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Abstract The ongoing pandemic is laying bare dra-
matic differences in the spread of COVID-19 across
seemingly similar urban environments. Identifying
the urban determinants that underlie these differ-
ences is an open research question, which can con-
tribute to more epidemiologically resilient cities, opti-
mized testing and detection strategies, and effec-
tive immunization efforts. Here, we perform a com-
putational analysis of COVID-19 spread in three
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cities of similar size in New York State (Colonie,
New Rochelle, and Utica) aiming to isolate urban
determinants of infections and deaths. We develop
detailed digital representations of the cities and sim-
ulate COVID-19 spread using a complex agent-
based model, taking into account differences in spa-
tial layout, mobility, demographics, and occupational
structure of the population. By critically comparing
pandemic outcomes across the three cities under
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equivalent initial conditions, we provide compelling
evidence in favor of the central role of hospitals.
Specifically, with highly efficacious testing and detec-
tion, the number and capacity of hospitals, as well as
the extent of vaccination of hospital employees are key
determinants of COVID-19 spread. The modulating
role of these determinants is reduced at lower efficacy
of testing and detection, so that the pandemic outcome
becomes equivalent across the three cities.

Keywords Agent-based model · COVID-19 ·
Resilient cities · Urban design

Introduction

World-wide urban areas remain the major targets
of the ongoing COVID-19 pandemic due to their
high population densities, frequent human interac-
tions, and daily commutes [1, 2]. Analyzing the
spread in metropolitan areas can help alleviate the
epidemiological burden, by supporting the design of
policies for detection [3–5], immunization [6, 7],
and intervention [8, 9]. Along with scientifically bac-
ked policy-making, research on COVID-19 spread in
urban environments can support the identification of
factors that reduce vulnerability to future pandemics
[10] and create epidemiologically resilient cities [11,
12]. Predictably, population density has been proposed
as an important determinant of the spread [13–15].
Empirical studies have also demonstrated the impact
of demographics [16–19], socio-economic factors [20,
21], and climate [22] on the local spread of the pan-
demic.

While evidence-based analysis is key to assess the
current state of the pandemic and identify causal asso-
ciations, computational models of COVID-19 spread
have been instrumental in the simulation of several
what-if scenarios that have shaped public health poli-
cies across the globe [23–27]. With a strong focus on
major urban areas, these models have helped quantify
the benefits of non-pharmaceutical interventions [28–
30], identify optimal schemes for prioritizing and
administering vaccines [31–35], understand the impli-
cations of human mobility [36–38], and devise safe
reopening strategies for the economy [39–42].

Several studies have investigated the COVID-19 pan-
demic in urban environments, in search of character-
istics that influence its spread, often toward informing

data-driven models. For example, Bhowmik et al. [43]
performed a county-level analysis of the United States
and proposed a model of COVID-19 spread that is
informed by demographics, socio-economic factors,
and healthcare availability. Aguilar et al. [44] ana-
lyzed different types of urban layouts with respect to
spread dynamics and effectiveness of mobility restric-
tions. Through simulations of an infectious disease
in synthetic cities with different geographical layouts,
Brizuela et al. [45] demonstrated that heterogeneous
urban design may lead to a highly non-uniform distri-
bution of the epidemic, potentially targeting the most
vulnerable segments of the population. In a study of
163 cities across the World, Hazarie et al. [46] dis-
covered that COVID-19 contagion increases propor-
tionally to human mobility in densely populated areas.
Li et al. [47] proposed a series of major urban fab-
ric contributors to the initial COVID-19 epidemic in
Wuhan, including the distribution of public facilities,
hospitals, roads, and subway stations.

In this work, we complement these efforts through
a high-resolution computational model at the granular-
ity of a single individual for the spread of COVID-19
in three different cities in New York State: Colonie,
New Rochelle, and Utica. These cities are selected
for their similar size, but also because they differ by
geographic layouts, population density of their resi-
dents, demographics, socio-economic characteristics,
and mobility patterns within their populations [48].
COVID-19 spread is simulated within each city using
an agent-based model, which builds upon our previ-
ous work [34, 35, 42]. By modeling the cities under
equivalent initial conditions for the contagion, we can
successfully distill urban determinants of COVID-
19 spread. Unique to this study is the estimation of
the extent to which different location types influ-
ence infections and deaths, by selectively excluding
one of them at a time from the analysis. Likewise,
we also detail the specific role of different agents
in the spread in hospitals, from COVID-19 patients
to staff.

Our results confirm the key role of testing and
detection on the ability to shape the spread across
different urban environments. As highly efficacious
testing and detection is attained, our model projections
suggest a crucial effect of the number and capacity of
hospitals on the spread of the virus, making cities with
large and concentrated sanitary hubs more effective
to combat the spread than those with more scattered
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and smaller hospitals. Moreover, vaccination of hos-
pital employees seems to be a further salient factor
that contributes to halting the spread. The modulating
role of these factors is reduced for lower testing and
detection efficacy, whereby poor detection and testing
lead to substantially equivalent COVID-19 spreading
dynamics across the three cities. Our work highlights
the importance of testing and the need for reducing
the spread from the hospitals through case isolation
and immunization of the personnel. Urban planning
should consider the location and structure of hospitals,
which may be critical in containing the pandemic.

Methods

Our computational framework consists of two com-
ponents: a detailed database of the cities and their
population, and an agent-based model of COVID-19
spread at the resolution of a single individual. The core
framework is described in our earlier publications [34,
35, 42], to which we point the interested reader for
further details.

Database

The database of each city contains the coordinates
of all the public and residential buildings along with
resident demographics. With this information, we rec-
reate synthetic cities — the fabric upon which soft-
ware agents mimicking individuals will live, interact,
and contract the infection. The locations of schools,
retirement homes, and hospitals were collected using
OpenStreetMap [49] and Google Maps [50]. The num-
ber of students in each primary, middle, and high
school was estimated using the data from the National
Center of Education Statistics [51]. Capacities of day-
cares were assessed using the US child care database
and building sizes [52–54]. The number of students
in colleges and the number of residents of retirement
homes were estimated using websites of specific insti-
tutions. The number of in-patients in hospitals due
to conditions other than COVID-19 in New Rochelle
and Utica represented about 60% of the bed capac-
ity, as recorded by the New York State Department of
Health [55] and the American Hospital Directory [56].
For Colonie, we hypothesized that hospitals would be
able to treat COVID-19 patients, although, in prac-
tice, these hospitals were clinics that do not hospitalize

patients. Consistent with the premise of lack of hos-
pitalization, we assumed that none of the virtual bed
capacity of Colonie was allocated to patients with
conditions other than COVID-19.

The residents work in and outside of their city;
their workplace locations were determined using the
U.S. Census data [48] and SafeGraph [57]. The public
transit commute patterns were gathered from Google
Maps [50]. Our model also includes various non-
essential businesses and locations, such as restaurants,
malls, and grocery stores. Similar to workplaces, non-
essential business locations were determined using
SafeGraph [57]. The database also includes several
major schools, retirement homes, or hospitals located
in close proximity of the city but outside its admin-
istrative boundaries due to the high likelihood of
residents using and frequenting those places. All the
private and public modeled locations are displayed in
Fig. 1a).

The geographic coordinates of residential build-
ings were collected using ArcGIS [58], without dis-
tinguishing the number of individual units in each
residential building. A proxy for the distribution of
buildings with multiple units was instantiated in our
model using the U.S. Census data [48]. While the local
layout of such units may differ from the real one, we
made sure that the real and the modeled distributions
are statistically equivalent. This procedure simpli-
fies our previous approach [34, 42], in which all the
building locations and types were manually collected,
toward the systematic automation of the data collec-
tion phase. Details of this approach for the collection
of site locations and the verification of its validity
with respect to the manual collection technique pro-
posed in [34, 42] are described in the Supplementary
Material.

To recreate city populations we used the U.S. Cen-
sus data on age distribution, household and family
structure, commute times and modes, and employ-
ment characteristics [48]. All the generic workplaces
and agents working in there were divided into five
occupational categories, as shown in Fig. 1b). Such
a fine categorization is an important improvement
with respect to our previous work [34, 42], in which
we only distinguished between schools, retirement
homes, and hospital employees [34, 42].

The rationale for such a fine categorization lies in
the need to capture the different employment struc-
ture of the three cities and the corresponding variation
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Fig. 1 a) Public and residential locations in the three cities that are considered in the model, b) occupation categories of the employed
residents, and c) age distribution of the population

of workplace-related infection risks. In our model,
we explicitly simulate COVID-19 spread in the work-
places that are in the cities. Each of these locations
has an assigned occupational category and a category-
specific transmission rate, contributing to the infection
risk for all the agents employed therein. Contrarily, the
occupational category of an agent who works outside
of city is a characteristic of the agent, rather than of
the location. This stems from the fact that our model
avoids simulations of the entire region by approxi-
mating the contagion in the out-of-city locations. The
workplace-related infection risk for an agent working
out-of-city corresponds to the estimated fraction
of infected people in the region multiplied by the
corresponding category-specific transmission rate.
Overall, the employment type distribution matches the
U.S. Census data [48] with details on its distribution
and rate computation enclosed in the Supplementary
Material.

The age distributions of the cities’ residents are
shown in Fig. 1c), while other characteristics of the
cities are summarized in Table 1. The three cities
differ in some characteristics, such as spatial layout,
population density, fraction of residents in the 0–9
age cohort, unemployment rates, commute patterns,

workplace locations, and percentage of people work-
ing in low- versus high-risk occupations. At the same
time, the three cities have similar household and fam-
ily structure and age distribution of older children and
adults.

Agent-Based Model

In our model, each city resident is represented by
a simulated agent who mirrors residents’ lifestyles.
The agents could live together in distinct households,
retirement homes, and be admitted to hospitals. They
could work, go to school, visit non-essential busi-
nesses, visit each other, and travel to work through

Table 1 Characteristics of the three modeled cities

Colonie New Rochelle Utica

Population 82,797 79,205 59,750

Population/sqmi 1,459 7,445 3,714

Unemployment rate 3.1% 6.1% 8.2%

Use of public transit 1.02% 8.5% 0.77%

Workers out of the city 19.7% 31.2% 15.6%
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various transit means, consistent with the database
described in “Database”.

COVID-19 spreads through contacts that agents
make in the locations they visit through a probabilis-
tic mechanism. Specifically, the transmissibility of
COVID-19 is dependent on the location type and agent
role, and is quantified through transmission rates,
as explicitly detailed in our previous work [34, 42]. To
capture the transmission levels associated with dif-
ferent occupations, we use the empirical data pub-
lished by the Washington State Department of Health
[59, 60]. Details about this procedure and exact va-
lues of the rates are included in the Supplementary
Material.

Once infected, agents can develop symptoms or
remain asymptomatic. Infected agents (both asymp-
tomatic and symptomatic) and those with symptoms
similar to COVID-19 but from other diseases are
tested with a certain probability. We refer to this likeli-
hood as testing and detection efficacy (low, moderate,
or perfect). A low efficacy corresponds to testing
of 63% of the symptomatic agents and 44% of the
asymptomatic, following our model calibration for the
first wave [34]. Moderate efficacy implies that 82%
of symptomatic and 72% of asymptomatic agents are
tested, and perfect efficacy means that all infected
agents are tested. Testing accounts for false positive
and false negative results, as detailed in [42]. With the
exception of hospital employees, when an agent “signs
up” for a test, they are immediately home-isolated.
This mimics local practices, whereby healthcare staff
do not isolate until they are confirmed COVID-19 pos-
itive or develop symptoms of the disease. Tests are
performed in hospitals or in independent testing sites,
where the latter locations are assumed to pose no risk
of transmission. Agents who tested positive can be
treated at home, through routine hospitalization, or in
ICUs, depending on the severity of the disease, which
is determined in a stochastic fashion, consistent with
COVID-19 clinical data [61]. The disease progression
terminates with either a recovery or death. The exact
COVID-19 progression used in this work follows the
progression model described in [42].

Similar to our previous work [42], the model con-
templates vaccination for agents. In our simulations,
we mimic a continuously progressing vaccination
campaign. A portion of the agents is immunized
at the beginning of the study and the number of

vaccinated individuals increases linearly as the sim-
ulation progresses. Once vaccinated, we assume that
individuals are granted full immunity to COVID-19.
Despite being simplistic, such an assumption should
be realistic for the short-term simulation window
(through Summer 2021) considered in this work. Non-
ideal effectiveness of vaccines and waning immunity
have been incorporated within our simulation frame-
work in a separate publication [35].

The core parameters used in the model are
described in detail in our previous works. Following
our most recent study [35], we simulate the Delta
variant of the virus with epidemiological parameters
calibrated on clinical estimations [62, 63]. Since our
goal was to analyze the impact of non-epidemiological
factors, such as population density and employment
distributions, on the spread of COVID-19, all three
cities were simulated with the same initial percent-
age of infected agents, patients in various stages of
COVID-19, and vaccinated agents, chosen uniformly
at random in the population. All cities are assumed
to have the same risk levels from travels from and
to neighboring cities, transmission in public transit,
and frequency of visiting non-essential business loca-
tions. The detailed parameter list is enclosed in the
Supplementary Material.

Results

COVID-19 Spread in the Three Cities

Starting from the same initial conditions, we simu-
lated 3 months of COVID-19 spread in the three cities
for different testing and detection efficacies. Since the
initialization of the system and the contagion model
are governed by probabilistic mechanisms, for each
analyzed condition, we estimated the outcome of the
spreading process via Monte Carlo simulations, by
averaging over 400 independent realizations. Results
shown in Fig. 2 indicate that under low and moder-
ate testing and detection efficacy, the three cities of
Colonie, New Rochelle, and Utica do not experience
significant differences in the COVID-19 toll, either
in terms of total infections or in total deaths. How-
ever, under perfect efficacy, the case and death counts
in New Rochelle are considerably smaller than in the
other two cities.
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Fig. 2 Simulations of the spread of COVID-19 in Colonie (blue
curves), New Rochelle (red curves), and Utica (orange curves)
over a time-window of 3 months, for three different testing

and detection efficacies. Solid lines represent the average of
400 independent realizations; dashed lines are the 25th and 75th

percentiles

Identification of Major COVID-19 Hubs Under
Perfect Testing and Detection Efficacy

To shed light on the factors that determine the sig-
nificantly lower spread in New Rochelle for perfect
testing and detection efficacy, we performed two addi-
tional analyses. In the first analysis, we selectively
excluded different location types from the spread by
assuming that no transmission can happen in that type
of locations (technically, by setting the correspond-
ing transmission rate to 0). Among location types,
we also include public transit to delve into observed

differences among cities as reported in Table 1. In
this way, we simulated the spread in the three cities
without agents being infected at generic workplaces,
public transportation, schools, hospitals, retirement
homes, or non-essential business locations, respec-
tively.

According to the results shown in Fig. 3, the
spread in Colonie and Utica is comparable to the
one in New Rochelle only if hospitals are excluded
from transmission. Note that this trend is preserved
even after the exclusion of infections in public tran-
sit, which is markedly more used by the residents of
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Fig. 3 Final COVID-19
toll (infections and deaths)
after simulating a 3-month
window and excluding the
indicated location types
from the spread. The
bottom and top edges of the
box plots mark the 25th and
75th percentiles, the solid
lines represent the median,
and the whiskers span the
entire, outlier-free dataset

New Rochelle than the other two towns (as reported
in Table 1). This result can be traced back to dif-
ferent rules applied to hospital employees compared
to the general population. Under perfect testing and
detection efficacy, nearly all the agents who become
infected during the simulated time-window are suc-
cessfully detected. However, as opposed to any other
agent, hospital employees do not home-isolate before
receiving their positive test result or developing dis-
ease symptoms. As such, they are allowed a wider
period for potentially spreading the infection in the
hospital and outside. Furthermore, New Rochelle has
only one hospital with 345 employees, which is much
less than Colonie (six hospitals, 1,552 employees)
and Utica (four hospitals, 962 employees). Thus, New
Rochelle provides less routes for COVID-19 to spread

from hospital employees who are positive but still
performing their duties.

While our simulation results are suggestive of a
key role of hospitals in relaying the infection out-
side of their facilities, the question about possible
causes of transmission within facilities, with the asso-
ciated risk of generating outbreaks, remains open.
To this aim, our second analysis sought to identify
the types of agents that contributed the most to the
spread within hospitals. In particular, we performed
a series of simulations where we excluded select
types of agents in hospitals from the transmission
dynamics. The types of agents that we excluded were
patients who were originally admitted to the hospital
due to conditions other than COVID-19, agents that
get tested at a hospital, hospital employees, routinely
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hospitalized COVID-19 patients, and patients treated
for COVID-19 in an ICU, respectively. The results in
Fig. 4 show that the reduction of spread in Colonie and
Utica is achieved only when excluding the agents who
are routinely hospitalized for COVID-19, suggesting
their prominent role as main spreaders within hospital
facilities.

Effect of Vaccinating Hospital Employees

Results in Fig. 4 lead us to formulate the hypothesis
that an important route for COVID-19 generates from

hospitals, among patients, and spreads outside, due
to infected employees who could interact with others
between the time the infection is contracted and the
emergence of symptoms or the positive outcome of
a test. Under this premise, vaccinating hospital emplo-
yees becomes of paramount importance.

To further back this claim, we performed an additio-
nal simulation study in which we vaccinated all the ini-
tially healthy hospital employees. Under the assump-
tion of perfect immunity, results in Fig. 5 confirm that
vaccination of healthcare employees greatly reduces
the toll of the epidemic. Importantly, the immunity of

Fig. 4 Final COVID-19
toll (infections and deaths)
after simulating a 3-month
window and excluding the
indicated agent type from
the spread within hospitals.
In-patients refer to agents
originally admitted to the
hospital due to conditions
other than COVID-19,
Tested are agents having
their test in a hospital, Staff
are the healthcare
employees, Regular patients
are the agents routinely
hospitalized for COVID-19,
and ICU patients are the
agents treated for
COVID-19 in ICUs. The
bottom and top edges of the
box plots mark the 25th and
75th percentiles, the solid
lines represent the median,
and the whiskers span the
entire, outlier-free dataset
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Fig. 5 Spread of COVID-19 with perfect testing and detection and fully vaccinated hospital employees. Solid lines represent the mean
out of 400 independent realizations. Dashed lines are the realizations corresponding to the 25th and 75th percentiles

hospital employees also changes the previous trends,
with Colonie presenting the least number of cases
due to its larger number of hospital and hospital
employees. Given that the vaccines in reality do not
fully protect against COVID-19 and their effects wane
with time, this best-case scenario further highlights
the need of mandatory (or extremely incentivized)
vaccination of healthcare workers.

Discussion

Our work offers a unique, comparative study of differ-
ent U.S. cities toward elucidating the urban determi-
nants of COVID-19 spread. Through a high-resolution
agent-based model, we simulated the spread of
COVID-19 in three similar-sized cities in New York
State (Colonie, New Rochelle, and Utica), differing in
spatial layout, population demographics and lifestyles,
and occupational characteristics. We matched the ini-
tial COVID-19-related conditions in the three cities to
facilitate the isolation of non-epidemiological, urban
determinants. Acknowledging the critical importance
of testing and detection in fighting the pandemic, our
analysis included different testing and detection sce-
narios, from low (reminiscent of the first wave) to
perfect efficacy.

Our computational results indicate that the three
cities experience similar COVID-19 infections and
deaths for low and moderate efficacies of testing and
detection. In the case of perfect detection and test-
ing efficacy, the COVID-19 toll in New Rochelle
remarkably drops below the other two cities. Through
additional analysis on the influence of different

locations on the spread, we demonstrated that the rea-
son behind such a difference is mainly due to the spread
in hospitals. Specifically, we found that contagion
within hospitals is dominated by routinely hospital-
ized COVID-19 patients and hospital employees who
could serve as vectors from the hospitals out to the
city. Predictably, our numerical simulations also indi-
cate that vaccination of healthcare workers is success-
ful in preventing these contagions, thereby reducing
the COVID-19 toll in the three cities. Our results con-
tribute a valuable outlook on testing, immunization,
and isolation of infected cases in urban environments.

Overall, the results of our study highlight the
importance of timely and efficacious testing and
detection, consistent with claims from our previous
analyses [34, 35, 42] and work of other research
groups [28, 64]. By improving the efficacy of test-
ing and detection from low to perfect, the case count
drops as much as sixfold, resulting in up to five
times fewer deaths. With reduced testing and detec-
tion, differences between the fabrics of the cities have
a limited impact on COVID-19, resulting in equiv-
alent epidemic patterns. In this vein, despite their
differences, the burden of undetected cases bears sim-
ilar, dramatic consequences on the three cities. These
claims are aligned with strategic plans implemented
world-wide in an effort to curb the COVID-19 pan-
demic through immunization and non-pharmaceutical
interventions [65, 66].

With perfect testing and detection efficacy, New
Rochelle had, on average, two times less infection
cases and deaths compared to Colonie and Utica.
We attribute this variation to differences in COVID-
19 spread in hospitals. The severity of the spread in
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hospitals has been documented in other works [67–
70], while hospitals have been identified as domi-
nant COVID-19 hubs in various computational stud-
ies [47, 71]. With respect to urban planning and
epidemiological crisis mitigation, our results highlight
the importance of proper isolation of the hospital-
ized infected individuals [69, 72]. Following suc-
cessful implementations [73–75], cities should con-
sider establishing fewer, more isolated hospitals to
treat COVID-19 patients. Ongoing solutions aim-
ing to reduce COVID-19 spread from hospitals are
the utilization of mobile pre-screening applications
before a visit [76], and delegating some of the diag-
nostic services to online meetings rather than live
interactions [77].

In our model, only hospital employees spread
COVID-19 from the hospitals to the general popu-
lation, which is consistent with restrictions that are
placed in health care facilities on guests’ admission
and efforts to perform remote diagnosis when possi-
ble [77, 78]. The intensity of the spread is linked to the
nature of their work, preventing hospital employees
from quarantining unless tested positive or developing
symptoms [79, 80]. Vaccinating these individuals in
our simulations resulted in twenty times fewer cases
and ten times less casualties. While we have assumed
that vaccines grant full, long-lasting immunity, it is
tenable that equivalent, albeit reduced, benefits would
persist under more realistic conditions, in line with
other studies [67, 68]. The importance of vaccinating
healthcare workers pointed out in our study is partic-
ularly relevant, as many governments across the globe
are hesitant in mandating their immunization [81, 82],
facing criticism from the employees and the public.

When interpreting the results of our work, one
should keep in mind several of its limitations. First,
our testing and detection procedure is very conser-
vative, with agents isolating as soon as they decide
to get tested. This is likely a more optimistic sce-
nario than what is encountered in reality, especially
after relaxing local quarantine rules for the fully vacci-
nated [83]. Second, the model does not accommodate
any form of contact tracing, which is still a major
component of COVID-19 curbing. Third, the vaccines
are also assumed to act in an idealized fashion, and
there are no limits to their application, like agents’ age
or hesitancy. Fourth, our model does not account for
additional deaths that may result from the overburden
of hospitals and the reduction of hospital employees

due to infection. Adding such features may partly
reduce differences in the number of deaths between
the three cities. However, we do not anticipate dra-
matic changes from the inclusion of these features.

In conclusion, our study indicates that enhanc-
ing the effectiveness of testing and detection policies
would make urban determinants essential factors of
the epidemic outcome. Conversely, prioritizing urban
modifications over improvement on testing may nul-
lify such an effort. In the absence of highly efficacious
testing and detection, cities appear to be equivalently
vulnerable to COVID-19 spread. If highly efficacious
testing and detection are practiced, our analysis points
to hospitals as major sources of epidemic spread,
with hospitalized individuals causing local outbreaks
and employees facilitating the spread across the com-
munity. Our results imply that an epidemiologically
resilient city should possess well-developed detec-
tion infrastructure providing high-quality and timely
tests; fewer, dedicated healthcare facilities that pro-
vide good isolation of treated individuals; and strongly
incentivized vaccination of its healthcare workers.
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