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ABSTRACT

Precise redox balance is essential for the optimum health and physiological function of 
the human body. Furthermore, an unbalanced redox state is widely believed to be part of 
numerous diseases, ultimately resulting in death. In this review, we discuss the relationship 
between redox balance and cardiovascular disease (CVD). In various animal models, excessive 
oxidative stress has been associated with increased atherosclerotic plaque formation, which 
is linked to the inflammation status of several cell types. However, various antioxidants can 
defend against reactive oxidative stress, which is associated with an increased risk of CVD 
and mortality. The different cardiovascular effects of these antioxidants are presumably due 
to alterations in the multiple pathways that have been mechanistically linked to accelerated 
atherosclerotic plaque formation, macrophage activation, and endothelial dysfunction in 
animal models of CVD, as well as in in vitro cell culture systems. Autophagy is a regulated cell 
survival mechanism that removes dysfunctional or damaged cellular organelles and recycles 
the nutrients for the generation of energy. Furthermore, in response to atherogenic stress, 
such as the generation of reactive oxygen species, oxidized lipids, and inflammatory signaling 
between cells, autophagy protects against plaque formation. In this review, we characterize 
the broad spectrum of oxidative stress that influences CVD, summarize the role of autophagy 
in the content of redox balance-associated pathways in atherosclerosis, and discuss potential 
therapeutic approaches to target CVD by stimulating autophagy.
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INTRODUCTION

Reactive oxygen species (ROS) are undesirable byproducts of the cellular respiration 
system.1-4 However, cellular respiration-based energy metabolism is an essential process to 
produce adenosine triphosphate (ATP) for the continuous maintenance of essential cellular 
functions, such as cellular signaling and protein synthesis. Electron transport through 
the mitochondrial respiratory chain leaks approximately 1%–2% of electrons, generating 
superoxide (O2−), hydrogen peroxide (H2O2), and hydroxyl radical (OH·).5,6 To protect the cell 
against ROS, cells have an equally ubiquitous antioxidant defense system, which is thought to 
be important for the balance of the intracellular redox environment.7 Superoxide dismutase 
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(SOD) converts O2− into H2O2, which is then reduced to water by several cellular enzymes. 
Peroxiredoxins (Prdx), glutathione peroxidase (Gpx), catalase, and thioredoxin reductase 
(Trx) are important cellular reductases in eukaryotic cells.8-10

The results from numerous studies have demonstrated that a relationship exists between ROS 
and the incidence and mortality of various diseases, presumably because high oxidative stress 
results in increased inflammation and contributes to the increased occurrence of apoptosis.11-14 
Inflammation and apoptosis are major risk factors for cardiovascular disease (CVD), whereby 
activated endothelial cells initiate the recruitment of macrophages to the arterial walls and 
are associated with several abnormalities involved in the pathogenesis of CVD, including 
dyslipidemia and hypertension.15 Thus, the removal of oxidative stress and management of the 
redox balance form the cornerstone of the prevention and treatment of CVD.

Autophagy is a catabolic pathway for the degradation or recycling of cytoplasmic organelles 
and aggregated proteins using the lysosomal apparatus.16,17 Autophagy is highly inducible 
and triggered by environmental stresses such as oxidative stress by ROS.18-20 Oxidative stress 
not only involves the induction of autophagy, but can also serve as an intracellular signaling 
regulator by reversibly oxidizing the essential signaling components. Recent reports have 
revealed that acquired defects in autophagy exacerbate atherosclerosis, suggesting that 
autophagy exerts an anti-atherogenic function.

The oxidative stress associated with antioxidant dysfunction has adverse consequences 
on cardiovascular health because it is associated with an increased risk of atherogenesis. 
Numerous studies involving in vivo models and in vitro cell culture models have demonstrated 
a direct mechanistic link between the dysfunction of antioxidants and their related signaling 
pathways and atherosclerosis. In the following sections, we review the current evidence 
relating to oxidative stress and atherosclerotic risk and explore potential cellular and 
molecular mechanisms connecting autophagy with atherosclerosis.

ATHEROSCLEROSIS

Atherosclerosis is a gradually progressive disease characterized by the formation of lipid- 
and inflammatory component-rich plaques, resulting in the thickening of the arterial 
walls and narrowing of the arterial lumen,21,22 and it is considered the major cause of CVD. 
Research on atherosclerosis has provided insights into the relationship between plasma 
lipid abnormalities and inflammation on the arterial wall, including both vascular wall 
resident and immune cells. One of the most transformative paradigms in atherosclerosis 
research has been the discovery of the role of inflammation.23,24 For most of the 1900s, 
atherosclerosis was viewed as a hyperlipidemic disease, but in the late 1990s, the role of 
inflammation in atherosclerosis was identified. These initial findings gave rise to the field 
of immunometabolism, which is the study of how immune cells respond to and regulate 
hyperlipidemic states.

Atherosclerosis is initiated by endothelial dysfunction from lipids within the blood.25 
Endothelial cells form a monolayer on the arterial luminal surface because activated 
endothelial cells release several surface adhesion molecules, inducing the recruitment 
and adhesion of immune cells, especially monocytes.26 One of the unique characteristics 
of endothelial cells is that they can sense vascular flow dynamics. In straight and normal 
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laminar flow regions, endothelial cells produce few adhesion molecules, whereas in the 
curvatured and shear flow regions, the amount of surface adhesion molecules is greatly 
increased. Monocytes are the first immune cells that respond to the adhesion molecules 
on the endothelial cells and they continuously infiltrate into arterial intima lesions, 
which are a major area of plaque formation.27,28 After infiltration, monocytes differentiate 
into macrophages and respond to various signaling pathways, including the formation 
of foam cells by the uptake of modified lipoproteins and the secretion of many kinds of 
chemokines, cytokines, and proteases. Smooth muscle cells are another important mediator 
in atherogenesis.29,30 Although most smooth muscle cells in the arterial wall are located in 
the medial layer, in the late stage of atherogenesis, smooth muscle cells proliferate from the 
media, migrate into the intimal area, and secrete extracellular matrix proteins to create a 
fibrous cap that stabilizes the plaque. However, the migrated smooth muscle cells also take 
up modified lipoproteins, contributing to foam cell formation and further plaque complexity. 
The pathological process of atherosclerosis is summarized in Fig. 1.

Several studies have evaluated the relationship between each cell type and the risk of 
atherosclerosis. The key cellular features and results from some of the most comprehensive 
studies are reviewed in the following sections.

1. Oxidized lipids and atherosclerosis
Oxidative stress during atherogenesis can generate various oxidized lipids, including oxidized 
cholesterol.31,32 Macrophages are the cells that contribute the most during early atherogenesis 
through the uptake of oxidized low-density lipoprotein (oxLDL) via scavenger receptors, 
including scavenger receptor A (SR-A), scavenger receptor BI (SR-BI), CD36, and CD68, and 
this uptake promotes cellular cholesterol accumulation in the arterial wall. The increase in 
oxLDL-related macrophage scavenger receptors has also been implicated in the progression 
of atherosclerosis. Peritoneal macrophages from mice supplemented with oxLDL revealed 
elevated expression of the scavenger receptors CD36 and SR-A1, which are key mediators of 
cholesterol metabolism.33,34 Numerous in vivo studies have implicated both CD36 and SR-A1 in 
early foam cell formation, altered low-density lipoprotein (LDL) uptake, and atherosclerotic 
plaque progression, complexity, and necrosis.34-39

Recent studies have shown that oxidized lipids not only induced the formation of lipid-enriched 
foam cells and their accumulation in plaques, but also enhanced vascular inflammation and 
gave rise to autoimmune reactions in the vascular walls.40-42 In vitro studies have revealed 
that oxidative stress is a major stressor of the vasculature, which is associated with chronic 
inflammatory conditions and increases with aging.43,44 Another important oxLDL-mediated 
effect on atherosclerosis involves smooth muscle cell proliferation within the vasculature.45,46

2. Mitochondrial dysfunction in atherosclerosis
Recent studies have demonstrated that mitochondrial damage or dysfunction mediated 
the activation of oxidative stress, which is pro-atherogenic, by inhibiting mitochondria-
dependent metabolism.47-50 Mitochondria are essential double membrane-bound subcellular 
organelles that play a central role in various metabolic process, including the synthesis of ATP 
through oxidative phosphorylation, and prevents various metabolic diseases by controlling 
apoptosis. Thus, defects due to mitochondrial dysfunction or impairment disrupt metabolic 
homeostasis and result in excessive ROS production, which leads to serious metabolic 
diseases.51-53 Moreover, damaged mitochondria correlate with a rapid rise in mitochondrial 
DNA (mtDNA) damage and, consequently, elevated apoptosis.54,55 Increased mtDNA damage 
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results in manganese SOD2 deficiency, which inhibits mitochondrial function, leading to 
accelerated atherosclerosis. This ultimately induces mitochondria-dependent apoptosis 
and secondary necrotic core expansion in the endothelial cells.56,57 Endothelial and vascular 
smooth muscle cell (VSMC) accumulation, along with oxidative stress, elevates mtDNA 
damage, alters gene expression, and induces mitochondrial dysfunction; these changes are 
associated with atherosclerotic plaque formation, further supporting an oxidative stress-
dependent mechanism for atherogenesis.48,58,59
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Fig. 1. Schematic overview of the role of oxidative stress in atherosclerosis. 
Atherosclerosis is the progressive narrowing of the arteries due to plaque formation and is considered the major cause of cardiovascular disease. Oxidative stress is 
a major stressor that affects the development of atherosclerosis, including lipid oxidation, endothelial activation, macrophage foam cell formation, and inflammation. 
ROS, reactive oxygen species; LDL, low-density lipoprotein; EC, endothelial cell; VSMC, vascular smooth muscle cell; oxLDL, oxidized low-density lipoprotein; 
mtDNA, mitochondrial DNA; SMC, smooth muscle cell.



3. Inflammation in atherogenesis
In light of evidence reported in the literature, the involvement of inflammation has become 
increasingly accepted as a requirement for atherosclerotic plaque progression.22,60-63 As 
mentioned above, oxidative stress-induced lipid modification is an important factor in 
the initiation of atherogenesis, and oxidative stress also leads to inflammation during 
atherogenesis.45,64,65 Multiple observational studies have suggested that a lack of antioxidant 
protection is associated with inflammatory cytokines and chemokine secretion in both animal 
and human disease models.66-68 Inflammation within the atherosclerotic plaque induces ROS 
production, which further activates the oxidative stress-inflammation feedback loop.69

Inflammasomes are induced by lipoprotein-derived lipids in macrophages and vascular wall 
cells and have recently been highlighted as an important mediator of atherosclerosis.70-72 
The most well-studied inflammasome is NLR family pyrin domain containing 3 (NLRP3). 
The NLRP3 inflammasome is potentially activated through 2 steps. The first step is priming, 
which is induced by the recognition of pathogen-associated molecular patterns, such as 
bacterial lipopolysaccharide or an endogenous danger-associated molecular pattern. The 
activation of the NLRP3 inflammasome results in the proteolytic activation and secretion 
of 2 proinflammatory cytokines, interleukin (IL)-1β and IL-18.73 Because atherosclerotic 
plaques are filled with various potential danger signals for the activation of the NLRP3 
inflammasome, including oxLDL, cholesterol crystals, and double-strand DNA, it 
subsequently binds the macrophage CD36 with the Toll-like receptor complex, leading to 
the priming and activation of the NLRP3 inflammasome.74-76 The cholesterol crystals in the 
atherosclerotic plaque can activate the NLRP3 inflammasome, and an NLRP3 component 
deficiency, such as in an LDL receptor-deficient or apolipoprotein E (ApoE)-deficient mouse 
model, reduces atherosclerosis.71,77-79 Recent studies have shown that human atherosclerotic 
lesions have increased expression of the NLRP3 inflammasome.80-82

OXIDATIVE STRESS

Oxidative stress is defined as an imbalance between the production of ROS and the antioxidant 
capacity of the cell. Several studies on the atherogenic effect of oxidative stress have relied on 
various animal models, including rodents (rats and mice) and human participants. In almost 
all studies, high oxidative stress induced by ROS has been found to be associated with advanced 
atherosclerotic plaque formation. Among the several types of ROS, nicotinamide adenine 
dinucleotide phosphate (NADPH) oxidase (NOX) and mitochondrial electron chain reactions 
are closely associated with atherosclerosis (Fig. 2). Recent studies conducted both in vivo and 
in vitro, in cell culture systems, have provided insights into the molecular/signaling pathways 
involved in the adverse effect of oxidative stress on arterial disease.

In the following sections, we review the critical mechanisms causally linking oxidative stress 
to cardiovascular risk. These data provide insights into the potential mechanisms that help 
explain the risks associated with different types of oxidative stress on the various aspects of 
atherosclerosis.

1. NOX
Several primary ROS-producing systems have been elucidated depending on the type of 
oxidative stress. Among the several ROS-producing systems, including xanthine oxidase, 
uncoupled endothelial nitric oxide synthase, enzymes of the mitochondrial respiratory 
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chain, and NOX,83-85 there is increasing evidence regarding membrane-bound NOX as the 
major source of superoxide generation. In cultured vascular wall cells, NOX with O2− and 
H2O2 production are increased by several agonists that are associated with pathogenesis, 
such as angiotensin II (Ang II), thrombin, platelet-derived growth factor, and tumor 
necrosis factor-α in a time-dependent manner.86-89 The pro-atherogenic effect of NOX has 
been demonstrated in both animals and humans, with a deficiency of NOX correlating with 
mitigated atherosclerotic plaque progression. Knockdown of the p47phox gene, which is a 
cytosolic component of the NOX complex, resulted in lower levels of aortic O2

− production 
and reduced the lesion size in ApoE-deficient mice. NOX2, a specific NOX isoform, is critical 
for atherogenesis. Higher expression of NOX2 was observed in aortic endothelial cells and 
macrophages of ApoE-deficient mice, with increased production of aortic O2

−.90 In addition, 
NOX2 deficiency was associated with decreased vascular ROS production, increased NO 
bioavailability, and substantially mitigated early lesion development.

Further support for NOX-induced oxidative stress in atherosclerosis comes from human 
studies, which showed a significant positive association of NOX-derived oxidative stress 
with human atherosclerotic plaques. Similar results were obtained in a mice study where O2

− 
production increased with p22phox, a critical component of NOX, and oxidative modification 
of LDL increased, which was related to atherosclerotic coronary artery disease (CAD).91 The 
conclusion of these studies was that O2

- generation by NOX resulted in foam cell formation 
and apoptosis, which may be a risk factor for the development of plaque stability and 
atherogenesis. Similar results were observed in experiments with human intimal smooth 
muscle and endothelial cells.92,93

2. Mitochondrial ROS
As mentioned above, mitochondria are essential cell organelles that provide energy via 
oxidative phosphorylation and are a potential cellular source of ROS production. Results from 
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the majority of the reviewed studies suggest that the increased generation of mitochondrial 
ROS and mitochondrial dysfunction increase the risk for CAD.51,94-97 Among several targets 
that are damaged by the increased production of ROS in the mitochondria, mtDNA is the 
most sensitive to ROS generation as it lacks the protection of a histone-like structure, has an 
impaired DNA damage-repair system, and shows reduced mtRNA transcription.

Recent studies have directly addressed the relationship between mtDNA damage and the 
risk of atherosclerosis, as many other studies have focused on exploring atherogenesis with 
regard to mtDNA damage. The outcomes of human studies have shown mtDNA damage in 
the aortas of patients with atherosclerosis. Moreover, animal studies have found that mtDNA 
was increased in macrophages in atherosclerotic plaques of atherosclerosis model mice, such 
as ApoE- or LDL receptor-deficient mice, and mitochondrial oxidative stress was associated 
with atherosclerosis.98,99 Interestingly, mitochondrial dysfunction resulting from manganese 
SOD2 deficiency was associated with increased mtDNA damage even in the early stages 
and accelerated atherosclerosis formation in ApoE-deficient mice. The overexpression of 
catalase, an important antioxidant enzyme, effectively suppressed mitochondrial oxidative 
stress, which was associated with several downstream effects, including the reduction of 
atherosclerosis and macrophage inflammation by decreasing the activation of the nuclear 
factor-κB (NF-κB) pathway.

Mitochondrial ROS have been shown to induce NLRP3 inflammasome-dependent lysosomal 
damage and inflammasome activation.74,82,100-102 Damaged mitochondria subsequently bind to 
NLRP3 to form an inflammasome complex, which triggers NLRP3 inflammasome activation, 
and this process inhibits autophagy/mitophagy with the release of IL-1β from macrophages. 
Research on autophagy gene-deficient mice demonstrated that mtDNA release induced by 
the accumulation of ROS-damaged mitochondria resulted in the activation of the NLRP3 
inflammasome.103,104 Thus, multiple mechanisms may be involved in the mitochondrial ROS-
mediated initiation and progression of atherosclerosis.

3. Antioxidants
As mentioned above, to maintain the balance of proper ROS levels, cells have several 
antioxidant enzymes, including SOD, Prdx, Gpx, and Trx. Many studies over the past few 
decades have provided substantial evidence that intracellular dysfunction or deficiency of 
these enzymes induces numerous diseases and mortality due to the ROS imbalance.105-107 
Because increased oxidative stress has been considered as a major cause of CVD, the delicate 
regulation of ROS by antioxidant enzymes is essential for maintaining cardiovascular health.

AUTOPHAGY AND OXIDATIVE STRESS IN CVD

Autophagy is a highly conserved cellular degradation system for the elimination of unwanted, 
damaged organelles or aggregated proteins by fusion with lysosomes to protect the cell from 
environmental stress, such as nutrient depletion or oxidative stress. Autophagy activation has 
been considered as a survival defense mechanism against cellular damage, and its potential to 
provide essential amino acids for protein synthesis has been highlighted. Autophagy has recently 
been considered as a possible connecter between oxidative stress and cardiovascular pathology. 
Not only is the activation of autophagy a defense against extracellular or intracellular stress, but it 
also inversely induces autophagic cell death by destroying important cellular organelles, such as 
mitochondria and the endoplasmic reticulum (ER), when excessively activated.
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Here we explore the growing evidence for the role of autophagy in the etiology of CVD, 
particularly its correlation with the previously described factors that are associated with CVD 
and enhance its pathogenesis.

1. Evidence that autophagy regulates atherosclerosis
The observed evidence indicates the essential role of autophagy in the development of CVD; 
in particular, both autophagy and atherosclerosis are closely related to cholesterol metabolism 
and vascular inflammation. Interestingly, the current understanding of autophagy is that it 
plays an essential role in the regulation of lipid metabolism. Autophagy delivers lipids from 
lipid droplets to lysosomes, where they can be hydrolyzed by the lysosomal acid lipase for 
cholesterol efflux from macrophage foam cells, thereby inhibiting atherogenesis.108-111 Indeed, 
wild-type p53-induced phosphatase 1 (Wip1) deficiency induced the suppression of foam cell 
formation by controlling the autophagy-dependent cholesterol efflux from macrophages.112,113 
In addition, the suppression of autophagy via the silencing of autophagy protein 5 (ATG5), 
a major component of autophagy initiation, or treatment with autophagy inhibitor 
3-methyladenine significantly suppressed cholesterol efflux from macrophages by attenuating 
autophagy activation.114 Moreover, observations of ATG5-deficient macrophages demonstrated 
that autophagy became dysfunctional in atherogenesis, and its deficiency promoted 
atherosclerosis through macrophage foam cell formation and inflammasome hyperactivation 
through oxidative stress.108,115 Additionally, ATG16L1, an essential protein for the early stage 
of autophagy, has been found to be abundantly expressed in phagocytic cells associated with 
foam cell formation and could contribute to atherogenesis and the development of plaque 
vulnerability.116 Existing studies have focused on oxidative stress and lipid metabolism, both of 
which cause and increase the incidence of cardiovascular-related atherosclerosis.117 Prdx is an 
antioxidant enzyme that is highly dependent on H2O2 which is a major ROS in atherosclerosis. 
Excessive oxidative stress from Prdx1-deficient macrophages enhanced the autophagic 
dysfunction of lipid metabolism in atherosclerosis.118

However, results from studies on the cells of the vascular wall suggest that excessive 
autophagy increases the risk of cell death.119 Macrophage-specific ATG5 deficiency promotes 
oxidative stress, which activates NF-κB in macrophages and inflammation hyperactivation, 
thus enhancing plaque necrosis.120 Macrophage apoptosis is considered a promising 
therapeutic approach for plaque stabilization, and these results suggest that intact autophagy 
stabilizes atherosclerotic plaques by suppressing macrophage inflammation. Recent evidence 
has suggested that the phagocytosis of macrophages that are dying via autophagy results 
in inflammasome activation and inflammatory factor release. Similar to Prdx1 deficiency, 
atherosclerosis was accelerated in Prdx2-deficient mice by enhancing inflammation 
through the NF-κB signaling pathway, including p65, c-Jun, c-Jun N-terminal kinases, 
and p38 mitogen-activated protein kinase.121 Although this paper did not elucidate the 
autophagy function in context, the possible autophagy function in oxidative stress-mediated 
atherogenesis could not be excluded.

Further evidence of the relationship between autophagy and oxidative stress has been found 
in endothelial cells. It has been shown that oxidative stress initiates autophagy activation 
in human endothelial cells.122 Recent findings indicate that autophagy in endothelial cells 
is a key regulator of the maintenance of redox and inflammation balance in endothelial 
cell responses to shear stress.123,124 However, similar to macrophages, excessive autophagy 
can induce the autophagic death of endothelial cells, and inefficient autophagy contributes 
to the development of atherosclerosis with inflammation, apoptosis, and senescent 
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phenotypes.44,125-127 These findings reveal that autophagy not only plays a protective role in 
maintaining endothelial cell function, but may also be a key inducer of atherogenesis when 
excessively activated or dysfunctional.

Recent evidence has elucidated that smooth muscle cells are crucial cells during 
atherogenesis and could be regulated by autophagy.128-130 As mentioned above, autophagy is 
activated by cellular stress, especially oxidative stress or oxLDL, in atherogenesis. Mitophagy 
of smooth muscle cells plays a protective role in VSMCs against apoptosis induced by 
oxLDL through the removal of damaged mitochondria and promotes cell survival during 
atherogenesis.131 However, high levels of oxLDL augment autophagy, and excessive autophagy 
activation in smooth muscle cells causes autophagic cell death of the smooth muscle cells 
on the fibrous cap, which may lead to plaque destabilization. VSMCs of ATG7 knockout 
mice showed accelerated atherosclerotic plaque formation with enhanced plaque cell death, 
an increased number of infiltrating macrophages, fibrous cap thickening, and increased 
collagen content.132 To summarize, autophagy can protect against cell damage and cellular 
death or it can activate atherogenesis in various atherosclerosis-related cell types, depending 
on the extent of autophagy activation through oxidative stress.

2. Evidence that autophagy regulates aortic aneurysm
Aortic aneurysm is the second deadliest aortic disease, and it can be induced by a chronic 
inflammatory disease, such as atherosclerosis. Although the development of aortic aneurysm 
has been thoroughly elucidated, the precise mechanism by which cellular and molecular 
factors induce the pathogenesis of aortic aneurysm remains unclear.

A few studies have explored the possible relationship between the role of autophagy and 
the pathogenesis of abdominal aortic aneurysm. Similar to atherosclerosis, NADPH is 
upregulated in human abdominal aortic aneurysm samples. However, NOX deficiency 
enhanced macrophage inflammation through the secretion of IL-1β and matrix 
metalloproteinase-9, thereby disrupting the tissue-remodeling function in a mouse 
abdominal aortic aneurysm model.133 Additionally, Prdx2-deficient mice also showed an 
increase in oxidative stress and the inflammatory response, as well as accelerated abdominal 
aortic aneurysm progression.134 In both studies, a possible association was observed between 
autophagy activation in the context of oxidative stress in conjunction with macrophage 
inflammation activation in mouse models of abdominal aortic aneurysm.

Direct evidence has been adduced from a VSMC autophagy-associated aortic aneurysm 
model.135,136 The VSMC phenotype changed, showing functional differentiation towards 
phagocytic-like phenotypes during aortic aneurysm formation. Moreover, the role of 
autophagy in aortic aneurysm was identified as critical for the preservation of vessel 
integrity through the limitation of VSMC death and endoplasmic reticulum stress-dependent 
inflammation in ATG5-deficient mice. Similar to mice, human aortic aneurysm samples 
showed increased expression of autophagy and ER stress markers in VSMCs. Deficiency in 
another important autophagy initiation marker, ATG7, also led to significantly increased 
aortic aneurysm formation compared to the control. This supports the critical role of 
autophagy in VSMCs, because ATG7 deficiency increased the frequency of aortic aneurysm 
formation and rupture.137-139 Although few studies have investigated the link between oxidative 
stress-induced autophagy and thoracic aortic aneurysm,140,141 a recent study in mice and 
humans provided potential mechanisms that explain the risk of aortic aneurysm induced by 
oxidative stress with autophagy.
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3. Evidence that autophagy regulates myocardial infarction
The role of autophagy has recently been investigated in myocardial infarction. The final stage 
of chronic CVD is heart failure, which is induced by myocardial infarction under ischemic 
stress or ischemia/reperfusion injury and is associated with increased mortality.142

Clinical studies involving patients with CAD or acute myocardial infarction showing 
upregulated autophagy have suggested the relevance of autophagy because of hypoxia/
ischemia in myocardial infarction.80,143,144 Research has clarified that the autophagy function 
is required not only to maintain cardiac function, but also to remove damaged mitochondria 
to protect the cell against hypoxic/ischemic stress.145 Studies have shown that mitophagy 
is readily detected in ischemic/reperfusion models to protect cells from mitochondrial 
abnormalities.125,146 Moreover, results from mice deficient in autophagy-related genes, 
including Ulk1, Atg7, Atg13, beclin-1, and damage-regulated autophagy modulator 2, have 
shown significant increases in the pathology of cardiomyocytes.147-152

Interestingly, the excessive activation of autophagy induces severe cardiac damage in 
response to reoxygenation following a hypoxic/ischemic injury.153 Reperfusion after 
ischemia triggers an increase in autophagosome abundance compared to hypoxic/ischemic 
injuries, suggesting severe induced autophagy dysfunction or impaired autophagic flux.154 
Moreover, ischemia/reperfusion injuries impair autophagosome clearance through a ROS-
induced reduction in lysosomal-associated membrane protein-2 and beclin-1 induction, 
resulting in cardiomyocyte death.154-156 In addition, autophagy-targeting drugs have been 
developed, supporting the relationship between autophagy and myocardial infarction.157-161 
Taken together, these previous studies demonstrated that autophagy activation is precisely 
regulated at each stage of ischemia/reperfusion and is important for enhancing cell survival 
in ischemic injuries to protect against cardiomyocyte death from reperfusion injuries.

4. Evidence that autophagy regulates hypertension
Lastly, an increasing amount of evidence indicates that autophagy plays a role in the 
pathophysiological process of ocular hypertension.162,163 Hypertension is a systemic disease 
characterized by persistently elevated blood pressure during the systolic phase (over 130 
mmHg) and/or diastolic phase (over 80 mmHg) in systemic circulation and is associated 
with mortality.164 Since 1990, the number of people with hypertension worldwide has 
doubled.165 Although there is a strong correlation between CVD mortality and hypertension, 
hypertension provokes few notable symptoms; therefore, the recommendation for initial 
hypertension treatment to prevent CVD is easily overlooked.

Several studies have demonstrated that excessive and dysfunctional autophagy can cause 
cell death and senesce in an autophagy machinery depletion model.166,167 In addition, the 
inhibition of autophagy or silencing of the gene coding for LC3-II in sympathetic premotor 
neurons resulted in antihypertension in spontaneously hypertensive rats.168 Moreover, an 
autophagy inhibitor, 3-methyladenine, significantly reduced blood pressure and arterial wall 
thickness, leading to improved vascular relaxation in Ang II-treated mice.169 Although several 
studies have suggested that autophagy is associated with the pathogenesis of hypertension, a 
deeper understanding of the pathological mechanism of autophagy involved in hypertension 
is required for hypertension prevention and treatment.
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CONCLUSIONS AND FUTURE PERSPECTIVES

Oxidative stress occurs abundantly throughout all organisms, and antioxidants play a crucial 
role in maintaining the redox balance and cellular homeostasis. As discussed in this review, 
autophagy is positively associated with high oxidative stress, and its dysfunction can induce 
atherogenesis or abdominal aortic aneurysm, which is one of the most frequently occurring 
pathologies of the arterial wall (Fig. 3). Although little is known regarding the expression 
and function of autophagy in CVD risk, recent studies have suggested that autophagy is 
a strong therapeutic candidate to prevent and treat numerous diseases, including CVD. 
Further mechanistically-oriented clinical trials are required to definitively assess the effects 
of autophagy on CVD risk and various roles of autophagy in the prevention and treatment of 
CVD by maintaining redox balance.
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