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Abstract

Protozoan parasites cause diverse diseases with large global impacts. Research on the

pathogenesis and biology of these organisms is limited by economic and experimental con-

straints. Accordingly, studies of one parasite are frequently extrapolated to infer knowledge

about another parasite, across and within genera. Model in vitro or in vivo systems are fre-

quently used to enhance experimental manipulability, but these systems generally use spe-

cies related to, yet distinct from, the clinically relevant causal pathogen. Characterization of

functional differences among parasite species is confined to post hoc or single target stud-

ies, limiting the utility of this extrapolation approach. To address this challenge and to accel-

erate parasitology research broadly, we present a functional comparative analysis of 192

genomes, representing every high-quality, publicly-available protozoan parasite genome

including Plasmodium, Toxoplasma, Cryptosporidium, Entamoeba, Trypanosoma, Leish-

mania, Giardia, and other species. We generated an automated metabolic network recon-

struction pipeline optimized for eukaryotic organisms. These metabolic network

reconstructions serve as biochemical knowledgebases for each parasite, enabling qualita-

tive and quantitative comparisons of metabolic behavior across parasites. We identified

putative differences in gene essentiality and pathway utilization to facilitate the comparison

of experimental findings and discovered that phylogeny is not the sole predictor of metabolic

similarity. This knowledgebase represents the largest collection of genome-scale metabolic

models for both pathogens and eukaryotes; with this resource, we can predict species-spe-

cific functions, contextualize experimental results, and optimize selection of experimental

systems for fastidious species.
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Author summary

Comparative genomics and phylogeny-based assumptions are useful approaches to gener-

ate predictions about cellular behavior for data-poor organisms, such as unculturable but

clinically-relevant pathogens. Computational approaches, including metabolic modeling,

can accelerate such comparisons. Genome-scale metabolic network models serve as a

knowledgebase for an organism and enable rigorous and quantitative comparisons of dis-

parate and sparse data, such as genomics and biochemical data, within and across species.

Here, we generated a pipeline to create metabolic network models for 192 genomes from

protozoan parasites, including the malaria parasite and organisms that cause diarrhea,

African sleeping sickness, and leishmaniasis. Importantly, this pipeline was developed to

propagate manual curation efforts from one model to others as manual curation remains

the field’s ‘gold standard’ for high-quality networks. We compare metabolic behavior

across parasites to contextualize experimental results and compare metabolism. We iden-

tify which organisms are metabolically similar for the purpose of identifying experimental

model systems and find that both metabolic niche and phylogeny influence metabolic

similarity.

Introduction

Malaria, African sleeping sickness, many diarrheal diseases, and leishmaniasis are all caused by

eukaryotic single-celled parasites; these infections result in over one million deaths annually

and contribute significantly to disability-adjusted life years [1–3]. In addition, human infec-

tious and related parasites infect domestic and wild animals, resulting in a large reservoir of

human pathogens and diseased animal population [4]. This combined global health burden

makes parasitic diseases a top priority of many economic development and health advocacy

groups [5–7]. However, effective prevention and treatment strategies are lacking. No widely-

used, efficacious vaccine exists for any parasitic disease (e.g. [8–12]). Patients have limited

treatment options because few drugs exist for many of these diseases, drug resistance is com-

mon, and many drugs have stage specificity (e.g. [13–15]). Thus, there is a pressing need for

novel, effective therapeutics. Beyond the economic constraints associated with antimicrobial

development [16,17], antiparasitic drug development is technically challenging for two pri-

mary reasons: these parasites are eukaryotes and they are challenging to manipulate in vitro.

As protozoa, these parasites share many more features with their eukaryotic host than pro-

karyotic pathogens do. Thus, antiparasitics must target the parasite while minimizing the effect

on potentially similar host targets, similar to cancer therapeutics. Enzyme kinetics can be lever-

aged such that the drug targets the pathogen’s weak points while remaining below the lethal

dose for host [18] or drugs can synergize with the host immune response (e.g. [19,20]). Unique

parasite features (i.e. signalling cascades as in [21] or plastid organelles as in [22]) can also be

targeted once identified.

Drug target identification and validation are further complicated by experimental chal-

lenges associated with these parasites. Many of these organisms have no in vitro culture sys-

tems, such as Plasmodium vivax (malaria) and Cryptosporidium hominis (diarrheal disease), or

in vivo model system, such as Cryptosporidium meleagridis (diarrheal disease). Some parasite

species have additional unique biology and resultant experimental challenges hindering drug

development, such as resistance to genetic modification. For example, Plasmodium falciparum
(malaria) was considered refractory to genetic modification until recently [23,24]. Entamoeba
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histolytica (diarrheal disease) has also been refractory to efficient genetic manipulation, and

the genomes of Leishmania develop significant aneuploidy under selective pressure [25,26].

Although these challenges may be circumvented with new technology, the use of clinical

samples, and reductionist approaches, little data exist relative to that which is available for

most bacterial pathogens. Without adequate profiling data (genome-wide essentiality, growth

profiling in diverse environmental conditions, etc.), we do not have the knowledge to ratio-

nally identify novel drug targets. Untargeted and unbiased screens of chemical compounds for

antiparasitic effects have proven useful (if the parasite can be cultured, e.g. [27–32]), but this

approach provides little information about mechanism of action or mechanisms of resistance

development. Typical approaches to study drug resistance, such as evolving resistance to iden-

tify mutations in a drug’s putative target, are not possible without a long-term culture system

and a relatively well-annotated genome.

As a result of these difficulties (Table 1), data collected in one organism are frequently

extrapolated to infer knowledge about another parasite, across and within genera (Fig 1).

Toxoplasma gondii is frequently used as a model organism for other apicomplexa due to its

genetic and biochemical manipulability [33–36]. Mouse models of malaria [37,38] and crypto-

sporidiosis [39,40] imperfectly represent the disease and/or use different species than the

human pathogen. However, the modest characterization of functional differences among para-

site species, beyond comparative genomics (e.g. [41–44]), limits the utility of this extrapola-

tion-based approach, especially broadly among protozoa. Systematic assembly of existing

knowledge about parasites and their predicted capabilities could greatly improve the extrapola-

tion-based knowledge transfer by facilitating rigorous in silico comparison. Such systems biol-

ogy approaches (e.g. genome-scale metabolic modeling) provide a framework to understand

parasite genomes, highlight knowledge gaps, and generate data-driven hypotheses about para-

site metabolism.

Genome-scale metabolic models are built from genomic data and by inferring function to

complete or connect metabolic pathways; these models are supplemented with data from func-

tional genetic and biochemical studies, representing our best understanding of an organism’s

Table 1. Summary of select parasitic diseases and their causal organism. Parasites cause important human and animal diseases and have unique biological and experi-

mental challenges that have made interpretation of in vivo and in vitro data challenging. Several examples are shown. Current treatments and associated observed drug

resistance are noted. Many well-studied parasites remain refractory to genetic modification and/or still have poor genome annotation. ‘Uncharacterized’ genes were identi-

fied via EuPathDB searches for terms such as ‘uncharacterized’, ‘putative’, ‘hypothetical’, etc., for a representative strain. Because each database is heavily influenced by the

respective scientific community, some databases such as CryptoDB do not use these terms because the function of so few genes have been validated in the Cryptosporidium
parasites. Thus, the genomes of the Cryptosporidium parasites are mostly hypothetical and proposed functions are only putative; the reported percent of genome that is

hypothetical is low for this reason (highlighted by an asterisk).

Species Disease Treatable? Drug Resistance? Culturable? Genetically tractable? Percent of genome is ’hypothetical’?

Trypanosoma brucei African sleeping sickness yes yes yes yes 76.40%

Babesia bovis babesiosis yes no yes yes 72.00%

Trypanosoma cruzi Chagas disease yes yes yes yes 52.90%

Cryptosporidium hominis diarrhea no - no no 54.10%

Cryptosporidium parvum diarrhea no - yes yes 4.1%�

Entamoeba histolytica diarrhea yes yes yes yes 79.80%

Giardia intestinalis diarrhea yes yes yes yes 39.20%

Naegleria fowleri encephalitis yes yes yes no 31.70%

Leishmania major leishmaniasis yes yes yes yes 76.60%

Plasmodium falciparum malaria yes yes yes yes 37.60%

Plasmodium vivax malaria yes yes no no 43.50%

Toxoplasma gondii toxoplasmosis yes yes yes yes 56.20%

Trichomonas varginalis trichomoniasis yes yes yes yes 94.00%

https://doi.org/10.1371/journal.pcbi.1009870.t001
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biochemistry and cellular biology. Unfortunately, existing approaches for the construction of

metabolic network models are lacking in standardization and scalability and/or biological rele-

vance for eukaryotes. While there are pipelines that include compartmentalization (i.e.

RAVEN [45] and merlin [46]), individual high-quality parasite reconstructions (e.g. [47–51]),

and scalable pipelines for the construction of many networks (i.e. CarveMe [52], ModelSEED

[53]), we sought to build on these tools and the Eukaryotic Pathogens Database (EuPathDB

[54]) to leverage genomic information on the EuPathDB database and existing effort towards

manual curation of individual reconstructions.

Here, we present a parasite knowledgebase, Parasite Database Including Genome-scale

metabolic Models (ParaDIGM), for this purpose. ParaDIGM is a collection of publicly avail-

able genome-scale metabolic models, and the computational tools needed to generate and re-

generate these models iteratively as new data becomes available. Importantly, these tools also

enable the propagation of experimental data collected in a manual curation to closely related

organisms. The integration of this genomic and experimental evidence into genome-scale met-

abolic models enables direct comparison of predicted metabolic capabilities in specific
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Fig 1. EuPathDB databases. EuPathDB is the Eukaryotic Pathogens database and serves as a repository for parasite ‘omics data; EuPathDB contains field-

specific databases including GiardiaDB, AmoebaDB, MicrosporidiaDB, TriTrypDB, TrichDB, CryptoDB, ToxoDB, PlasmoDB, and PiroplasmaDB (all shown),

as well as FungiDB, HostDB, and MicrobiomeDB. Here, a phylogenetic tree of database member parasites is shown (lines are not to scale). Each EuPathDB

sub-database is in a rough phylogenetic grouping, but the parasites on the EuPathDB databases are genetically and phenotypically highly diverse. Database

color-coding shown here will be used through other figures.

https://doi.org/10.1371/journal.pcbi.1009870.g001
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contexts, rather than the purely qualitative comparisons that can be performed with traditional

genomic approaches. We demonstrate the utility of ParaDIGM by comparing metabolic

capacity, gene essentiality, and pathway utilization. Ultimately, ParaDIGM can be used to bet-

ter leverage experimentally tractable model systems for the study of eukaryotic parasites and

antiparasitic drug development.

Results

Building ParaDIGM, a parasite knowledgebase

To build a comprehensive collection of genome-scale network reconstructions representing

parasite metabolism, we designed a novel network reconstruction pipeline optimized for

eukaryotic organisms (Fig 2A). Our pipeline builds on publicly available, open source software

and resources [52,54–56] and focuses on the compartmentalization of biochemical reactions

(Fig 2A). We applied this pipeline to assemble networks for all publicly available reference

genomes from parasite isolates representing 119 species (see Data Availability for link to code

and reconstructions). In brief, we obtained 192 high-quality genomes from the parasite

genome resource, EuPathDB [54], to generate a de novo reconstruction for each genome (Fig

2A, step 1). We mapped the protein sequence of all open reading frames against a biochemical

database [56] to identify putative metabolic functions via gene-protein-reaction mappings.

Reaction compartmentalization was adjusted to maintain each gene-protein-reaction mapping

but only with the subcellular compartments relevant for each organism. A large proportion of

parasite gene-reaction pairs would otherwise be misassigned or removed from the network

due to assignment to an incorrect compartment, due to lack of orthologous and compartmen-

talized reactions in biochemical databases; our pipeline reassigns these reactions to the cytosol

or extracellular space (Fig 2B). Although not all functions annotated on EuPathDB are inte-

grated into our de novo reconstructions using this approach, well studied enzymes and path-

ways are well represented (S1 Fig); discrepancies between EuPathDB and de novo
reconstructions can be prioritized in future curation efforts. We also identify metabolic func-

tions not currently annotated on EuPathDB (S1A and S1B Fig).

We next leveraged the manual curation in one parasite reconstruction, P. falciparum (Fig

2A, step 2, curation from [47,57] and in S1 Table), to generate a semi-curated reconstruction

for a subset of phylogenetically-related organisms, specifically all Plasmodium sp.. To build

these semi-curated reconstructions, we transformed the manually-curated reconstruction

using genetic orthology (Fig 2A, step 3) and added all transformed reactions to the recipient de
novo reconstruction (Fig 2A, step 4), improving the overlap between our curated and draft net-

works for Plasmodium reconstructions (S2 Fig). Lastly, all draft and semi-curated reconstruc-

tions were gapfilled using parsimonious flux balance analysis (pFBA)-based gapfilling [60,61]

to complete biochemical requirements identified in the experimental literature (Fig 2A, step 5)

and to produce biomass (see the Additional Information: Online Methods). Gapfilling too adds

to the metabolic scope of all reconstructions (S3 Fig). As a result, when compared to manu-

ally-curated parasite reconstructions [47–50], semi-curated reconstructions are larger in scope

than de novo reconstructions (Fig 2C) and generate predictions with comparable or improved

accuracy (Fig 2D). These reconstructions are also more compliant with community standards

[62,63] than previous reconstructions for parasites (representative MEMOTE examples shown

at https://github.com/maureencarey/paradigm/tree/master/memote_reports).

Our de novo draft reconstructions contain only genetically supported information (prior to

gapfilling) and, unsurprisingly, reconstruction size is correlated with genome size (Fig 3A and

3B). The large genome of Chromera velia CCMP2878 (a non-parasitic organism on CryptoDB

with 31,799 ORFs and 3,064 reactions) corresponds to a reconstruction with the second most
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unique reactions with 58. Unique reactions are defined here as reactions found in only one

reconstruction and no other reconstructions. However, even small reconstructions contain

unique reactions prior to gapfilling (Figs 3A and S4A) and the vast majority of these unique

reactions are well connected within the network (S4B and S4C Fig). In fact, 39 reconstructions
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Fig 2. Building a parasite knowledgebase. Genetic data (from EuPathDB), orthology information (from EuPathDB’s OrthoMCL), and biochemical data from

metabolomics studies (acquired from a literature review) were used to build our reconstructions in a multistep process; gene essentiality data was used to evaluate

resultant models. (A): Reconstruction pipeline. First, de novo reconstructions are built from annotated genomes and supplemented with KEGG reaction-associated

genes on the database (see Additional Information: Online Methods). Next, we curated an existing manually curated reconstruction for P. falciparum 3D7. Third,

we mapped orthologous genes so that (fourth) we could add all metabolic functions from our curated iPfal22 into the de novo reconstruction by transforming each

gene-protein-reaction rule via orthology. Lastly, we performed automated curation by gapfilling reconstructions to known metabolic capabilities and to generate

biomass. With the resulting reconstruction, we can compare simulations to experimental data such as gene essentiality screens. (B): Considering

compartmentalization. Our approach moves a large proportion of the reconstruction’s reactions from compartments in a biochemical database to biologically-

relevant compartments (e.g. periplasm to extracellular). Thus, our de novo reconstruction approach accounts for compartmentalization, unlike many previous

metabolic network reconstruction pipelines. Each model is represented by a point. Boxplots for each database denote the interquartile range with the median value at

center; whiskers extend to 1.5 times the inter-quartile range (i.e. distance between the first and third quartiles) above or below the median. (C): Orthology adds

information. Orthology-based curation improves reconstruction scope regarding total number of genes and reactions. These semi-curated reconstructions (each

labeled dark point) are larger in scope due to the addition of reactions associated with genes added via orthologous-transformation. Semi-curated reconstructions are

connected via a line to the draft uncurated reconstruction for that genome. Reconstructions are named by the associated species; Plasmodium species are labeled with

species name. Light colored dots represent previously published Plasmodium reconstructions (iPfal22, from [57] and [47], iPfa2017 from [49], iPbe-blood and iPbe-

liver from [58], all others from [48]). (D): Prediction accuracy. Semi-curated reconstructions (diamonds) recapitulate the biology of experimentally-facile parasites

as well as published, manually-curated reconstructions (circles). We tested accuracy of model predictions from the de novo reconstruction (triangle) and the final

orthology-translated and semi-curated reconstruction (diamond) for P. berghei and compared these summary statistics to the prediction accuracy generated by our

well-curated iPfal22 and other previously published reconstructions [48–50,58,59]. This comparison was used to motivate our approach over de novo reconstruction

building as our pipeline generates a reconstruction with greater predictive accuracy than de novo reconstruction and comparable to a well-curated reconstruction.

https://doi.org/10.1371/journal.pcbi.1009870.g002
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contain at least one unique reaction (S4A Fig) and every database has unique functions, or

functions that are found in every reconstruction within a database but not other reconstruc-

tions (Fig 3C). For example, the group of Plasmodium networks share over 200 reactions that

are only found in Plasmodium reconstructions; among these reactions include hemoglobin

breakdown (Fig 3C). The number of unique reactions is correlated with genome size, both

before and after gapfilling (S4F and S4G Fig).

In sum, 34% of reactions are in fewer than 10% of models (Fig 4, light grey) and 352 reac-

tions are unique to just a single model (examples in Fig 4). Importantly, these unique reactions

are typically well-connected within the network and rarely represent blocked or unconnected

reactions (S4B and S4C Fig). A core set of 45 reactions are contained in all 192 reconstructions

(Fig 4). Just 3% of reactions are in at least 90% of models (dark grey in Fig 4); reactions shared
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Fig 3. Reconstructions for all eukaryotic organisms with published genomes. (A): Model summary. Genome size is measured here by the

number of amino acid sequences encoded by the genome (triangle) and model size is measured by the number of reactions present in the

network (square points). Grey rings highlight 100, 500, 1000, 5000, and 10,000 ORFs moving from the center outwards. Genomes are grouped

by database, a rough phylogenetic grouping (see Fig 1). Note: T. gondii RH is excluded from all future analyses given only a subset of the

genome is available from EuPathDB. (B): Model size is correlated with genome size. Larger genomes tend to generate larger models. Line is fit

to a linear regression with R2 noted (p-value< 0.001); the standard error is not shown. Points are color-coded by database. (C): Unique

reactions by database. Number of unique metabolic reactions per database. Unique reactions are defined here as reactions found in every

reconstruction within a database grouping and in no other reconstructions outside of that database grouping. Reactions found in different

cellular compartments are considered distinct reactions.

https://doi.org/10.1371/journal.pcbi.1009870.g003
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reconstructions). Example rare reactions include seven metabolic reactions that are found in only one reconstruction. Of the 45 reactions
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by many models include functions such as glycolytic enzymes. The relationship between

genome size and model size is weakened following gapfilling (S4D Fig), likely due to the same

biomass formulation for all reconstructions, and the frequency of rare reactions (light grey
reactions in Fig 4) increases. ParaDIGM can be used to tease apart the difference between

unique, species-specific functions and poorly annotated functions to illuminate the uncharac-

terized fraction of parasite genomes. To illustrate additional examples of using this resource,

we identified niche-specific functions, predicted fluxomics studies to identify divergent

enzymes, and identified representative model systems for drug development.

Niche-specific metabolic functions

To identify niche-specific functions, we used ParaDIGM to compare the enzymatic capacity of

each organism. Specifically, we compared which enzymes are genetically supported and, there-

fore, present in each reconstruction prior to gapfilling. We performed classical multidimen-

sional scaling using the Euclidiean distance between reaction presence for each reconstruction

(Fig 5A and 5B). We observe that phylogenetically-related parasites tend to contain similar

reactions (Fig 5A). However, while networks generated from genomes within a common gen-

era or species cluster together, models also cluster within environmental niche rather than

broader phylogenetic grouping such as phylum. Apicomplexan parasites cluster tightly within

genus but not across genera (Fig 5A, Apicomplexa colored by database). Cryptosporidium par-

asites cluster with other gut pathogens (Fig 5A, gut pathogens in black) rather than other Api-

complexa. Thus, phylogeny is not the sole predictor of model similarity (permutational

multivariate analysis of variance, p = 0.001 using groups of Cryptosporidium, Toxoplasma,

Plasmodium, and all other, and homogeneity of dispersion, p<0.001).

Next, we performed random forest classification using reconstruction reaction content to

identify the specific metabolic reactions associated with the metabolic niche of the gut environ-

ment. The classifier performed well with an AUC of 0.98 and an out-of-bag error rate of less

than 8%, supporting our observation that gut parasites contain distinct metabolic reactions.

Most important variables (reactions) were associated with being more frequently observed in

non-gut pathogens, including gamma-glutamylcysteine synthetase (GLUCYS), glycerol-

3-phosphate dehydrogenase (G3PD and G3PD4), an extracellular membrane proton pump

(PPA_1), the glycine cleavage system (GCCb, GLYCL_2), phosphogluconate dehydrogenase

(GND), and a pyruvate dehydrogenase using lipoamide (PDHa; Fig 5C). Reactions associated

with gut pathogenicity included Butanal:NAD+ oxidoreductase (BNORhc), glucan 1-4-alpha-

glucosidase (GLCGSD), and starch synthase (STARCH300Sc; Fig 5C).

Similarly, parasites that invade red blood cells, including Plasmodium and Babesia, are dis-

similar when comparing their full reaction content (Fig 5B, triangles); however, the same anal-

ysis limited to each organism’s genetically encoded transporters reveals that these parasites

have relatively similar transporter capabilities (Fig 5C, triangles). This result indicates that

these red blood cell-invading parasites rely on similar nutrients from their host red blood cell.

On the contrary, the broad metabolic niche of extracellular growth yielded some outliers

regarding enzymatic capacity and transporter profile (Fig 5B and 5C, circles), likely due to the

range of environments that parasites capable of extracellular growth encounter.

Predicting metabolic function

Beyond the direct comparison of enzyme presence, we can use ParaDIGM to predict metabolic

functions and the functional consequences of reaction presence and network connectivity.

This approach augments the analysis beyond mere genetic comparisons: some enzymes may

not be discovered in the genome despite being necessary to perform biochemical function
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observed experimentally and are included in these models (Fig 6A). Relatively few fluxomics

or controlled biochemical studies have been conducted for any one organism but these data

can be predicted in silico. We simulate fluxomics studies to profile the metabolic capability of

an organism using both genetic evidence and inferred network structure. To do this, we identi-

fied which metabolites can be consumed or produced in each model following gapfilling in a

rich in silico media. This environment is simulated by permitting import of any metabolite for
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Fig 5. Identifying metabolic niches. (A): Reaction content. Classical multidimensional scaling was performed on the

reaction content of all de novo reconstructions; each reconstruction is represented by a point (grey/black or colored by

database for emphasis). Thus, this analysis focuses exclusively on the genetically supported features of each reconstruction.

Apicomplexan parasites (colored by database) and all other gut pathogens (black points) are highlighted. (B): Reaction

content with alternative color scheme. Parasites that invade red blood cells (triangles, Plasmodium and Babesia) or can

replicate extracellularly (circles) are highlighted; all other parasites are in lighter grey squares. (C): Important variables for

the classification of gut pathogens. We performed a random forest classification to distinguish organisms that are

considered gut pathogens from other organisms in ParaDIGM (AUC = 0.98 and an out-of-bag error rate of less than 8%).

Important variables with a difference in occurrence score of 1 were present in 100% of gut pathogens and 0% of other
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https://doi.org/10.1371/journal.pcbi.1009870.g005
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Fig 6. Predicting metabolic function. (A): Advantage of network-based approaches. Metabolic models include hypothetical functions (i.e. the enzyme

encoded by gene2) that are unsupported by direct genetic evidence but may be indirectly required based on biochemical evidence. These functions are added

through gapfilling. Using models augments our analysis beyond mere genetic comparisons: some enzymes may not be discovered in the genome despite being
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which there is a genetically-encoded transporter (S2 Table) or gapfilled transport reaction (S3

Table). A schematic for each metabolite categorization is shown in Fig 6B with experimental

data shown in Fig 6C, with untested or unknown results in white, and analogous in silico
results in Fig 6D. All models except for one (Chromera velia CCMP2878 with the largest

genome) required gapfilling to synthesize one or more metabolites and/or biomass. We can

expand the in silico predictions to all metabolites in all models (a total of 5,141 metabolites by

192 models, S5 Fig) to generate hypotheses about understudied metabolites and enzymes.

Interestingly, several metabolic enzymes were consistently predicted to be necessary for

observed metabolic capabilities (metabolic tasks in Fig 6C) or growth across all parasites (gap-

filled reactions in Table 2); three common examples are shown in Fig 6E and 6G including

three steps in Vitamin B6 metabolism. Pyridoxamine oxidase (Fig 6G) is an understudied

enzyme involved in Vitamin B6 metabolism; fewer than 300 articles on PubMed describe the

enzyme. Not surprisingly given the lack of literature, the reaction associated with this enzyme

is in just seven reconstructions in the BiGG database, including two iterations of the S. cervi-
siae S288C model [56]. The deaminating version of this reaction is in only 10 reconstructions

in the BiGG database; all ten of these reconstructions are for eukaryotes including five Plasmo-
dium genomes. Pyridoxamine oxidase was only added to the V. brassicaformis CCMP3155 and

G. niphandrodes reconstructions in the bioinformatics-driven model construction steps; how-

ever, this enzyme was added in 90 gapfilling solutions to satisfy experimentally-derived func-

tions. Thus, we predict that it is important for parasite growth. We also predict that the

unidentified sequences for pyridoxal oxidase are highly divergent from known sequences

because they were not identified using bioinformatic annotation methods. By comparing the

reconstructions within ParaDIGM, we can identify high-confidence reactions that are encoded

by divergent genetic sequences and missed by purely bioinformatic approaches.

Selecting the most representative model system for an experiment

Genome-wide essentiality screens are available for Plasmodium falciparum [64] and berghei
[58,65], Toxoplasma gondii [35], and Trypanosoma brucei. Using the models generated with

ParaDIGM, we can perform the equivalent in silico simulations (Fig 2D and S3 Table) regard-

less of experimental genetic tractability (Table 1). These analyses can be used to identify drugs

for repurposing or the best model system for testing a novel drug target. To do this, we sequen-

tially removed each reaction from the reconstruction to identify which reactions are necessary

for growth (i.e. production of biomass). These simulations are performed in an unconstrained

model (i.e. all metabolites with a transporter can be imported, all enzymes can be used) to sim-

ulate the parasite’s growth intracellularly in the nutrient-rich host cell. Dissimilarity of reaction

essentiality for all Toxoplasma, Plasmodium, and Cryptosporidium reconstructions was calcu-

lated using the Euclidean distance (Fig 7).

necessary for biochemical observations made and are included in these models. (B): Defining metabolic capacities. With our gapfilled models, we can identify

if metabolites are consumed and/or produced. (C): Experimentally-derived metabolic functions. We compiled data providing evidence for consumption or

production of select metabolites from the literature (S1 Table). Consumed metabolites are imported by the parasite from the extracellular environment (e.g. the

in vitro growth medium). Produced metabolites are synthesized by the parasite even when the metabolite is not in the extraceullar environment. See Additional
Information: Online Methods for more detail. Data are sparse. (D): Analogous in silico metabolic capacity. Inferred metabolic capacity of each organism from

Panel C for every metabolite from panel C. Data from panel C was used to gapfill reconstructions to generate data presented in Panel D (see Fig 2A for

methods). See Panel B for definitions. Metabolites that are neither produced nor consumed are consumed intracellularly but are not taken up from the

extracellular environment. Metabolites noted as ‘complex or unknown’ here are represented by multiple metabolite identifiers in the reconstructions (e.g.,

lactate is measured experimentally, but could represent both D-lactate and L-lactate within the reconstruction). (E-G): Example gapfilled functions in the

Vitamin B6 pathway. These reactions were added to support the observed metabolic functions in Panel C or to support in silico growth. Panel E shows L-

alanine-alpha-keto acid aminotransferase (ASPTA6, added to 58 reconstructions), Panel F shows pyridoxamine-pyruvic transaminase (PDYXPT_c, added to 64

reconstructions), and Panel G shows pyridoxamine oxidase (PYDXO, named pyridoxal oxidase in BiGG, added to 90 reconstructions). Note, a deaminateing

pyridoxamine:oxygen oxidoreductase (PYDXO_1) is also added to 12 reactions to interconvert pyridoxal and pyridoxamine.

https://doi.org/10.1371/journal.pcbi.1009870.g006
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Reaction essentiality is generally more similar for closely related organisms (i.e. within gen-

era). However, some genera generate more similar predictions than others. Essentiality predic-

tions were more similiar when comparing Plasmodium genomes to one another than between

Toxoplasma, despite all genomes being of the same species, or Cryptosporidium genomes.

Cryptosporidium genomes generate predictions that are significantly less similar than Plasmo-
dium genomes. Essentiality predictions in T. gondii are less similar to Cryptosporidium para-

sites than to Plasmodium (Fig 7). As T. gondii is a popular model system for other parasites,

this result supports the use of T. gondii to test hypotheses about Plasmodium over Cryptospo-
ridium. Moreover, we can identify organisms that are particularly unique within a genus. For

example, C. parvum is a poor representative of C. ubiquitum whereas C. muris and C. ander-
soni are quite similar. Despite being distinct immunotypes, T. gondii VEG and GT1 are the

most similar Toxoplasma. P. vivax Sal-1, an unculturable and clinically relevant Plasmodium
species, is more similar to P. knowlesi H than the average two Plasmodium genomes, whereas

P. falciparum 3D7 and P. berghei ANKA are among the most dissimilar Plasmodium genomes.

Importantly, more complete models generate less similar predictions indicating differences in

essentiality reflects functional differences, not merely incomplete genome annotation resulting

in incomplete reconstructions (S6 Fig). These results highlight how ParaDIGM can be used to

identify functional similarities and differences between parasites that directly inform experi-

ments for developing and studying new drugs.

Table 2. Most frequently gapfilled reactions. These reactions (in the BiGG namespace) were the most commonly added reactions as a result of all gapfilling steps.

Reaction Gapfilled N times? Reaction Name

NADPPPS 96 NADP phosphatase

PYDXO 90 Pyridoxal oxidase

IMPtr 86 Transport of IMP

SO4HCOtex 84 Sulfate transport via bicarbonate countertransport

EX_lyslyslys_e 81 LysLysLys exchange

LYSLYSLYSr 81 Metabolism (Formation/Degradation) of LysLysLys

LYSLYSLYSt 81 LysLysLys transport

PSERT 80 Phosphoserine transaminase

PGCD 75 Phosphoglycerate dehydrogenase

GTHOXti 74 Glutathione transport

CYSLY3 65 Cysteine lyase

NNDPR 65 Nicotinate-nucleotide diphosphorylase (carboxylating)

PDYXPT_c 64 Pyridoxamine-pyruvic transaminase

H2O2t 63 Hydrogen peroxide transport

PSP_L 60 Phosphoserine phosphatase (L-serine)

EX_ileargile_e 59 IleArgIle exchange

ILEARGILEr 59 Metabolism (Formation/Degradation) of IleArgIle

ILEARGILEt 59 IleArgIle transport

lipid2 59 aggregation of all fatty acyl-CoAs

ASPTA6 58 L-alanine-alpha-keto acid aminotransferase

GMPR 56 GMP reductase

GTHRDH_syn 55 Glutathione hydralase

GTHPe 53 Glutathione peroxidase

H2Ot 51 Water transport

HISD_c 48 Histidine degradation to glutamate

https://doi.org/10.1371/journal.pcbi.1009870.t002
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Discussion

Here, we presented a novel pipeline for generating metabolic network reconstructions from

eukaryotic genomes and applied it to create 192 reconstructions for parasites, expanding the

scope of parasite modeling. These reconstructions represent the first genome-scale metabolic

network reconstructions for all but nine of these organisms, making ParaDIGM the broadest

computational biochemical resource for eukaryotes to date. ParaDIGM uses reaction and

metabolite nomenclature from the Biochemical, Genetic and Genomic knowledge base (BiGG,

which includes both microbial and mammalian genome-scale metabolic network reconstruc-

tions) [56], facilitating future work involving host-pathogen interaction modeling. Gene

nomenclature used in ParaDIGM is from the Eukaryotic Pathogens Database (EuPathDB)

[54], consistent with the parasitology field standards and ‘omics data collection. Reproducible

data integration approaches are used to curate each reconstruction, making this the first fully

automated reconstruction pipeline for eukaryotes; code and data are available in the Data

Availability section for iterative improvements by ourselves and others.

ParaDIGM or individual reconstructions can be used for comparative analyses or applied

to interrogate clinically- and biologically-relevant phenotypes. The adherence to community

standards for metabolic modeling throughout ParaDIGM enables easier manual curation for

users interested in studying a specific parasite in more detail. Together, this adherence to

standards and the automated approach for integration of experimental data, will accelerate fur-

ther curation of ParaDIGM itself as genome annotation improves, more experiments are
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Fig 7. Selecting experimental model systems using reaction essentiality. Single reaction knockouts were performed on unconstrained models to identify the

reactions that are essential for generating biomass. Dissimilarity scores were calculated from binary essentiality results using Euclidean distance (root sum-of-

squares of differences). A low dissimilarity score of 0 indicates enzyme essentiality is identical between the two models; a high score indicates many differences.

Each point represents a pairwise comparison with genera labels on the x-axis. Within genus comparisons are made on the left; across genus comparisons are

made on the right. Several examples are highlighted with genome names. Genome-wide reaction essentiality is more similar between Toxoplasma and

Cryptosporidium than Toxoplasma and Plasmodium. Mean dissimilarity score is significantly different (by two-sided student’s t-test with multiple testing

correction) between every labeled group.

https://doi.org/10.1371/journal.pcbi.1009870.g007
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performed with individual parasites, and ParaDIGM users provide feedback on reconstruction

usage and performance.

This eukaryote-specific reconstruction process (Fig 2A) generates comprehensive networks

of comparable quality to manually curated parasite reconstructions (Fig 2B-2D). However,

manual network curation and adding condition-specific constraints remain the gold standard

approaches to maximize the accuracy of network predictions, especially for modeling stage-

specific metabolism (i.e. [58]). Even so, our semi-automated curation approach enhances the

genome-wide coverage of each reconstruction (Fig 2C) and generates models with comparable

accuracy to previously published manually curated reconstructions (Fig 2D); maximum

model accuracy is dependent on including compartmentalized reactions in the reconstruction

process (S7 Fig).

To evaluate these networks, we compare in silico predictions to experimental results; all

have imperfect accuracy regarding gene essentiality (Fig 2D), emphasizing how challenging it

is to make a truly predictive model without integrating extensive stage-specific experimental

data. High rates of false positives (when the model incorrectly identifies a gene as essential) are

a product of the model building process; these reconstructions are built to summarize all meta-

bolic capabilities of the organism, not the specific stage-dependent phenotype of an organism

in the experimental system. Thus, constraining a reconstruction with in vitro expression data

will reduce the false positive rate (e.g. [47,58]). We also compared our manually curated P. fal-
ciparum 3D7 reconstruction to our new semi-curated reconstruction for the same species. Dif-

ferences in the two iterations fall into three groups: (1) non-specific genes that map to multiple

reactions, (2) non-enzymatic genes (specifically, tRNAs), and (3) metabolic functions not yet

encoded in the BiGG database for which reaction objects were created in our manual curation

efforts. These differences can inform the first round of curation for semi-curated

reconstructions.

However, this pipeline offers a few key limitations. First, simulation accuracy remains low

(Fig 2D), largely because annotation pipelines may over-annotate function and (importantly)

these models represent the metabolic capacity of many life stages, whereas experimental data is

derived from a single timepoint. Thus, without constraining these models with stage-specific

data, models will under predict essential genes and have poor accuracy. Furthermore, all

reconstructions are limited by the data used for their construction; for example, we used the

reactions already documented in the BiGG database as a universal set of reactions. Thus, reac-

tions not contained in BiGG will not be included in ParaDIGM and only the reactions with

specific cofactor utilization or directionality documented in BiGG will be included. Similarly,

limited experimental data are available for the localization of specific enzymes and transporters

and there has been limited successful experimental validation of computational predictions.

Transporters in particular will influence pathway usage and a large proportion of transporters

were added in the gapfilling process (S8 Fig). Lastly, the data incorporated in objective reac-

tions and extracellular environment (i.e. media formulation) heavily influences which reac-

tions are considered essential and which non-genetically supported reactions are added via

gapfilling. Currently, these constraints within ParaDIGM are not experimentally-derived for

each organism.

The metabolic capacity represented in ParaDIGM will be expanded and the accuracy of

each reconstruction and associated simulations will be improved as (1) BiGG is further

expanded, (2) more confidence is gained regarding protein localization, and (3) metabolomics

analyses improve biomass and media formulation. Additionally, we used our orthology-based

semi-curation approach for only Plasmodium models; however, this approach can be used for

other organisms to propagate manual curation efforts (from our group and others, e.g. [48–

50]) from one species to closely-related organisms as well. Finally, these reconstructions have
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not been manually curated and require such attention for improved accuracy, especially in

well-studied pathways and transporters and to represent stage-specific phenotypes.

Despite these limitations, the models within ParaDIGM perform similarly to manually

curated models (Fig 2D) and so we highlight example use cases. First, we used ParaDIGM to

better leverage model systems for drug development by identifying divergent or conserved

metabolic pathways between select human pathogens. Network structures were quite unique

with only 25.8% of all reactions in more than 50% of the reconstructions (Fig 4); network

topology did however cluster by genus, and transport ability is associated with specific host

environments (Fig 5). Despite these structural similarities, minor topological differences in

networks (and unique functions, Figs 3C and 4) confer key metabolic strengths or weaknesses

(Figs 6 and 7). We compare metabolic reaction (or enzyme) essentiality to identify the best in
vitro system or non-primate infection model of disease for drug development (Fig 7). For

example, enzyme essentiality is broadly more consistent between Toxoplasma gondii and Cryp-
tosporidium parasites than between T. gondii and the malaria parasites. By leveraging network

context (Fig 6A and 6B), we can impute fluxomic studies in all 192 parasites (Figs 6D and S5)

to contextualize the variable results across species in relatively few in vitro fluxomics studies

(Fig 6C) and to expand these observations to untested organisms and metabolites (S5 Fig).

Beyond our use cases of ParaDIGM, the pipeline and reconstructions presented here can be

used broadly by the field. The study of microbial pathogens generated paradigm-shifting

results in biology. The study of viruses revealed basic cellular machinery present nearly ubiqui-

tously in eukaryotic cells, such as the discovery of alternative RNA splicing in adenovirus [66].

The study of bacteria has provided a nearly real-time observation of evolution, allowing

researchers to perform hypothesis-driven evolutionary biology experiments in addition to

observational research [67]. These microorganisms have shed light on cell biology and the his-

tory of life in impactiful yet highly unanticipated ways; experimental challenges associated

with parasites have slowed their utility in this regard. However, both the genetic ‘dark matter’

of eukaryotic parasites and known parasite-specific functions are abundant (Fig 1); thus, para-

sites too have the capacity to inform our understanding of life. The reconstructions in Para-

DIGM can be used broadly to contextualize existing experimental data and generate novel

hypotheses about eukaryotic parasite biochemistry as it relates to the rest of the tree of life.

ParaDIGM provides a framework for organizing and interpreting knowledge about eukary-

otic parasites. The reconstruction pipeline designed for ParaDIGM implements and builds on

field-accepted standards for genome-scale metabolic modeling and the latest genome annota-

tions in the parasitology field; moreover, it is uniquely tailored to eukaryotic cells by recogniz-

ing the importance of compartmentalization and the design of the objective function. The

pipeline can be implemented with other organisms and re-implemented iteratively to incorpo-

rate novel genome sequences, biochemical datasets, genome annotations, and reconstruction

curation efforts. The genome-scale metabolic network reconstructions organized in Para-

DIGM also can be used broadly by the scientific community, using the reconstructions as-is as

biochemical and genetic knowledgebases or as draft reconstructions for further manual cura-

tion to maximize the utility and predictive accuracy of the models. These reconstructions can

be used to generate targeted experimental hypotheses for exploring parasite phenotypes, ulti-

mately improving the accessibility of modeling approaches, increasing the utility of parasites

as model systems, and accelerating clinically-motivated research in parasitology.

Supporting information

S1 Table. Automated curation tasks. All reconstructions were gapfilled to ensure the network

could consume or produce all relevant metabolites outlined below. Data from multiple strains
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of one species were aggregated. The first two columns describe each metabolite with a subsy-

tem and name. The first two columns represent the genus and species for which literature evi-

dence was compiled. Each {i,j} position in the matrix represents whether there is experimental

evidence for a species’ consumption or production of the metabolite. Blank cells indicate no

literature evidence was found for that metabolite in that species.

(XLSX)

S2 Table. Genetically-encoded transporters. Transporters in each reconstruction prior to

gapfilling. These transporters are annotated into each genome.

(CSV)

S3 Table. Gapfilled transporters. Transporters added to each reconstruction in the gapfiling

process. These transporters are necessary to generate flux through the biomass reaction using

parsimony-based gapfilling.

(CSV)

S4 Table. Available essentiality datasets. Experimental genome-wide essentiality datasets

that are available in the literature. These data for Toxoplasma and Plasmodium were used to

evaluate model performance and specifically simulated gene essentiality.

(CSV)

S5 Table. Compartmentalization. Subcellular compartments used for reconstructions in each

genus.

(XLSX)

S6 Table. Blocked reactions. Each row represents a reconstruction (named in column 1). All

following columns list out the BiGG identifiers for the blocked/unconnected reactions in that

reconstruction. The products of blocked reactions are not used in any other reaction, whereas

the reactants of unconnected reactions are not generated by any other reaction. Row headings

are arbitrarily counting the number of reactions in each reaction in that category.

(XLS)

S1 Fig. Comparison of ParaDIGM gene coverage to genes annotated on EuPathDB with

GO terms relating to metabolism. (A): Schematic for gene count comparisons. Genes

found on EuPathDB with a GO term related to ‘metabolic processes’, genes incorporated into

de novo reconstructions (N = 192 reconstructions), and genes in both of these categories are

described. (B): Number of genes per category. Boxplots represent the total number of genes

per category across all reconstructions. (C): Number of genes EuPathDB associated with

three example pathways. These genes represent the intersection of EuPathDB genes and

reconstruction genes for three select pathways. For all panels, the box extends from the lower

to upper quartile values of the data; the center line marks the median and whiskers shows the

range of the data. Outliers are not shown. (D): Percent of genes on EuPathDB associated

that are represented in reconstructions. Again, these genes represent the intersection of

EuPathDB genes and reconstruction genes for three select pathways. For each example path-

way in Panel C, the percent of total genes from EuPathDB that are represented in the de novo
reconstructions are shown.

(EPS)

S2 Fig. Reaction content overlap between Plasmodium reconstructions in ParaDIGM and

a manually-curated reconstruction, iPfal22. Semi-curation improves reaction content over-

lap between Plasmodium reconstructions in ParaDIGM and a well-curated reconstruction.

Venn diagram of reaction content between three Plasmodium species or strains (falciparum

PLOS COMPUTATIONAL BIOLOGY Comparative analyses of parasites with a comprehensive database of metabolic models

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1009870 February 23, 2022 16 / 28

http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1009870.s002
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1009870.s003
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1009870.s004
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1009870.s005
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1009870.s006
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1009870.s007
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1009870.s008
https://doi.org/10.1371/journal.pcbi.1009870


3D7 in A, falciparum Dd2 in B, and berghei ANKA in C) for the draft reconstruction including

only genes identified by Diamond and the semi-curated reconstruction (see Additional Infor-
mation: Online Methods), and compared to iPfal22.

(EPS)

S3 Fig. Benchmarking of gapfilling approach on Plasmodium reconstructions. Only Plas-
modium reconstructions were assessed here because we can compare the resultant reconstruc-

tions to a manually-curated reconstruction, iPfal22. (A): Number of reactions added at each

step of the reconstruction pipeline per reconstruction. For each boxplot, the box extends from

the lower to upper quartile values of the data; the center line marks the median and whiskers

shows the range of the data. Outliers are not shown. (B-D): Venn diagrams highlighting the

shared reaction content of three Plasmodium reconstructions with and without gapfilling.

Gapfilling increases the coverage of functions contained in the well-curated reconstruction,

iPfal22.

(EPS)

S4 Fig. Further characterization of ParaDIGM reconstructions. (A): Unique reactions by

reconstruction 39 reconstructions contain at least one unique metabolic reaction, or a reac-

tion not found in any of the other 191 models. Reconstructions are colored by EuPathDB

grouping, like in panel A, and the bar represents the number of unique reactions in that recon-

struction. (B-C): Unique reactions are well connected. Percent (B) and total number (C) of

all unique reactions per reconstruction that are blocked, unconnected, or both blocked and

unconnected. Blocked reactions are defined as those whose products are not utilized by any

other reactions (including transport and exchange reactions), whereas unconnected reactions

are those whose reactants are not produced by other reactions. For all panel B, the box extends

from the lower to upper quartile values of the data; the center line marks the median and whis-

kers shows the range of the data. Outliers are shown as points. For panel C, each column or

bar represents an individual reconstruction. Most unique reactions are connected and

unblocked. (D-E): Gapfilled model size remains correlated with genome size. Following

gapfilling, the relationship between genome size (as measured by open reading frames or

genes with metabolic GO terms, D and E respectively) and model size remains; however, the

correlation is weak due to an increase in the number of reactions for reconstructions built

from medium-sized genomes. (F-G): Larger genomes have more unique reactions before (F)

and after (G) gapfilling. Genome size is measured by open reading frames. For panels D-G,

line is fit to a linear regression with R2 noted (p-value< 0.001); the standard error is not

shown. Points in D-G are color coded by database.

(EPS)

S5 Fig. Complete in silico metabolic capacity. Inferred metabolic capacity of each organism

(rows) for metabolites (columns) for every reconstruction and metabolite in ParaDIGM (5,141

metabolites by 192 models). See Fig 6B for definitions. Note the sheer volume of data acquired

from ParaDIGM.

(EPS)

S6 Fig. Evaluation of prediction dissimilarity and reconstruction coverage. (A-C): Distri-

buition of reconstruction completeness scores for Cryptosporidium, Plasmodium, and Toxo-
plasma reconstructions. Completeness scores were calculated by identifying the ratio of

metabolic functions (reactions) in a single reconstruction compared to the sum of metabolic

functions covered by all reconstructions from the respective genus. (D): Prediction dissimilar-

ity is correlated to model completeness. For each pair of models, reaction essentiality predic-

tions were compared to generate a dissimilarity score (Fig 7A). Identical predictions have a
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dissimilarity score of 0 whereas a high dissimilarity score indicates divergent predictions.

(EPS)

S7 Fig. Compartmentalization improves prediction accuracy and coverage of the genome.

(A): Sensitivity and specificity of in silico gene essentiality predictions when compared to

experimental data. Reconstructions generated using our pipeline with and without compart-

mentalization are connected with a line; other points represent published models for reference.

Our compartmentalization approach improves the sensitivity and or specificity of gene essen-

tiality predictions for P. berghei ANKA, (P. falciparum) 3D7, and T. gondii GT1. (B): Venn dia-

gram of gene content for the ParaDIGM P. falciparum 3D7 reconstruction (with and without

compartmentalization) and our manually curated P. falciparum 3D7 reconstruction, iPfal22.

Incorporating compartmentalization improves genome coverage by adding 12 genes also

found in iPfal22 and 17 genes not found in iPfal22.

(EPS)

S8 Fig. Only half of transporters are genetically supported. (A): Percent of all transporters

with gene annotations. (B): Percent of intracellular transporters with gene annotations. Red

dotted line indicates mean.

(EPS)

S9 Fig. Distribution of blocked and unconnected reactions. The distribution of poorly con-

nected reactions (A: blocked, B: unconnected, C: both) was similar before and after gapfilling.

(TIFF)
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Additional information

Online methods

Code dependencies

R [68] and R packages tidyverse, ggpubr, ggdendro, seqinr, Biostrings, msa, reshape2,

UpSetR, cluster, ade4, RColorBrewer, readxl, dplyr, and ggdendro were used for analysis or

visualization [69–80]. Python 3.6.4, pandas [81], and CobraPy 0.14.1 [55], as well as code to

implement Diamond-based annotation scoring from CarveMe [52], were used for the recon-

struction and modeling. Memote [62] was used to evaluate all reconstructions.

Genomic analyses

Sequences were obtained from EuPathDB release 44 [54]. EuPathDB curates and compiles

genome annotation for all genomes hosted by the database. We used open reading frames

identified on EuPathDB and annotated the sequences with Diamond, described below.

EuPathDB’s OrthoMCL was used for mapping orthology between Plasmodium species. In

brief, orthology was mapped within each EuPathDB database by the ‘map by orthology’ tool

from the genome of each organism with a curated reconstruction to all other genomes within

that database. The search protocol was ‘new search > genes > taxonomy > organism {pick} >
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transform by orthology’. We mapped each organism’s amino acid sequences using Diamond

annotation [82] against proteins referenced in the BiGG databases [56]. Diamond is a similar

approach to BLAST, with sensitive and fast performance on protein annotations [82].

Model generation

We generated draft reconstructions by first annotating each organism’s amino acid

sequences, obtained from EuPathDB [54], using Diamond annotation [82] against enzymes

and transporters referenced in the BiGG databases [56]. We next mapped all functional anno-

tations to reactions contained in the BiGG database [56] inspired by the approach conducted

with the reconstruction pipeline CarveMe [52]. Next, for all reconstructions, we added any

KEGG reaction-associated genes from EuPathDB if the KEGG identifier could be converted

into a BiGG identifier, using KEGG-BiGG mappings found at http://bigg.ucsd.edu/static/

namespace/bigg_models_metabolites.txt. Importantly, EuPathDB annotations used for this

KEGG-BiGG mapping are derived from a mix of variable automated and manual approaches

and include user contributions. Methods are included in the analytic code hosted on Github,

at https://github.com/maureencarey/paradigm.

Unlike the CarveMe approach [52], we included all high-scoring reactions. CarveMe maxi-

mizes the number of high-scoring hits while building a functional network. Our conservative

approach generates broadly inclusive but incomplete reconstructions (i.e. that are not able to

produce biomass until gapfilled). This approach added redundant reactions from multiple dif-

ferent compartments (e.g. peroxisome, mitochondria, and cytosol) so all reaction versions

other than the cytosolic version were pruned unless localized to a relevant compartment (S5

Table); for genera not included in S5 Table, only the cytosol and extracellular space were used

to avoid inclusion of erroneous compartments. For example, if a Plasmodium reconstruction

contained a reaction in the cytosol, mitochondria, and chloroplast, only the cytoplasmic and

mitochondrial reaction versions would be kept. Following this step, a large percentage of each

reconstruction’s reactions remained in unsupported compartments because there was no anal-

ogous cytosolic (or extracellular) reaction (Fig 2B). Next, reactions only found in an unsup-

ported compartment were moved to the extracellular space or cytosol; specifically, periplasmic

metabolites were moved to the extracellular space and all internal subcompartment metabo-

lites were moved to the cytosol. However, this step removed all reactions that summarized a

transport reaction from the extracellular space to periplasm or from the cytosol to an unsup-

ported organelle. The extracellular compartment corresponds to the parasitophorous vacuole

space contained within the host cell for intracellular parasites (i.e. Plasmodium, Toxoplasma,

Cryptosporidium) and the host serum for extracellular parasites (i.e. Trypanosoma).

Manual curation

We performed brief manual curation from literature sources, building on our curation con-

ducted in [47,57]. Manual curation included updating reaction identifier and notes fields for

consistency to CobraPY standards, updating metabolite identifiers for consistency to BiGG

standards, replacing old PlasmoDB gene identifiers with updated identifiers, mass balancing

seven reactions (with phosphate or hydrogen), removing duplicate reactions and metabolites

(12 modifications), pruning unused metabolites, ensuring all metabolites have associated com-

partments, adding annotations to reactions and metabolites if missing (i.e. KEGG identifiers,

EC codes, InChI strings), and adding SBO terms to all objects. Our previous asexual blood-

stage Plasmodium falciparum 3D7 reconstruction ([57] adapted from [47]) was manually

curated generating iPfal22. See Data Availability for code documenting all for modifications

and implementation of manual curation.

Additional manual curation was performed on lipid metabolism of the asexual blood-stage

P. falciparum using the lipidomics study presented in [83] adding over 700 reactions, 400

metabolites, and 18 genes. This curation removed aggregate reactions representing lipid
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metabolism and replaced them with individual reactions for individual lipid species, as sup-

ported by the lipidomics study. This model is available, but was not used for the analyses pre-

sented here as the metabolic demands for lipids in our biomass reaction are also aggregated.

Inclusion of these reaction is appropriate for understanding lipid metabolism but would create

random distributions of flux through the individual reactions that may distract from meaning-

ful changes in flux distributions. All code for this curation is available at https://github.com/

gulermalaria/iPfal17_curation.

Automated orthology-driven curation

We developed a novel automated curation approach using orthologous transformation,

similar to the approach taken by [48]. Our approach leverages the curation conducted in one

organism for closely-related organisms and applied it to all draft Plasmodium reconstructions

using iPfal22 (Fig 2A). We first mapped orthology of P. falicparum to each other Plasmodium
species to build an orthology thesaurus (Fig 2A). We then added genes and associated reac-

tions from iPfal22 if there was an orthologous gene in the target species’ reconstruction and

the reaction was not already present (Fig 2A) resulting in a significant increase in the number

of genes and reactions in each reconstruction (Fig 2C). Notably, this approach facilitates the

compartmentalization of these reconstructions, a function most automated pipelines except

RAVEN [45] and merlin [46] fail to include. This step is particularly important for parasite-

specific compartments such as the apicoplast, which is not included in any database.

Gapfilling (part 1)—Automated data-driven curation

Gapfilling is an analytic process used to bridge or complete genetically-supported metabolic

pathways to permit the network to fulfill metabolic functions, and was used to generate func-

tional models. To increase the scope of a reconstruction (i.e. to add reactions), we performed

gapfilling to fill in gaps in pathways to ensure that the reconstruction can complete a particular

task. This optimization process adds reactions to allow the reconstruction to carry flux under

given constraints.

Thus, automated curation of all reconstructions was performed by gapfilling for metabolites

measured to be consumed in fluxomic or select media formulation studies. Detailed analysis is

provided in our code. In brief, following an extensive literature review, we compiled data pro-

viding evidence for consumption or production of select metabolites (S1 Table). Metabolites

were defined as consumed by the parasite if: (1) the metabolite was radiolabeled, added to

media, incorporated into the parasite or converted by the parasite, and this was not seen to the

same degree in uninfected host cells; (2) the metabolite rescued inhibitor treatment of a meta-

bolically upstream parasite enzyme; or (3) the metabolite is an essential media component for

parasite culture. Metabolites were defined to be produced by the parasite if the metabolite was

radiolabeled following growth in a media containing a radiolabeled precursor metabolite, and

this was not seen to the same degree in uninfected host cells.

To gapfill for these tasks, import or excretion of these metabolites were added to the recon-

struction. Next, the model objective was changed to an internal demand reaction for the

metabolite or excretion reactions, respectively, and was gapfilled sequentially; this ensures

import or synthesis of each of these measured metabolites. We then used a parsimonious flux

balance analysis (pFBA)-based approach as originally used in [60] and further developed in

[61] to add the minimal number of reactions required to carry flux through the internal

demand or excretion reaction. Code is linked in the Data Availability section. In essence, this

pFBA approach minimizes the flux through genetically unsupported reactions from a bio-

chemical database such that the network can carry flux through the objective reaction (i.e.

metabolite production or consumption or biomass synthesis). Any reaction from the database

that carries flux during this problem was added to the network.

Gapfilling (part 2)—Biomass as the objective function
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After compartmentalization, manual curation, and gapfilling for individual metabolites, we

used pFBA-based gapfilling to ensure each network was capable of generating biomass. We

use two classes of biomass functions here to robustly evaluate model performance, specifically

a genus-specific curated biomass reaction (for Plasmodium reconstructions) and a parasite-

specific generic biomass reaction. The genus-level curated biomass reaction was developed

and curated for our manually curated Plasmodium falciparum model; see [47] for justification

of this biomass reaction. Our generic biomass contains the consensus set of metabolites from

several manually curated reconstructions for Plasmodium falicparum, Leishmania major, and

Cryptosporidium hominis. The stoichometry for this generic biomass is from the iPfal22 bio-

mass reaction [47]. Unfortunately, variability in reconstruction namespace (i.e. the database

used for metabolite and reaction naming conventions) make it difficult to reconcile data com-

piled for some parasite reconstructions, such as the Toxoplasma and Plasmodium reconstruc-

tions ToxoNet1 in the KEGG namespace and iPfal22 in the BiGG namespace, as there are not

always one-to-one mappings of variables across databases. This generic biomass was used to

capture the most conservatively defined required parasite biosynthetic capacity. All recon-

structions were gapfilled to ensure biomass could be synthesized via the generic parasite bio-

mass reaction; all Plasmodium reconstructions were also gapfilled to ensure biomass could be

synthesized via the genus-specific biomass reaction. For all biomass gapfilling steps and simu-

lations, all exchange reactions were kept open to simulate a nutrient rich extraparasitic envi-

ronment. Blocked and unconnected reactions were kept in the reconstructions (S6 Table).

The distribution of blocked and unconnected reactions were similar in de novo and gapfilled

reconstructions (S9 Fig).

Model performance evaluation

Network accuracy was evaluated against gene essentiality data (S4 Table) if available. Gene

essentiality was simulated by performing single gene deletion studies in our models. All simu-

lations were performed in a model state without additional experimental constraints; specifi-

cally, all exchange reactions were permitted to carry flux reversibly, simulating a nutrient rich

environment such as intracellular growth. Of note, these ‘unconstrained’ models do not neces-

sarily represent the in vitro or in vivo environment in which all experiments were conducted,

merely the metabolic capacity an organism encodes. If this extracellular environment was con-

strained to represent the specific host environment, we would see further separation of model

predictions.

Gene deletions were simulated by removing the gene of interest from the model using

CobraPy’s ‘single_gene_deletion’ function. This change results in the inhibition of flux

through all reactions that require that gene to function. If the model could not produce bio-

mass with these constraints, the gene was deemed essential. Specifically, we defined an essen-

tial gene as a knockout that resulted in 10% or less of the maximal biomass (measured in

mmol/(gDW�hr)). Knockout accuracy was defined as the sum of true positives (refractory to

knockout or lethal genes) and true negatives (nonlethal genes) divided by the total number of

predictions. As targeted metabolomics data were used for model generation (by gapfilling), we

excluded these data from the evaluation data.

Models were tested for thermodynamically-infeasible loops and energy-generating cycles;

the approach outlined in [84] was used with minor modifications for eukaryotic cells.

Memote evaluation

Models were evaluated using Memote [62]; example outputs are presented on https://

github.com/maureencarey/paradigm/tree/master/memote_reports. Additionally, Memote was

used to quality control the reconstructions throughout the development of the ParaDIGM

pipeline to improve standard compliance (especially annotation coverage) and biological rele-

vance (e.g. network connectivity and topology).
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Reconstruction pipeline for eukaryotes

Our pipeline itself (Fig 2A) is uniquely tailored to eukaryotic cells by recognizing the impor-

tance of compartmentalization and the design of the objective function. Compartmentaliza-

tion biases predictions [47]; both our de novo reconstruction and orthology-driven approaches

addresses this important step. Compartmentalization was incorporated into our de novo
reconstruction pipeline and implemented for several genera (S5 Table). We adjusted the local-

ization of reactions if inappropriately compartmentalized and added unique parasite-specific

compartments (e.g. the apicoplast in Plasmodium). This addition was done by adding geneti-

cally supported reactions were to all feasible compartments. If a gene-encoded enzyme corre-

sponds to both mitochondrial and cytoplasmic reactions, both versions will be included:

adding network redundancy that may not be biologically accurate. Alternatively, if an enzyme

maps to a chloroplast reaction, our approach moved the reaction to the cytosol. It is plausible

that chloroplast reactions like this example are not catalyzed by the parasite. These modifica-

tions are encoded in our analytic pipeline for future reference (see code, Data Availability).

Additionally, we used a curated model to inform the compartmentalization of each semi-

curated model (Fig 2A); genes associated with compartmentalized reactions were mapped via

orthology, assuming orthologous genes has comparable localization across species.

Similarly, the objective function (often representing biomass synthesis [85]) influences net-

work simulations [86] and the assumptions used in formulating a biomass reaction for pro-

karyotes may not apply to eukaryotes [87]. For example, in the first genome-scale metabolic

model of any Cryptosporidium species, C. hominis [88], 30 reactions involved in lipid synthesis

were unsupported by genetic evidence and manually added to the network. The selection of

lipid species as biomass precursors may have impacted the addition of these unsuported reac-

tions and resultant simulations with the model; for example, the 30 gapfilled reactions might

not be added if alternative or fewer lipid species were included in the biomass reaction.

Thus, we use a consensus biomass reaction derived from multiple curated parasite recon-

structions, as well as a genus-specific biomass for Plasmodium reconstructions. These objective

functions influence reactions added via gapfilling, adding uncertainty in network structure

[60,61]; thus, we emphasize which reactions were gapfilled frequently (i.e. for many species

within a genera or ParaDIGM broadly) to increase our confidence in these predicted func-

tions. Targeted investigation of these reactions (such as pyridoxal oxidase and shikimate dehy-

drogenase) will increase our confidence in all of our parasite network reconstructions.

Furthermore, initial de novo reconstructions were supplemented with curated information

from the EuPathDB databases. All genes associated with KEGG reaction identifiers were col-

lected from EuPathDB. These KEGG identifiers were then converted to the BiGG namespace,

whenever possible, and added these reactions to each genome reconstruction. If the reaction

was already present but the gene was not, the gene was added to the reaction’s gene-protein-

reaction rule (using an ‘OR’ relationship if another gene already was included). This process

improved the scope of the network reconstruction for each species/genome and leverages one

of the best features of the EuPathDB family of databases: user contributions and literature sup-

port. This builds on the bioinformatic approach (i.e. Diamond annotation) to build de novo
reconstructions by integrating curated gene annotations that have been documented on

EuPathDB.

Even with this addition, it is important to note that not every gene with a metabolic annota-

tion on EuPathDB will be included in the reconstructions for three main reasons: (1) some

metabolic processes are not included in genome-scale metabolic network reconstructions

{group 1}, (2) some functions are insufficiently characterized to include as a reaction {group

2}, and (3) unfortunately not all KEGG IDs can be converted to the BiGG namespace {group
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3}. For example, 1032 genes are on EuPathDB for T. gondii ME49, associated with a metabolic

GO term, and not found via our Diamond annotation of metabolic genes. This list of genes

includes TGME49_201130, TGME49_321660, and TGME49_326200. TGME49_201130 is

annotated as a rhoptry kinase family protein ROP33a with GO terms including ‘ATP binding’

and ‘protein kinase activity’; rhoptry biology is not traditionally the kind of function that

would be included in genome-scale metabolic network reconstructions because it is not a bio-

synthesis or degradation. Thus, this gene is associated with group 1 above. On the other hand,

it may be appropriate to include the function associated with TGME49_321660 in a recon-

struction as its associated GO terms include ‘transferase activity’ and ‘transferring glycosyl

groups’. However, the annotation for TGME49_321660 is not detailed enough to include in a

reconstruction (i.e. there is no EC number or KEGG ID), so this gene belongs in group 2.

Lastly, TGME49_326200 encodes a type I fatty acid synthase (EC 1.6.5.5) is associated with the

KEGG ID (R02364) but no BiGG ID {group 3}. The groups 2 and 3 (2: incompletely annotated

genes and 3: those associated with only KEGG IDs) are excellent starting points for manual

curation.

In addition, to curate these reconstructions, we recommend readers focus on false positives,

or enzymic functions that were identified but do not occur in vivo or in vitro. For example,

when the model incorrectly predicts a function or gene is not essential, there is inaccurate

redundancy upstream of the prediction; thus, a curator can use these observations to identify

and remove false positive gene annotations.
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56. King ZA, Lu J, Dräger A, Miller P, Federowicz S, Lerman JA, et al. BiGG Models: A platform for integrat-

ing, standardizing and sharing genome-scale models. Nucleic Acids Res. 2016; 44: D515–22. https://

doi.org/10.1093/nar/gkv1049 PMID: 26476456

57. Untaroiu AM, Carey MA, Guler JL, Papin JA. Leveraging the effects of chloroquine on resistant malaria

parasites for combination therapies. BMC Bioinformatics. 2019; 20: 186. https://doi.org/10.1186/

s12859-019-2756-y PMID: 30987583

58. Stanway RR, Bushell E, Chiappino-Pepe A, Roques M, Sanderson T, Franke-Fayard B, et al. Genome-

Scale Identification of Essential Metabolic Processes for Targeting the Plasmodium Liver Stage. Cell.

2019; 179: 1112–1128.e26. https://doi.org/10.1016/j.cell.2019.10.030 PMID: 31730853

59. Krishnan A, Kloehn J, Lunghi M, Chiappino-Pepe A, Waldman BS, Nicolas D, et al. Functional and

Computational Genomics Reveal Unprecedented Flexibility in Stage-Specific Toxoplasma Metabolism.

Cell Host Microbe. 2020; 27: 290–306.e11. https://doi.org/10.1016/j.chom.2020.01.002 PMID:

31991093

60. Biggs MB, Papin JA. Managing uncertainty in metabolic network structure and improving predictions

using EnsembleFBA. PLoS Comput Biol. 2017; 13: e1005413. https://doi.org/10.1371/journal.pcbi.

1005413 PMID: 28263984

61. Medlock GL, Papin JA. Guiding the Refinement of Biochemical Knowledgebases with Ensembles of

Metabolic Networks and Machine Learning. Cell Systems. 2020. https://doi.org/10.1016/j.cels.2019.11.

006 PMID: 31926940

62. Lieven C, Beber ME, Olivier BG, Bergmann FT, Ataman M, Babaei P, et al. MEMOTE for standardized

genome-scale metabolic model testing. Nat Biotechnol. 2020; 38: 272–276. https://doi.org/10.1038/

s41587-020-0446-y PMID: 32123384
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