Impairment in executive function and episodic memory are found in both LLD and in early
dementia. Similarly, frontal executive and cortico-limbic circuits underpinning those key cognitive
functions are also impaired in both LLD and dementia7.

The shared circuitry underlying LLD and dementia includes hippocampal and cortico-limbic changes8 as

well as fronto-executive dysfunction, potentially via frontostriatal ischemia7. Biomarkers common to
both LLD and dementia have been identi�ed using structural9, functional, and diffusion magnetic
resonance imaging (MRI). Although �ndings in case-control studies of LLD are highly
heterogeneous8,10,11, network mapping based approaches have localized structural differences in major
depression to frontoparietal, dorsal attention and visual networks, some of which also encompass
posterior parietal and medial temporal areas affected in early Alzheimer’s Disease12,13. Further, brain-
cognition studies identify lower connectivity between frontoparietal and default mode networks and
worse executive function and memory in older adults with depressive symptoms14 and non-depressed
older adults with varying levels of cognitive function15. Finally, disruption of axonal white matter tracts,

measured using white matter hyperintensities16,17,18 has been shown in both dementia and LLD19,20,21.
However, there is a paucity of studies investigating neural mechanisms linking cognitive impairment and
depression neurobiology in LLD, and no well-powered clinical trials to date have prospectively collected a
wide breadth of precision biomarkers in treatment-resistant LLD.

Here, we present an analysis of the baseline neuroimaging and cognitive data from the Optimizing
Outcomes of Treatment-Resistant Depression in Older Adults – Neurocognitive and Neuroimaging
Biomarkers (OPTIMUM-NEURO) study, where we investigate the neural correlates and protective factors
for cognitive function in these high-risk older individuals. These participants also participated in the
‘OPTIMUM’ clinical trial1, which evaluated antidepressant switch and augmentation strategies. In
functional connectivity analyses, we focus on large scale networks derived from the UK Biobank22, and
leverage state-of-the art white matter tractography to assess brain-wide tract integrity in relation to
cognitive function. We hypothesized that loss of gray and white matter alongside with de-segregation of
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the executive-control and cortico-limbic circuits will be associated with worse cognitive performance in
cross-sectional analyses. We also expected education, a known proxy for cognitive reserve and
resilience23, to show protective effects on brain circuits and cognition. Finally, we tested the ability of
baseline imaging and cognitive data to predict acute treatment outcomes in the OPTIMUM clinical trial,
expecting the addition of neuroimaging features to improve prediction performance.

RESULTS
The sample was predominantly female, and we observed a wide range of neuropsychological
performance, with over 40% of the sample assigned a neuropsychological diagnosis of MCI (Table 1).

Table 1
Overview of sample demographics. Means and standard deviations are shown. The following diagnoses

were made by adjudication among neuropsychologists: NC: Normal Cognition; MCI: Mild Cognitive
Impairment; DEM: probable dementia. W: White Caucasian, AA: African American, A: Asian, NA: not

answered, H: Hispanic, Non-H: non-Hispanic; MADRS: Montgomery-Asberg Depression Rating Scale;
ATHF: Antidepressant Treatment History Form; CIRS-G: Cumulative Illness Rating Scale – Geriatrics;
MoCA: Montreal Cognitive Assessment. CIRS-G provides a measure of total medical burden, where a

score of 8 indicates roughly 4 moderate-level conditions (eg hypertension). CIRS-G provides a measure
of total medical burden, where a score of 8 indicates roughly 4 moderate-level conditions (eg

hypertension). An ATHF score of 8 or more indicates that participants failed at least two adequate
antidepressant trials. There were no differences between the N = 397 who completed

neuropsychological testing in the context of the clinical trial, with the N = 234 who successfully
completed both neuropsychological testing and MRI.

  OPTIMUM-NEURO Sample Characterization

Demographic & Clinical
Variables of Interest

Characteristics of Sample with
Neuropsychological Data

Characteristics of Sample with both
Neuropsychological and MRI data

N 397   234  

Age (Years) 68.2 (5.9) 67.7 (5.4)

Female Sex (N) 268 68% 167 71%

Race (W/AA/A/NA) 354/28/8/7 209/16/4/5

Ethnicity (H/Non-H) 375/22 228/6

Education (Years) 14.8 (2.5) 14.7 (2.7)

MADRS score 19.4 (8.9) 19.7 (9.1)

Diagnosis
(NC/MCI/DEM)

178/197/13 117/102/6

ATHF score 8.0 (2.8) 8.2 (2.8)

CIRS-G score 8.3 (4.5) 8.9 (4.2)

MoCA score 24.8 (4.7) 24.9 (4.7)
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FC patterns associated with cognitive function
A PLS regression model with two latent variables showed that functional connectivity explained 8.4% of
variance in 12 cognitive tests, signi�cantly more than expected by chance (pPERMUTATION<0.05, Fig. 2A).

The model included two latent variables. The �rst latent variable (FC-PLS1) was signi�cantly correlated
with attention, immediate and delayed memory, language and executive function (Fig. 2B). We found that
greater connectivity of the DMN with the FPN (e.g., between independent components (IC) 1 and 5) were
robustly associated with worse cognitive performance across multiple domains. More details on IC
de�nition can be found in the Supplementary Information. Similarly, lower connectivity of different FPN
components with each other was also robustly associated with cognitive performance. Higher
connectivity of visuo-motor connectivity was associated with better cognitive performance. In total, 17
connectivities showed signi�cant loadings on FC-PLS1 (Fig. 2C). Supplementary FC analyses with a
precuneus seed provided a more speci�c brain connectivity map linked to cognitive function. A
generalizability analysis of held-out data from each of the four sites showed modest generalizability in
all sites except for UCLA that showed higher generalizability (Fig. 2D). Finally, we found that better
cognitive performance summarized by the FC-PLS1 cognitive scores was signi�cantly associated with
years of education (p = 1.3x10− 5) and with brain structure centile (p = 0.00016), but not with ATHF (r=
-0.08, p = 0.26). The second latent variable (FC-PLS2) captured a large amount of variance in the FC data,
but was not signi�cantly associated with cognition.

Reduced fractional anisotropy associated with worse executive
function
A PLS regression model testing for a relationship between FA in 62 tracts and cognition explained 1.6%
of variance in all cognitive tests, signi�cantly more than expected by chance (pPERMUTATION<0.05, Fig. 3A)
as FA data speci�cally predicted Trails A performance but not the performance on any other cognitive
test. The model included one latent variable (WM-PLS1), which was signi�cantly correlated with the
Trails-A executive function test (Fig. 3B). In total, 33 tracts signi�cantly contributed to the WM-PLS1, with
lower FA in those tracts predicting lower executive function. A prediction analysis in held-out data
showed moderate-to-high generalizability in all sites (Fig. 3E). Finally, we found that better cognitive
performance summarized by the WM-PLS1 cognitive scores was signi�cantly associated with years of
education (p = 0.0009) and with brain structure centile (Fig. 3F, p = 0.00035), but not with resistance to
antidepressant treatment (Fig. 3G, ATHF r=-0.08, p = 0. 23). White matter hyperintensities were
signi�cantly associated with both WM-PLS1 scores representing white matter integrity (r = 0.397, p = 
1.6x10− 9) and with the cognitive scores (r = 0.17, p = 0.01).

Regional brain structure associated with cognitive function



Page 7/26

A PLS regression model testing for a relationship between cortical and subcortical brain structure and
cognition explained 14.5% of variance in cognitive function, signi�cantly more than expected by chance
(pPERMUTATION<0.05, Fig. 4A). The PLS model generated three latent variables. Two of those variables
(GM-PLS1 and GM-PLS3) were signi�cantly correlated with memory performance (Fig. 4B, Bonferroni P 
< 0.05). GM-PLS2 was signi�cantly correlated with the non-memory related cognitive domains. We did
not observe signi�cant associations between clinical measures of resistance to antidepressant
treatment at baseline (ATHF) with PLS latent variable scores.

Identifying Markers predicting treatment outcomes
Cross-validated elastic net regression models (Supplementary Information) showed varied prediction
performance for remission (MADRS ≤ 10) in step 1 depending on the included predictors. First, we found
a cross-validation AUC of 0.64 when including cognitive data alongside baseline MADRS and
demographics. In the sample with both cognitive and neuroimaging data the AUC for the same model
was 0.66. This increased to an AUC of 0.74 when also including 74 brain structure variables (Fig. 5A, 5B,
5C). When testing the best performing model including 16 cortical thickness variables, executive
function and attention scores, and baseline MADRS as predictors, the out-of-sample AUC increased to
0.83 (speci�city = 0.70, sensitivity = 0.78). Neither resting-state fMRI nor diffusion derivatives improved
classi�cation performance of remission in step 1 or step 2. In step 2, cortical thickness but not cognitive
data was predictive of remission (Fig. 5D, 5E, 5F). When testing the best performing model including
three cortical thickness variables and baseline MADRS as predictors, the out-of-sample AUC increased
to 0.78. When operationalizing treatment response as change in MADRS scores, a PLS regression with
demographic, clinical, cognitive and brain structure data achieved considerable in-sample and hold-out
accuracy (Fig. 5G, 5H, 5I, 5J; PLS permutation P < 0.001).

Sensitivity Analyses
We ran three additional FC PLS models, testing for the brain cognition associations in run 1 and run 2
separately, and in 196 individuals with mean FD < 0.5. The results of the main analysis were consistent
with the results of the sensitivity analyses (Supplementary Section 5). Consistent with the whole brain
analyses of pairwise connectivity of network components, seed-based connectivity analyses of the
precuneus, overlapping with the posterior-medial default mode IC1, also showed that reduced
connectivity with inferior parietal and inferior frontal regions and increased connectivity with entorhinal
and perientorhinal cortex was associated with better cognitive function (SI Section 4). Second, we
repeated the hold-out analyses by splitting the sample according to the scanner used (GE vs Siemens
Prisma). Prediction accuracy was substantially lower in held-out data of a different scanner type (SI
Section 6). Third, given that the cognitive and neuroimaging visits occurred after the completion of
OPTIMUM treatment for some participants (SI Section 3), it is possible that treatment has also impacted
these markers. Therefore, we repeated some of the treatment outcome prediction analyses, while only
including participants who completed cognitive and neuroimaging visits before the end of their



Page 8/26

treatment. The prediction results remained highly consistent, with relatively strong performance of the
best model in this subsample, too (SI Section 7).

DISCUSSION
In this study, we identify distinct neural correlates of poorer cognitive function in older adults with
treatment-resistant LLD. As hypothesized, we found that de-segregation between frontoparietal and
default mode circuits and loss of gray matter predicted worse cognitive function. Further, worse baseline
cognitive function and brain structure predicted ongoing treatment resistance, with robust cross-
validation performance improvements (AUC > 0.74) obtained by adding cortical thickness predictor
features.

We found that higher connectivity between components of the frontoparietal and default mode networks
was associated with worse memory recall, processing speed, and executive function. Higher between-
network and lower within-network connectivity, i.e. de-segregation of these brain systems, is typically
found in older compared to younger adults24–26, is linked to worse working memory25 and episodic
memory24,27 and is also found in major depression28 and MCI29. Resting-state connectivity of the
posterior default mode regions and frontoparietal regions including the dorsolateral prefrontal cortex is a
biomarker for better memory performance in older adults14,15 and posterior parietal activity is related to

better memory performance30. Recent brain stimulation studies showed that transcranial magnetic
stimulation of the precuneus showed preserved cognition31. Our �ndings support further investigation of
the posterior default mode circuits as a key correlate of cognitive function and a potential intervention
target for slowing cognitive impairment in LLD.

We also found that lower white matter integrity of several tracts (e.g superior longitudinal fasciculus)
was speci�cally associated with worse Trailmaking performance. This �nding is consistent with previous
studies showing that reduced integrity of tracts connecting prefrontal and parietal areas, including the
superior longitudinal fasciculus, are associated with worse executive function in healthy individuals32, in

those with varying levels of cognitive impairment33, but also in children34 and young adults35. Similarly,
faster processing speed is associated with higher FA in tracts including corpus callosum36,37 and
average cerebral FA38, and cortico-striatal tracts39. Interestingly, FA was not signi�cantly associated with

episodic memory performance in our analysis, consistent with previous studies of white matter39,40. We
also show that white matter hyperintensities, an index of cerebrovascular disease burden, were
predictive of both cognitive function and FA scores, consistent with the theory that cerebrovascular
pathology affecting white matter may be driving cognitive impairment7. Our �ndings further support the
hypothesis that initial impairment in white matter in treatment-resistant LLD may predominantly impact
processing speed and executive domains rather than memory and language domains.

Our follow-up analyses also identi�ed several protective factors for cognitive function in LLD. First,
education predicted better cognitive performance and higher white matter integrity. While a consistent
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positive effect of education on cognitive ability in late-life has solidi�ed its role as a proxy of cognitive
reserve, there is con�icting evidence for education effects on rates of cognitive decline41–46 and
Alzheimer’s Disease47. In addition, brain structure centile scores also showed protective effects on

cognition, consistent with previous studies showing lower brain centiles in MCI and dementia48 and
executive function in healthy older adults49. Our �ndings are novel in that they are the �rst in patients
with treatment-resistant LLD to demonstrate these relationships, and largely align with the literature in
other late-life populations. They also provide important insights into key factors protecting against
cognitive impairment for this at-risk population.

In addition to identifying brain-cognition relationships, our predictive analyses advance the search for
biomarkers predicting remission in LLD in several ways. Cognitive performance and gray matter integrity
predicted remission after 10 weeks of bupropion or aripiprazole treatment in the OPTIMUM trial. Patients
with better cognitive function and greater rostral ACC and postcentral gyrus thickness were more likely
to achieve remission. The use of neuropsychological data (along with demographic and clinical
predictors) provided a reasonable AUC ranging from 0.64–0.66 (in both samples). However, the addition
of neuroimaging in the model boosted the AUC to 0.74. These results showcase the utility of biomarkers
in helping target speci�c medications to patients who are more likely to bene�t from them50–52. Recent

work by our group53 and others54,55 showed that biomarkers are less generalizable when tested out-of-
trial, especially when the patient populations are different in age, severity, or other clinical features. Adult
MDD biomarker studies have shown functional connectivity53–56 and task-based activation52,57 to be
important predictors of remission. In older adults with considerable variability in gray matter integrity
and cognitive performance, we found gray matter structure but not brain function to predict remission,
potentially suggesting distinct biomarkers in TRLDD and adult MDD. Cross-trial generalizability
studies53,54 are needed to test whether unique biomarkers apply in different MDD patient populations.
Overall, our results show that neuroimaging features are a valuable biomarker addition, though early
response to treatment after 1–2 weeks has been shown to be a key predictor and should be tested in
future studies53,55.

Our study has several strengths and limitations. First, we leveraged a unique, deeply-phenotyped sample
of patients with treatment-resistant LLD with advanced neuroimaging data to test for multivariate brain-
cognition associations. We use a large-scale parcellation derived using a data-driven group independent
component analysis from a large sample of older adults in the UK Biobank22,58, in line with recent
evidence showing that brain activity can be parsimoniously explained by geometrically constrained brain-
wide modes of brain geometry59. We corroborate the �ndings from this whole-brain approach using a
seed-based FC analysis. The effect size of brain-cognition relationships identi�ed here was moderate,
although relatively strong out-of-sample generalization of the predicted cognitive scores in the FC-PLS is
encouraging. Although cognitive function and gray matter structure assessments were taken at varying
time intervals relative to the OPTIMUM treatment, unlike functional connectivity, these markers are more
stable over time. Nevertheless, it is possible that OPTIMUM treatment has also impacted these markers.
Our supplementary results support the former hypothesis, given that excluding participants with post-
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treatment scans and cognitive testing did not substantially change the results. Previous brain-cognition
association studies in remitted LLD and MCI have found similar association levels between brain
structure and cognitive function33. Future analyses of longitudinal data from the OPTIMUM-NEURO study
will help identify neural correlates and clinical determinants of cognitive decline while also considering
patients’ remission status from the clinical trial. Finally, measures of cognitive reserve are imperfect; for
instance, education is strongly affected by socioeconomic status, thus presenting a limitation in the
mostly white population studied in this trial. Future studies including more participants from minority
groups and may uncover more cross-cultural protective factors.

In conclusion, varying levels of cognitive performance in older adults with treatment-resistant LLD have
distinct neural correlates, with protective effects of education and structural brain maintenance. Our
analyses lay the foundation for ongoing prospective longitudinal analyses to determine who among
patients with TRLDD is at highest risk of neural and cognitive decline, and how that risk relates to
treatment response vs. resistance.

METHODS
Participants. All participants were enrolled in the parent “Optimizing outcomes in older adults with
treatment-resistant depression” (OPTIMUM) trial, with detailed protocol, and primary outcome results
recently published1,60, and concurrently enrolled in the present OPTIMUM-NEURO study which added
MRI scans and detailed neuropsychological testing. The trial was conducted in accordance with the
Good Clinical Practice guidelines of the International Council for Harmonisation and was governed by an
independent data and safety monitoring board. Ethical approval was obtained from the institutional
review boards of each of the �ve sites - Washington University in St. Louis; Columbia University; the
University of California, Los Angeles; the University of Pittsburgh; and the University of Toronto. This
report does not include participants from the Columbia University site due to an ongoing pause for all
human subject research in the Department of Psychiatry at that site; this pause currently precludes the
analyses of data for any ongoing human subject research study. All sample sizes reported exclude
participants from Columbia University. Inclusion/exclusion criteria for the clinical trial are summarized in
the Supplemental section and are previously published. Informed consent was obtained from all the
patients before enrollment. To take part in the OPTIMUM trial, patients had to be over 60 years old and
have a diagnosis of current major depression according to DSM-5 criteria which persisted despite two or
more trials of antidepressants of adequate dose and duration as classi�ed by the Antidepressant
Treatment History Form (ATHF) within the current episode61. Patients with dementia (Short Blessed
Test ≥ 10) were excluded. Treatment resistance was determined by research staff using a PHQ-9 score
of 6 or higher, which was later amended to 10 or higher. In addition, patients were required to be taking
one adequately dosed antidepressant. Exclusion criteria included severe neuropsychiatric conditions
such as Parkinson’s Disease or schizophrenia, uncorrected sensory impairment, imminent risk for
suicide, and moderate-to-severe substance or alcohol use disorder. Patients were recruited via referrals
from primary care providers and psychiatrists, outreach from the trial team, automated alerts in
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electronic medical records and print, radio, social media, and o�ce advertisements. Participants who
had no contra-indications for MRI scanning were offered participation in the OPTIMUM-NEURO study,
that was funded to evaluate the trajectories of cognitive function (focusing on memory and executive
function) and brain structural and functional decline (focusing on cortico-limbic and fronto-executive
circuits). The parent trial included two steps, each 10 weeks’ duration. In step 1, patients were randomly
assigned 1:1:1 to a switch to bupropion or augmentation of their current antidepressant with bupropion
or aripiprazole. In Step 2, patients who were ineligible for step 1, or who did not remit or otherwise
bene�t from their step 1 treatment, were randomly assigned 1:1 to a switch to nortriptyline or lithium
augmentation.

Clinical data. We used the Montgomery-Asberg Depression Rating Scale (MADRS) to assess depression
severity closest to the time of the initial MR scan and neuropsychological testing visit62, and the change
in depressive symptoms due to the treatment offered through the OPTIMUM clinical trial. Finally, we
used the Cumulative Illness Rating Scale – Geriatrics (CIRS-G) to quantify general disease burden63.

Cognitive data. Twelve tests of memory and executive function, verbal �uency and processing speed
were included because these cognitive processes are most affected by depression, normal aging and
dementia. Participants’ scores were normalized against benchmark data provided by Delis-Kaplan
Executive Function System (DKEFS) and Repeatable Battery for the Assessment of Neuropsychological
Status (RBANS, Supplementary Information). In the full sample with neuropsychological data (n = 397),
only 3–5% of scores on each test were missing and were imputed using the mean to ensure that we
could run multivariate analyses on the full sample. Cognitive status (intact, MCI and probable dementia
diagnoses) was determined via adjudication following DSM-5 and NIA-AA 2011 criteria with a team of
research staff, neuropsychologists, and psychiatrists based on the cognitive assessment scores and
clinical presentation.

MRI data acquisition. We acquired high quality T1-weighted, diffusion MRI (dMRI) and resting-state fMRI
sequences on 3T whole-body scanners using harmonized Adolescent Brain and Cognitive Development
study protocols64 across the �ve sites (Supplementary Information).

T1 structural data. We used FreeSurfer (Version 6.0.0) to derive total intracranial volume, gray, white, and
CSF volumes and brain structure centiles quantifying deviations from normative data in over 100,000
individuals48. These centiles were used as a proxy for brain maintenance65. In addition, we utilize
FreeSurfer-derived total volume of white matter hyperintensities, corrected for total intracranial volume,
and transformed using the square root function to ensure normality of the skewed distribution as an
alternative index of cerebrovascular health66. In region-wise analyses of brain structure, we included

FreeSurfer-derived cortical thickness67 and lateralized volumes of the hippocampus, amygdala and
striatum corrected for total intracranial volume. Images with a total number of surface holes > 380 were
excluded 68.
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Resting-state functional MRI (fMRI) connectivity data. Two runs of fMRI data were pre-processed using
fmriprep69; the resulting minimally preprocessed images (in the NLin6 MNI space) were denoised by
regressing out 24 noise components (Supplementary Information) and smoothed with a Gaussian kernel
with full-width half measure of 3mm. The �rst three volumes were discarded to reach steady-state
equilibrium. Demeaned and normalized timeseries from the two timeseries were concatenated, with
partial least square (PLS) results from individual runs available in the Supplementary Information.
Participants with mean framewise displacement FD < 0.7 were kept, and sensitivity analyses with a more
stringent threshold of mean FD < 0.5 are presented in the Supplementary Information.

Diffusion weighted imaging data. Diffusion image pre-processing followed previous studies70 and
included (i) brain masking (using AFNI and MRtrix3 dwi2mask), (ii) motion and eddy current correction
(FSL eddy), and (iii) susceptibility distortion correction (BrainSuite BDP). We used 3D slicer to �t DTI
tensors and reconstruct white matter tracts via deterministic unscented Kalman �lter tractography71

(https://github.com/SlicerDMRI). Next, we ascertained individual white matter tracts by clustering �bers
and applying supervised groupwise registration to the ORG (O’Donnell Research Group) atlas72–74.
Finally, we analyze the fractional anisotropy (FA) as a measure of tract integrity. Among 73 reconstructed
tracts, we excluded tracts with more than 3% unusable data and imputed missing data in the remaining
62 tracts.

MRI data harmonization and quality control. Batch and site artifacts can present a challenge in multi-site
trials such as OPTIMUM-NEURO. The most important mitigation step is prospective harmonization,
which was done here via the use of ABCD protocols at all �ve sites. In addition (Supplementary
information), we batch normalized the data for age, sex, and site for both functional connectivity and
diffusion data using ComBat75; we also included average head motion in the harmonization of the fMRI
data. Visual quality control of each data modality output was completed, and participant scans were
excluded when anatomical segmentation of gray or white was inadequate, too much motion was present
or registration between modalities was inadequate.

Statistical analyses. We used three partial least squares regressions to identify latent variables capturing
multivariate relationships between functional connectivity and cognitive function (FC-PLS), between
fractional anisotropy and cognitive function (WM-PLS) and between gray matter structure and cognition
(GM-PLS). Model signi�cance was tested using permutation testing following previous studies14,76 (n = 
5,000).

We z-scored the predictor matrix X and the outcome matrix Y (X = 211 × 210 and Y = 211 × 12 in the FC-
PLS; X = 219 × 62 and Y = 219 × 12 in the WM-PLS; X = 212 × 74 and Y = 212 × 12 in the GM-PLS). PLS
returns a set of latent variables that attempt to maximize the covariance between the PLS scores
summarizing X and Y. PLS scores are a linear combination of the predictor variables (X) and component
loadings. We used bootstrapping (n = 5,000) to identify predictors that showed robust contributions to
the each PLS latent variable. A threshold of |Z| > 3 was chosen to identify the most robust connectivities
signi�cantly associated with cognitive performance (see above). We correlated the latent brain scores



Page 13/26

(XS) with the cognitive tests and applied Bonferroni correction to identify cognitive tests signi�cantly
associated with each latent variable.

Robustness analysis in held-out data. To evaluate the robustness of PLS performance in each of the
sites, we split our participants into four subsamples, one for each included site. We used three of these
subsamples as training data and the remaining subsample as test data. We applied the PLS beta
regression coe�cients obtained in the training sample to the test sample and correlated the observed
cognitive data with the predicted cognitive data to assess PLS performance in predicting cognitive
function in held-out data. Instead of keeping all cognitive tests, we created a composite cognitive
variable using a principal component analysis of variables signi�cantly associated with FC, tract integrity,
and brain structure in the FC-PLS, WM-PLS, and GM-PLS respectively. All code is publicly available at
https://github.com/peterzhukovsky/brain_cognition_TRD.

Prediction of treatment outcomes. We used regularized, cross-validated elastic net logistic regressions
to predict remission (MADRS ≤ 10) to approximately 10 weeks of acute antidepressant treatment in the
parent OPTIMUM trial. Step 1 and step 2 were considered as separate studies. On each of 100 iterations,
we split the data into training and test datasets, featuring 20 randomly selected participants in the test
dataset for step 1 and featuring 20 randomly selected participants in the test dataset for step 2. This
approximately corresponds to 8-fold and 3.5-fold cross-validation in the outer fold. On each iteration, we
used 10-fold cross-validation to train the elastic net models in the inner fold. Area-under-the-curve (AUC)
measures were then used to assess model performance in the held-out test data. Three sets of
prediction models were run, each including demographic, clinical, cognitive data and one of the three
imaging modalities. These models were run in the larger sample (n = 397) including cognitive data,
clinical data, and demographic data. Then the model was re-run in the sample (n = 234) that also
included neuroimaging to determine the potential improvement in the AUC when adding neuroimaging.
Following this iterative process, we selected the most parsimonious model that included predictors
surviving regularization in over 95% of models ran. We then tested the performance of this most
parsimonious model in an even 8-fold and 5-fold split of the step 1 and step 2 data, respectively,
presenting confusion matrices of this model showcasing the true positives and negatives as well as
false positives and negatives. In addition, we have used a PLS model predicting MADRS change
(absolute difference in MADRS score between baseline and the end of last step completed) from clinical,
demographic, cognitive and brain structure data. More information on predictive modeling can be found
in the Supplementary Information.
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Figure 1

Overview of study design and analyses. We included participants with various levels of cognitive
function, MRI and clinical data in our analyses (A). Across all participants, we conducted three
multivariate partial least squares (PLS) regressions (B). The �rst PLS model tested for associations
between functional connectivity (FC) and cognitive function; the second PLS model tested for
associations between fractional anisotropy, a measure of white matter tract integrity, and cognitive
function; the third PLS tested for associations between gray matter and cognitive function. A total of 6
cognitive domains were included. We followed up the PLS analyses by testing for associations between
PLS brain and cognitive scores with education and brain structural reserve (C). In addition, in a separate
set of analyses we used cross-validated logistic regression models to predict patients’ remission status
using clinical, demographic, cognitive and neuroimaging markers (D). Area-under-the-curve and
confusion matrices were used to assess and visualize model performance. The time at which ‘baseline’
neuropsychological and MRI assessments were completed relative to the parent OPTIMUM trial is
shown in the bottom panel, with more details available in Supplementary Section S2. Abbreviations:
OPTIMUM-NEURO: Optimizing Outcomes of Treatment-Resistant Depression in Older Adults; MCI: Mild
Cognitive Impairment; Montgomery-Asberg Depression Rating Scale; LV: latent variable; P1-PN:
participants 1:N; NP: neuropsychology and MRI assessment
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Figure 2

Associations between resting-state functional connectivity (FC) and cognitive function. Lower FC
between DMN and FPN components was signi�cantly associated with better cognitive performance (A,
permutation distribution is shown in gray and the observed value in red; p=0.03). Higher cognitive scores
on FC-PLS1 were associated with better cognitive performance on a range of cognitive tests (E, B,
PBONFERRONI<0.05). Lower connectivity of frontoparietal and default mode network components with
each other (shown in blue), and higher connectivity of visual network components (shown in red)
signi�cantly contributed to FC-PLS1 brain scores (|Z|>3) and was associated with better cognitive
performance (C). Further, we observed good generalizability of the results in hold-out samples (D). Data
were trained on three of the four sites. We indicate held-out sites used for model testing in (D).
Education (F) and brain structure centile scores (H) had protective effects on cognitive function
measured as the PLS latent variable cognitive scores. FC-PLS: functional connectivity partial least
squares regression.  
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Figure 3

Associations between tract integrity measured using fractional anisotropy (FA) and cognitive function.
Higher FA in a range of tracts including corpus callosum, longitudinal tracts, superior frontal and
super�cial tracts was associated with better executive function, as the overall PLS model explained a
signi�cantly larger amount of variance than expected by chance (A, permutation distribution is shown in
gray and the observed value in red; p=0.033). Univariate Pearson’s correlations between individual
cognitive tests and tracts are shown in (B), with tracts that signi�cantly contributed to WM-PLS1 (|Z|>3)
highlighted in black on the top of the panel. One motor and executive function test (Trails A) signi�cantly
contributed to WM-PLS1 (*PBONFERRONI<0.05). Multivariate correlation between cognitive WM-PLS1
scores and white matter integrity WM-PLS1 scores is shown in (D). We observed good generalizability of
the results for Trails A performance in all hold-out samples (C). Education (E) and brain structure centile
scores (F) had protective effects on executive function measured as the PLS latent variable cognitive
scores. We did not observe signi�cant associations between clinical measures of treatment resistance
at baseline with PLS latent variable scores (G).  WM-PLS: white matter partial least squares regression.
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Figure 4

Associations between brain structure and cognitive function. Higher cortical thickness in the insular
cortex and greater volume of the hippocampus were associated with better cognitive performance in a
range of cognitive tests, as the overall PLS model explained a signi�cantly larger amount of variance
than expected by chance (A, permutation distribution is shown in gray and the observed value in red;
p=0.009). Univariate Pearson’s correlations between individual cognitive tests and latent variable scores
are shown in (B, *PBONFERRONI<0.05), with regions that signi�cantly contributed to GM-PLS1 and GM-PLS2
(|Z|>3) shown in (C). Higher cortical thickness of the insular cortex and medial temporal regions (shown
in orange) and normalized volumes of the bilateral hippocampus were positively associated with
cognitive function, while thickness of the superior frontal gyrus was negatively associated with cognition
(shown in blue). Multivariate correlation between brain structure scores and cognitive scores for GM-
PLS1 and GM-PLS2 are shown in (E) and (F), respectively. We observed good generalizability of the
results in most hold-out samples (D). Education had protective effects on cognitive function (G) and
brain structure latent scores (H). GM-PLS: gray matter partial least squares regression.
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Figure 5

Treatment outcome prediction using both cognitive and neurobiological markers.Elastic net regression
models predicting response to treatment in step 1 of the OPTIMUM trial performed best when brain
structure and cognitive data were included as predictors (A, B). Cortical thickness loadings contributing
to the most parsimonious model are shown in (A), whereby regions with positive loadings are highlighted
in red and regions with negative loadings are highlighted in blue. Elastic net regressions predicting
response to treatment in step 2 performed worse than the step 1 models; cognitive data did not improve
performance in held-out data (D, E). Confusion matrices with true and false positives and negatives for
the best performing models predicting remission in steps 1 and 2 are shown in (C) and (F), respectively.
A partial least squares (PLS) regression including demographic, clinical, cognitive and brain structure
predictors explained a signi�cant amount of variance (39.7%) in slopes of change in MADRS scores (G),
with moderate predictive accuracy in hold-out data (H). Some of the signi�cant predictors (|Z|>3) and
their correlation with the MADRS slopes are shown in (I), with a complete list included in Supplementary
Table 2. Example correlations between change in MADRS scores and baseline MADRS or postcentral
thickness are show in (J). MADRS: Montgomery-Asberg Depression Rating Scale.
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