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ABSTRACT Antibiotics alter the gut microbiota and decrease resistance to Clostrid-
ium difficile colonization; however, the mechanisms driving colonization resistance
are not well understood. Loss of resistance to C. difficile colonization due to antibi-
otic treatment is associated with alterations in the gut metabolome, specifically, with
increases in levels of nutrients that C. difficile can utilize for growth in vitro. To de-
fine the nutrients that C. difficile requires for colonization and pathogenesis in vivo,
we used a combination of mass spectrometry and RNA sequencing (RNA Seq) to
model the gut metabolome and C. difficile transcriptome throughout an acute infec-
tion in a mouse model at the following time points: 0, 12, 24, and 30 h. We also
performed multivariate-based integration of the omics data to define the signatures
that were most important throughout colonization and infection. Here we show that
amino acids, in particular, proline and branched-chain amino acids, and carbohy-
drates decrease in abundance over time in the mouse cecum and that C. difficile
gene expression is consistent with their utilization in vivo. This was also reinforced
by the multivariate-based integration of the omics data where we were able to dis-
criminate the metabolites and transcripts that support C. difficile physiology between
the different time points throughout colonization and infection. This report illus-
trates how important the availability of amino acids and other nutrients is for the
initial stages of C. difficile colonization and progression of disease. Future studies
identifying the source of the nutrients and engineering bacteria capable of outcom-
peting C. difficile in the gut will be important for developing new targeted bacterial
therapeutics.

IMPORTANCE Clostridium difficile is a bacterial pathogen of global significance that
is a major cause of antibiotic-associated diarrhea. Antibiotics deplete the indigenous
gut microbiota and change the metabolic environment in the gut to one favoring
C. difficile growth. Here we used metabolomics and transcriptomics to define the gut
environment after antibiotics and during the initial stages of C. difficile colonization
and infection. We show that amino acids, in particular, proline and branched-chain
amino acids, and carbohydrates decrease in abundance over time and that C. difficile
gene expression is consistent with their utilization by the bacterium in vivo. We em-
ployed an integrated approach to analyze the metabolome and transcriptome to
identify associations between metabolites and transcripts. This highlighted the im-
portance of key nutrients in the early stages of colonization, and the data provide a
rationale for the development of therapies based on the use of bacteria that specifi-
cally compete for nutrients that are essential for C. difficile colonization and disease.
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Clostridium difficile is a spore-forming, toxin-producing Gram-positive bacterial
pathogen and is a major cause of antibiotic-associated diarrhea (1, 2). C. difficile

infection (CDI) in humans has a range of clinical disease manifestations, including mild
to severe diarrhea, pseudomembranous colitis, and the potentially lethal toxic mega-
colon (3). While antibiotic treatment can resolve CDI, as many as one-third of patients
experience disease relapse, often multiple times (4). Nearly 500,000 infections and
29,000 deaths were directly or indirectly attributable to CDI in the United States in 2011,
making it a significant source of morbidity and mortality in that country (5).

Antibiotic use is the most significant predisposing factor for susceptibility to CDI, as
antibiotics alter the indigenous gut microbiota (6–9). The loss of microbially diverse
populations, including key taxa from the Lachnospiraceae and Ruminococcaceae fami-
lies, leads to a decrease in colonization resistance, which is the ability of an intact
indigenous gut microbiota to prevent colonization by pathogens (10–12). This loss
significantly alters the metabolic environment of the gut, changing the composition
and concentration of bacterial and host-derived metabolites. One key metabolic path-
way that is depleted is the conversion of host-derived primary bile acids to secondary
bile acids by members of the gut microbiota (9, 12–14). C. difficile vegetative cell growth
is significantly inhibited in the presence of secondary bile acids in vitro, and restoration
of secondary bile acid metabolism in the gut is associated with an increase in resistance
to C. difficile colonization (14–16).

While secondary bile acid metabolism could be a contributing factor in providing
resistance to C. difficile colonization, antibiotic depletion of the gut microbiota also
decreases abundances of members of the community that may have nutritional
requirements similar to those of C. difficile, such as commensal species of Clostridia. This
view is supported by evidence that precolonization of a susceptible host by nontoxi-
genic C. difficile can prevent toxigenic C. difficile colonization (17, 18). Early studies
showed that cecal microbiota grown in germfree fecal pellet homogenates reduced
C. difficile growth; this competition reverted when the homogenate was supplemented
with glucose, N-acetylglucosamine, or N-acetylneuraminic acid (19). This suggests that
an intact gut microbiota can consume or render inaccessible key nutrients that C. dif-
ficile requires for colonization.

Evidence from mouse models suggests that while C. difficile can adapt its metabo-
lism to colonize susceptible hosts that have different gut microbial community struc-
tures (or none, in the case of germfree mice), there exist a subset of metabolic pathways
that C. difficile utilizes irrespective of its environment in vivo (20–22), specifically,
pathways for carbohydrate and amino acid fermentation, including amino acids for
which C. difficile is an auxotroph. Our group has previously shown that susceptibility to
C. difficile colonization is associated with antibiotic-induced shifts in the murine gut
microbiome and, more importantly, in the postantibiotic metabolome, which was
enriched in carbohydrates, sugar alcohols, peptides, and amino acids (9). This led us to
hypothesize that the availability of specific nutrients that support C. difficile growth in
the gut after antibiotic treatment is responsible for the observed decrease in coloni-
zation resistance and that colonization resistance in the gastrointestinal (GI) tract is, in
part, mediated by competition for these specific nutrients by the members of an intact
microbiota (23).

To understand how the gut microbiota is able to compete against C. difficile for
similar nutrients, we first need to define the changes in gut nutrient levels that occur
after treatment with antibiotics and, more importantly, as C. difficile colonizes a host.
Availability of nutrients is also important for C. difficile pathogenesis and disease
progression, as C. difficile virulence factor gene expression is exquisitely sensitive to
nutrient availability (24, 25). Previous studies have explored C. difficile nutrient utiliza-
tion in vitro in a defined medium over time; however, fewer studies have defined this
in the more complex environment of the antibiotic-depleted host gut in vivo (24,
26–30). Other C. difficile studies addressing changes in the global gut metabolome at
time points postantibiotic treatment in vivo have compared either data from one time
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point between multiple antibiotics or data from one antibiotic across long time scales,
i.e., multiple weeks (9, 20).

To define the nutrients that C. difficile requires for colonization and pathogenesis in
vivo, we used a combination of mass spectrometry and RNA sequencing (RNA Seq) to
model the gut metabolome and C. difficile transcriptome throughout an acute infection
in a well-characterized mouse model of CDI. We also performed multivariate-based
integration of the gut metabolome and C. difficile transcriptome to define the signa-
tures that were the most important throughout infection at each of the time points
after challenge with C. difficile spores.

Here we used a two-tiered approach combining metabolomics with transcriptomics
in vivo and found that C. difficile uses specific amino acids and carbohydrates early in
the process of colonization of a susceptible host. This finding was also reinforced by the
multivariate-based integration of the omics data. We were able to discriminate the
metabolites and transcripts that support C. difficile physiology between the different
time points throughout colonization and infection. This report illustrates how impor-
tant the availability of amino acids and other nutrients is for the initial stages of
C. difficile colonization and progression of disease. Future studies identifying the source
of the nutrients and engineering bacteria capable of outcompeting C. difficile in the gut
will be important for developing new targeted bacterial therapeutics.

RESULTS
C. difficile colonization and infection are associated with significant changes in

the cecal metabolome. Mice sacrificed at 12, 24, and 30 h postchallenge with C. difficile
were all colonized and had averages of 1.13 � 106 CFU/g cecal content at 12 h, 1 �

107 CFU/g cecal content at 24 h, and 4.75 � 108 CFU/g cecal content at 30 h. Clinical
signs of disease were monitored and peaked at 30 h after challenge.

To characterize the temporal changes in the nutritional environment during C. dif-
ficile colonization and disease, untargeted metabolomics was performed on cecal
content harvested from mice at 0, 12, 24, and 30 h postchallenge with C. difficile VPI
10463 in a cefoperazone-induced mouse model of CDI. Analysis of variance (ANOVA)
identified 482 metabolites that differed significantly between time points, with most
changes in abundance occurring by 24 and 30 h postchallenge relative to time zero
(one-way ANOVA) (see Table S2 in the supplemental material). Random Forest analysis
was applied to identify metabolites that are important for distinguishing time points
(31) (Fig. 1A). It is a classification method that analyzes multiple variables (metabolites)
between different groups of samples (time points) and uses variability between the
groups to classify a given sample (murine cecal metabolome) as belonging to a given
group. It identifies the variables that contribute most to the classification of a sample
to a group.

The mean decrease in accuracy (MDA) score data depicted in Fig. 1A represent the
predictive accuracy that a given metabolite has for assigning a sample to a time point.
Metabolites that significantly change in abundance over time are more likely to be
identified as important for classifying samples to time points, as data corresponding to
a metabolite with values that do not change look similar across all time points.
Metabolites that increased in abundance over time are labeled in red font, those that
decreased in abundance over time in green, and those that were variable in abundance
in black (Fig. 1A).

Twenty-four of the top 50 metabolites with the highest MDA score belonged to the
amino acid Kyoto encyclopedia of genes and genomes (KEGG) metabolic pathway,
consistent with C. difficile nutrient utilization in vitro (Fig. 1A). 5-Aminovalerate had the
highest MDA score, and the value increased during infection. 5-Aminovalerate is the
by-product of the fermentation of proline via Stickland metabolism. This is a reaction
that is unique to some members of the Clostridia, including C. difficile (32). The
metabolite with the second-highest MDA score from the Random Forest analysis was
trans-4-hydroxyproline, a posttranslationally modified form of proline that is often
found in collagen; its score decreased over time, which is consistent with the produc-
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FIG 1 Cecal metabolome during C. difficile colonization and infection. (A) Variable-importance plot of the top 50 metabolites
identified by Random Forest analysis. The mean accuracy value decrease is a measure of how much predictive power is lost
if a given metabolite is removed or permuted in the Random Forest algorithm; thus, the more important a metabolite is to

(Continued on next page)
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tion of 5-aminovalerate (33). Fourteen of the top 50 metabolites identified were lipid
species, many of which were phospholipids likely derived from host cell membranes.
Two non-cell-membrane-associated lipids, 3-hydroxybutyrate and hexanoylcarnitine,
were also identified. Of the four carbohydrates, two, namely, mannitol/sorbitol and the
sialic acid 5-acetylneuraminate, have previously been connected to C. difficile coloni-
zation and metabolism (9, 19). Pyruvate, an intermediate in multiple metabolic path-
ways, was also identified as being significant for differentiating samples over time.

C. difficile colonization and infection are associated with decreased levels of
N-acetylated amino acids, carbohydrates, and sugar alcohols and increased levels
of metabolic by-products and lipids. We next generated an unsupervised heat map
to visualize the changes in the relative abundances of the top 50 metabolites identified
via Random Forest analysis throughout infection (Fig. 1B). Nine metabolites (N-
acetylneuraminate, thioproline, N-acetylmethionine, N-acetylvaline, N-acetylisoleucine,
trans-4-hydroxyproline, mannitol/sorbitol, N-acetylthreonine, and N-acetylserine) had
similarly high relative abundances at the 0 h and 12 h time points; however, all had
decreased in abundance by 24 h, and the levels remained low at 30 h postchallenge
with C. difficile (Fig. 1B).

A second set of 12 metabolites exhibited the opposite pattern, where the relative
abundances were low at the 0 h and 12 h time points but were increased by 24 and 30 h
postchallenge with C. difficile (Fig. 1B). These included N-acetylglutamate, which is pro-
duced during conversion of glutamate to ornithine; 4-methylthio-2-oxobutanoate, a by-
product of methionine metabolism that also contributes to methionine salvage;
4-methyl-2-oxopentanoate, a by-product of leucine fermentation; 4-hydroxy-
phenylpyruvate, an intermediate in the C. difficile-specific tyrosine–to–p-cresol
pathway; phenylpyruvate, derived from the oxidative deamination of phenylala-
nine; 5-aminovalerate, the by-product of proline fermentation; hexanoylcarnitine, an
acylcarnitine possibly associated with mitochondrial beta-oxidation; 5-oxoproline, an
intermediate in the gamma-glutamyl cycle of eukaryotes; stachydrine (also known as
proline betaine), an osmoprotectant that some bacteria can utilize as a carbon and
nitrogen source; 2-hydroxybutyrate, derived from threonine and methionine metabo-
lism; 4-hydroxyphenylacetate, another intermediate in the formation of p-cresol; and
benzoate, a carboxylic acid that some anaerobic methanogens can produce from
phenol (34–44).

Five metabolites identified in the Random Forest analysis had high relative abun-
dances until the 30 h time point, suggesting that there may be a hierarchy of
consumption of nutrients in the antibiotic-depleted gut environment. Pyruvate, pheo-
phorbide A, N-acetylcysteine, N-formylmethionine, gamma-glutamyl-isoleucine, and
7-methylguanine were decreased in abundance at 30 h (Fig. 1B), suggesting a switch to
pyruvate fermentation and alternative amino acid sources for further amino acid
fermentation. Pheophorbide A is a degradation product of chlorophyll (45), though its
provenance was unclear in our model. 7-Methylguanine is a purine associated with RNA
5= capping and DNA alkylation, and while C. difficile has numerous enzymes for purine
metabolism, it is unclear if it can be utilized for growth. The amino acids and carbo-
hydrates that were depleted by 24 h largely remained low in abundance at 30 h. The
fatty acid end products of amino acid fermentation 2-aminobutyrate, caproate, isocap-
roate, and valerate were all of low relative abundance until 30 h postchallenge.
The relative abundance of p-cresol, an end product of tyrosine fermentation, also
increased at the 30 h time point. Additionally, we detected similar patterns of change

FIG 1 Legend (Continued)
classifying samples into time point categories, the further to the right its point is on the graph. Metabolite points are
color-coded according to the KEGG superpathway in which they belong. Metabolite names are labeled red if their level
increased throughout infection, black if they were variable, and green if the level decreased. (B) Heat map showing the relative
abundances of the metabolites identified in panel A. Each column corresponds to the cecal metabolome from an individual
mouse, and each row corresponds to a given metabolite. Unsupervised hierarchical clustering was used to cluster metabolites
with similar abundance profiles over time. The heat map scale ranges from �3 to 3 on a log2 scale.
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in numerous carbohydrates, such as sucrose, mannitol/sorbitol, isomaltose, etc., which
were abundant early but decreased in abundance by 24 h (see Fig. S1 in the supple-
mental material). Many more carbohydrates, including glucose and fructose, among
others, remained abundant until 30 h. This represents evidence that numerous nutri-
ents that C. difficile either requires or is known to utilize (24, 36, 46–48) had been
consumed early during colonization.

In the ceca from six of eight mice at the 30 h time point, we detected increases in
the abundance of 30 di- and tripeptides, including 11 gamma-glutamyl amino acids
(Fig. S1). These species may have been generated by the activity of host extracellular
gamma-glutamyl transferase, which transfers the gamma-glutamyl moiety of glutathi-
one to acceptor molecules, including amino acids, for cellular uptake (49, 50). The
remaining 19 dipeptides are heavily biased toward those containing leucine, valine, and
glutamine (Fig. S1). Additionally, in the ceca from the same six of eight mice at the 30
h time point, we detected increases in the levels of the following 16 amino acids:
histidine, methionine, tyrosine, phenylalanine, tryptophan, glutamine, serine, cystine,
leucine, isoleucine, valine, arginine, taurine, ornithine, alanine, and lysine (Fig. S2). This
may indicate the presence of proteases, either host or bacterial, that could have acted
on proteins and liberated the peptides and amino acids into the cecal milieu.

The largest number of changes at 30 h postchallenge came from the KEGG super-
pathway for lipids, with a majority of the 237 lipid species identified via untargeted
metabolomics showing relatively low abundance over 0 to 24 h but then increasing in
abundance at 30 h postchallenge with C. difficile (Fig. S2). These included but were not
limited to the following: short-, medium-, and long-chain fatty acids; phospholipids and
glycerolipids; host-derived endocannabinoid species; inflammatory mediators; sphin-
golipids; and lysolipids.

The C. difficile transcriptome changes significantly throughout colonization
and infection. We next performed RNA Seq analysis on paired cecal content samples
from the 12, 24, and 30 h time points. This analysis also surveys changes in the
metabolome that correspond to the metabolic capacity encoded in the C. difficile
genome and its gene expression in vivo. Stranded, paired-end reads were mapped to
the C. difficile VPI 10463 (ATCC 42355) genome. Differential expression analysis was
used with DESeq2, comparing the time points throughout infection to each other for
a total of three comparisons: 24 h versus 12 h, 30 h versus 12 h, and 30 h versus 24 h
(Fig. 2; see also Table S3) (51, 52). At 24 h relative to 12 h, we detected 297 differentially
expressed genes (DEGs), with 14 genes decreased in expression and 283 increased
(Fig. 2A and B). Relative to 12 h, at the 30 h time point we detected 520 DEGs, with 47
genes decreased in expression and 473 increased (Fig. 2C). In the final comparison, 30 h
relative to 24 h, we detected 14 DEGs, with 3 genes being decreased in expression and
11 increased (Fig. 2D). Accordingly, there was significant overlap of the DEGs at the 24
h and 30 h time points relative to 12 h (Fig. 2A). Of the 258 unique DEGs at 30 h relative
to 12 h, many are also expressed at 24 h, though they failed to meet the adjusted
P value cutoff. The expression patterns of select genes from all three comparisons were
confirmed via quantitative reverse transcriptase PCR (Fig. S3).

Among the genes whose expression we detected as increased at 24 and 30 h were
those whose encoded proteins are involved in the uptake and metabolism of carbo-
hydrates, amino acids, and fatty acids, including those responsible for butyrate pro-
duction (Table S3). The most highly induced gene at both 24 h and 30 h relative to 12
was a putative phage holin gene, with induction increases of 300- and 200-fold,
respectively. This holin gene is within a genomic locus predicted to encode an
incomplete prophage, so its role in C. difficile physiology in vivo is unclear. The second
most highly induced gene at 30 h relative to 12 was feoB, encoding a ferrous iron
importer. At 24 h, feoB induction was increased �30-fold but was increased �200-fold
just 6 h later. This strongly implicates iron scarcity as a nutritional signal for C. difficile
in the later stages of colonization, as feoB levels are inversely correlated with iron
availability (53). Among the most highly induced genes at both 24 and 30 h were two
copies of brnQ, encoding a branched-chain amino acid importer (54). The three genes
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whose induction was most highly increased at 30 h relative to 24 h were those
encoding acetyl coenzyme A (acetyl-CoA) C-acetyltransferase, acetyl-CoA—acetoacetyl-
CoA transferase subunit alpha, and 3-hydroxybutyrate dehydrogenase, involved in
short-chain fatty acid metabolism and butyrate production. This is consistent with the
increase in levels of short-chain fatty acids and the decrease in levels of pyruvate
observed at 30 h in the metabolomics analysis, as pyruvate could serve as a precursor
for increased acetyl-CoA production to fuel increased beta-oxidation of fatty acids.

Global changes in C. difficile metabolic gene expression throughout coloniza-
tion and infection. The predicted protein-coding sequences for all DEGs were im-
ported into Blast2GO for Gene Ontology annotation (Fig. S4). For the 24 h versus 12 h
DEGs, 237 of 297 successfully completed the Blast2GO pipeline and were assigned
Gene Ontology (GO) annotations, as were 390 of 520 DEGs from the 30 h versus 12 h
comparison; 12 of 14 completed the pipeline from the 30 h versus 24 h comparison.
Many of those that did not complete the pipeline were proteins of unknown function
for which no GO annotation could be assigned or those with no homologs identified
via BLAST. Enzyme Commission (EC) codes were assigned to all DEGs predicted to
encode enzymes; these were then overlaid onto KEGG pathway maps (Fig. 3). This
approach identifies all pathways onto which an EC code maps; thus, some enzymes
encoded by our DEGs mapped to multiple pathways. Numerous enzymes mapped to
KEGG pathways for the biosynthesis or degradation of several amino acids, including
many identified as important in the metabolomics Random Forest analysis (Fig. 3). The
category with the largest number of hits at both 24 and 30 h relative to 12 h includes
enzymes predicted to function in purine metabolism, consistent with the need to

FIG 2 C. difficile transcriptome during colonization and infection. (A) Venn diagram showing the differentially expressed genes that were shared
or unique between the three time points. (B to D) Volcano plots highlighting genes whose transcript levels changed by greater than 2-fold and
met the significance threshold P adj. � �0.05. Genes highlighted in red had increased transcript levels, while those highlighted in green had
decreased levels. Points in black represent genes whose results failed to meet the significance threshold.
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replicate DNA and transcribe genes into RNA as the population of C. difficile rapidly
increases in vivo. The KEGG pathway corresponding to biosynthesis of antibiotics was
found to map a significant proportion of the predicted enzymes of DEGs at both 24 and
30 h. This category encompasses contributions from diverse pathways, including the
following: glycolysis; the pentose-phosphate pathway; the shikimate pathway; the
tricarboxylic acid (TCA) cycle; terpenoid biosynthesis; and purine, amino acid, amino
sugar, and nucleotide metabolism. The number of DEGs that are predicted to be
involved in oxidation-reduction reactions, as well as in transmembrane transport, and
the number of DEGs that mapped to KEGG pathways for amino acid metabolism
represent strong evidence that a significant portion of the C. difficile transcriptome in
vivo is dedicated to their acquisition and metabolism. Indeed, network analysis of
predicted protein-protein interactions via the STRING database identified statistically
significant enrichment for genes in KEGG pathways involved in amino acid degradation
and butyrate production, among others, among the genes with increased expression at
24 and 30 h; enrichment of pathways for glycolysis and fructose/mannose metabolism
was observed in the transcripts that had decreased levels at 30 h relative to 12 h
(Table S4).

Multivariate-based integration of the gut metabolome and C. difficile transcrip-
tome throughout colonization and infection. To identify associations between the

FIG 3 KEGG pathway analysis of the C. difficile DEGs throughout colonization and infection. Protein sequences of the DEGs at 24 h (A) or 30 h (B) relative to
12 h were imported into Blast2GO, and data corresponding to the predicted enzymes were loaded onto KEGG pathway maps. The numbers on the x axis
correspond to the number of predicted enzymes used to map to a given pathway and whether the enzyme’s transcript was increased or decreased in
expression.
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gut metabolome and C. difficile transcriptome, we performed a sparse partial least-
squares-discriminant analysis (sPLS-DA) utilizing the mixOmics package. The aim of the
analysis was to identify a highly correlated multiomics signature discriminating the 12,
24, and 30 h time points throughout colonization and infection. Our final sPLS-DA
model contained two components. The loading plots for the first component and
second component are shown in Fig. 4 at the top and bottom, respectively (Table S5).
Transcriptomic features dominated the first component. We found only two metabo-
lites and 34 transcripts in the first component, all representing the 30 h time point
(Fig. 4, top). This suggests that there were significant changes in the C. difficile
transcriptome at the 30 h time point compared to the 12 h and 24 h time points. The
second component was made up of 12 metabolites and six transcripts (Fig. 4, bottom).

FIG 4 Multivariate-based analysis of the gut metabolome and C. difficile transcriptome during colonization and infection. A
loading plot of the features selected in each component is provided. The top row indicates the features in the first component
for the metabolites (left) and transcripts (right). The bottom row indicates the features in the second component for the
metabolites (left) and transcripts (right). The values corresponding to the specific bar magnitudes are indicated in Table S5. The
color indicates the expression levels of each variable according to each class where blue represents 12 h, orange represents 24 h,
and gray represents 30 h.
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The metabolites in the second component, which were primarily amino acids, differed
across all time points but predominantly represented changes in the early stages of
colonization at the 12 h and 24 h time points as indicated by the color of each of the
bars in Fig. 4.

Furthermore, we plotted the correlation between the selected metabolites and
transcripts (r � �0.7). We observed strong correlations between each transcript and at
least two metabolites, which further highlights the association of each feature with
specific metabolites. Transcripts encoding 5-aminoimidazole-4-carboxamide ribonucle-
otide transformylase, acyl-CoA dehydrogenase, phosphotransferase system (PTS)-
mannose transporter sub-IID, phosphate butyryltransferase, a hypothetical protein, and
a cytosine permease had the most connections to metabolites. As shown in Fig. 5, all
the aforementioned transcripts had positive correlations with 2-methylcitrate/homoci-
trate, 3-(4-hydroxyphenyl) lactate, 5-aminovalerate, 5-oxoproline, beta-muricholate,
and galactitol (dulcitol). Likewise, these same transcripts all had negative correlations
with leucylalanine, N-acetylneuraminate, palmitoleoylcarnitine, proline, prolylglycine,
taurine, and thioproline. Additionally, urate was negatively correlated with a hypothet-

FIG 5 Plot of the correlations between the metabolome and C. difficile transcriptome. A Circos plot displays the positive and
negative correlations (r � �0.7) between the selected features with blue and red lines, respectively. The values corresponding
to the exact weight for each line are indicated in Table S5. The metabolites are indicated in purple (top right quadrant), and the
transcripts are indicated in green. Each individual feature name is labeled in the block. The outer lines indicate the expression
levels of each variable according to each class where blue represents 12 h, orange represents 24 h, and gray represents 30 h.
CDS, coding sequence; PLP, proteolipid protein.

Fletcher et al.

March/April 2018 Volume 3 Issue 2 e00089-18 msphere.asm.org 10

msphere.asm.org


ical protein, PTS-mannose transporter sub-IID, and cytosine permease. The data corre-
sponding to the exact weight determined for each line are listed in Table S5.

DISCUSSION

The rapid kinetics of the C. difficile VPI 10463 life cycle during colonization of a
susceptible host have been well described; however, global temporal changes to the
metabolome and C. difficile transcriptome during the early stages of colonization by this
strain have not been examined (13). Although there are differences among the C. dif-
ficile strains used in various mouse models, as well as differences in the models, our
metabolomic and transcriptomic results are in accordance with those of other in vivo
studies that identified amino acid and carbohydrate metabolism as being important
during C. difficile colonization and infection (20–22). Our results also further highlight
the importance of the inverse relationship between the indigenous gut microbiota and
nutrient levels, including many nutrients that are essential for C. difficile colonization.
For example, due to auxotrophy and nutritional preference in complex media, proline
has been identified as a nutrient of significance for C. difficile (9, 20, 55–57). Germfree
mice have significantly higher levels of proline in their ceca, consistent with the
increase observed in antibiotic-treated mice, suggesting that an intact microbiota is
responsible for the low relative abundance of proline in mice that show resistance to
colonization by C. difficile (58). In support of this, the top two metabolites identified by
Random Forest analysis were 5-aminovalerate and trans-4-hydroxyproline. trans-4-
Hydroxyproline decreased in relative abundance, while 5-aminovalerate increased,
consistent with the utilization of the former. Indeed, hydroxyproline can substitute for
proline in vitro and is a major constituent of collagen, one of the most abundant
proteins in the body (55, 59). Recently, a glycyl radical enzyme from C. difficile has been
shown to mediate dehydration of hydroxyproline, likely supplying the bacteria with a
further source of proline (60, 61). In our study, the expression of hypD, the gene
encoding the glycyl radical enzyme, was increased at 24 h but had decreased signifi-
cantly by 30 h, suggesting that it may be responsive to hydroxyproline levels (see
Fig. S3 in the supplemental material).

Random Forest analysis also identified several N-acetylated amino acids with high
MDA scores. These were abundant early but had decreased in abundance by 24 h.
N-acetylation is a common posttranslational modification in eukaryotes; therefore,
some of the N-acetylated amino acids may have been derived from degradation of
mouse proteins present in the gut (62). Many of these N-acetylated amino acids, as well
as non-N-acetylated amino acids, including many which C. difficile has been demon-
strated to use preferentially in vitro, were found to be relatively abundant early (57).
Notably, valine and proline are essential amino acids for C. difficile, while the absence
of methionine leads to extremely poor growth in vitro, suggesting that C. difficile may
prioritize the acquisition and consumption of amino acids in vivo during colonization
(26). Indeed, the non-N-acetylated forms of five of these amino acids make up over half
of those required by C. difficile in minimal defined media (24), highlighting their
importance.

Many of these amino acids are known to affect the life cycle of C. difficile. Threonine,
when included in a cocktail of eight other amino acids, contributes to suppression of
toxin synthesis (24). Isoleucine and valine are branched-chain amino acids that are
known Stickland reaction donors, supplying reducing power to proline reductase
through NADH and resulting in NAD� and 5-aminovalerate (55, 56). The abundance of
their N-acetylated forms had decreased by 24 h and remained low at 30 h. Given the
increased expression of the brnQ genes encoding the branched-chain amino acid
importer, it is likely that C. difficile imports significant amounts of these amino acids to
supply Stickland donors for proline fermentation. The codY global transcriptional
regulator gene in both C. difficile and Staphylococcus aureus regulates the brnQ genes,
and brnQ has a demonstrated role in pathogenesis in the latter organism (63, 64). CodY
is an allosteric regulator that mediates repression of most of its regulon when bound
by branched-chain amino acids or GTP, including the toxin genes tcdA and tcdB (65). In
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addition to the amino acids identified via Random Forest analysis, the abundance of the
carbohydrates N-acetylneuraminate and mannitol/sorbitol was observed to be high
early but decreased by 24 h. They have been linked to C. difficile colonization of
susceptible hosts, and C. difficile can utilize them for growth in vitro (9, 20) Consistent
with this is the observation that several of the C. difficile genes encoding carbohydrate
uptake systems, for example, those encoding PTS transporters, are increased in
expression by 24 h. Also increased in expression were the genes of the had operon,
responsible for leucine fermentation. The had genes were previously reported to be
negatively regulated by the global carbon catabolite repressor CcpA in C. difficile strain
JIR8094 (66). Similarly to CodY, CcpA is a negative repressor of toxin gene expression,
though its activity is responsive to carbohydrates rather than to branched-chain amino
acids/GTP. Therefore, the derepression by 24 h of the known CodY and CcpA targets
brnQ, the had operon, tcdA, and tcdB, as well as many others, is strong evidence that
C. difficile had depleted the local pools of these key nutrients and was experiencing
nutrient starvation.

C. difficile is proteolytic, with several proteases and peptidases known to be involved
in various processes, including cell adhesion, motility, biofilm, and germination (67–74).
The expression of several proteases and peptidases was increased at 24 h in the
C. difficile transcriptome and even more at 30 h (Table 1). Some of these were likely
housekeeping proteases, such as Clp, which would be predicted to increase in expres-
sion, as the rapidly growing population of C. difficile cells would encounter cellular
stressors in the form of antimicrobial peptides or other host defense mechanisms,
especially after toxin-induced inflammation. Others may play a role in nutrient acqui-
sition in the host, as evidenced by the increase in expression of numerous free amino
acids and dipeptides at 30 h. Two such genes are predicted to encode �-aspartyl-
peptidases that are components of the glycine reductase complex. Glycine is another
amino acid that is fermented via the Stickland reaction, and nine of the peptides found
to be increased in most mice at 30 h contained glycine. The remaining genes encoding
the glycine reductase were significantly increased in expression at 24 and 30 h. Another
gene encodes a product that is predicted to be a member of the S41 family peptidase.
Its predicted protein is homologous to CtpA, a protease linked to pathogenesis in
multiple Gram-negative pathogens and S. aureus, though it is unclear if those homologs
are active on host proteins (75–78). Regardless, these proteases and peptidases remain
targets for future investigation into the molecular pathogenesis of C. difficile in vivo.

The largest class of metabolites for which we detected changes throughout infec-
tion was that of the lipids, where expression of a majority was significantly increased by
30 h postchallenge. As the activity of the C. difficile toxins TcdA and TcdB was evident
by 30 h and as several of these lipid species are derived from the host, we interpret this
to mean that the extensive cellular and tissue damage present at that time point had
led to an influx of cellular debris and lipid signaling species into the lumen of the
cecum. Indeed, numerous endocannabinoid species were detected, as was the inflam-

TABLE 1 Proteases and peptidases that were differentially expressed throughout
C. difficile colonization and infectiona

Protease Protein ID

Log2 fold change

24 h 30 h

Clp protease WP_003428224.1 5.71** 5.17**
Aminopeptidase WP_009902261.1 5.92** 5.50***
Peptidase S41 WP_003437815.1 5.05** 4.87**
Beta-aspartyl-peptidase WP_003416871.1 4.59**** 4.33****
Beta-aspartyl-peptidase WP_004454406.1 4.96**
Serine protease WP_011861421.1 4.40*
D-Alanyl-D-alanine-carboxypeptidase WP_003428267.1 4.33*
Peptidase WP_011862025.1 4.21*
Zinc metallopeptidase WP_003416253.1 �3.48**
aID, identifier. *, P adj. of �0.05; **, P adj. of �0.01; ***, P adj. of �0.001; ****, P adj. of �0.0001.
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matory mediator 12-HETE, consistent with the highly inflammatory nature of the host
cell response to intoxication by TcdA and TcdB activity (79).

Finally, our study had several limitations, the most important of which was the
inability to confirm that the detected changes in the cecal metabolome were due
specifically to the metabolism of C. difficile. Previous work by our group showed that
members of the Lactobacillus genus remain in the cecum after antibiotic treatment (9,
13, 80). Therefore, while most of the changes in the cecal metabolome are likely due to
the presence of C. difficile, given the limited taxonomical distribution of certain meta-
bolic pathways, e.g., Stickland metabolism, it can be assumed that the host and the
remaining microbiota could contribute to changes in the metabolome that occur either
directly or indirectly in response to the presence of C. difficile or independently of it.
While steps were taken to increase specificity in the RNA Seq analysis, we cannot rule
out the possibility that some of the reads that mapped to the C. difficile genome were
derived from the transcripts of highly conserved genes present and expressed in other
species in the murine ceca from which the RNA was isolated. Additionally, our study
examined the metabolome and C. difficile transcriptome only in mice treated with
cefoperazone. Antibiotics with different mechanisms of action would target different
classes of bacteria, leading to dissimilar community structures and thus to dissimilar
metabolic environments. Jenior et al. found that to be the case in mice pretreated with
different antibiotics; they observed that C. difficile adapted its gene expression to each
environment at 18 h postchallenge with C. difficile (20).

The two-tiered approach of combining metabolomics with transcriptomics in vivo
reinforced the idea that C. difficile uses certain amino acids and carbohydrates early
in the process of colonization of a susceptible host. This was supported by the
multivariate-based integration of the omics data. We could discriminate the metabo-
lites and transcripts required for C. difficile physiology by different time points through-
out infection. In particular, the abundance of proline-containing peptides and the
N-acetylated forms of methionine, threonine, and branched-chain amino acids de-
creased early, i.e., by 24 h postchallenge. Likewise, a number of carbohydrate and
amino acid fermentation products began to increase in abundance by 24 and 30 h, at
which point we detected an increase in the abundances of free amino acids and
dipeptides with concomitant increases in protease and peptidase gene expression.
Future studies of the activity of C. difficile proteases and peptidases in vivo are needed
to determine what role, if any, they play in nutrient acquisition and whether the tissue
damage induced by the toxins is required to liberate potential energy sources. Addi-
tionally, by defining what is required for C. difficile physiology and pathogenesis in vivo,
it will allow us to rationally design more highly targeted bacterial therapeutics to
outcompete and prevent this infection in the future.

MATERIALS AND METHODS
Ethics statement. Ethics and animal housing conditions were identical to those previously described

by Theriot et al. (9, 12). Briefly, the University Committee on the Care and Use of Animals at the University
of Michigan approved this study. The University of Michigan laboratory animal care policies follow the
Public Health Service policy on Humane Care and Use of Laboratory Animals. Animals were assessed
twice daily for physical condition and behavior, and those assessed as moribund were humanely
euthanized by CO2 asphyxiation. Trained animal technicians performed animal husbandry in an AAALAC-
accredited facility.

Animals and housing. C57BL/6 wild-type (WT) mice (5 to 8 weeks old; male and female) from a
breeding colony that was established using animals purchased from Jackson Laboratories (Bar Harbor,
ME) were used for the experimental infections. Mice were housed with autoclaved food, bedding, and
water. Cage changes were performed in a laminar flow hood. Mice were subjected to a 12 h cycle of light
and darkness.

Mouse model of C. difficile infection. C. difficile VPI 10463 (ATCC 43255) spores were prepared as
described in previous studies (9, 12). Briefly, C. difficile spores were heat treated for 20 min at 65°C to
ensure that any remaining vegetative bacilli were killed before animal gavage was performed. Viable
spores were enumerated by plating for CFU per milliliter on taurocholate, cefoxitin, cycloserine, and
fructose agar (TCCFA) to determine the challenge dose (81). Mice (n � 32; male and female) were given
cefoperazone (0.5 mg/ml) in sterile drinking water for 5 days and were allowed 2 days on regular drinking
water before challenge with 820 C. difficile spores was performed by oral gavage. Mice (n � 8; male and
female) from different cages were euthanized by CO2 asphyxiation and subjected to necropsy prior to
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C. difficile challenge at time point 0 h and throughout the infection period at 12 h, 24 h, and 30 h. Cecal
content was collected at the time of necropsy and stored in RNAlater for transcriptomic analysis and/or
flash frozen in liquid nitrogen for metabolomic analysis. Samples were kept at �80°C until processing.
Animals challenged with C. difficile were monitored for signs of clinically severe CDI, including inappe-
tence, diarrhea, and hunching. At the time of necropsy, cecal content of animals challenged with
C. difficile (n � 4) was plated on selective TCCFA to confirm colonization and enumerate bacterial load.
All samples stored at �80°C in this study were later shipped on dry ice and stored at �80°C at C. M.
Theriot’s new institution, North Carolina State University, until further processing.

Global metabolomic analysis. Cecal content was harvested from mice at 0 h (before C. difficile
challenge) and at 12 h, 24 h, and 30 h postchallenge with C. difficile VPI 10463 spores (n � 8 per time
point; 4 male and 4 female from different cages). Cecal content samples were submitted in 1.5-ml
Eppendorf tubes to Metabolon, Inc. (Durham, NC), for untargeted metabolomics analysis. Sample
preparation for metabolomics analysis was performed by Metabolon, Inc., in the same manner as was
described in our previous study (9) and in the extended Methods section in Text S1 in the supplemental
material. Briefly, individual samples were subjected to methanol extraction and then split into aliquots
for analysis by ultra-high-performance liquid chromatography-mass spectrometry (UHPLC/MS). The
global biochemical profiling analysis comprised four unique arms consisting of reverse-phase chroma-
tography positive-ionization methods optimized for hydrophilic compounds (LC/MS Pos Polar) and
hydrophobic compounds (LC/MS Pos Lipid) and reverse-phase chromatography performed under
negative-ionization conditions (LC/MS Neg) as well as a hydrophilic interaction liquid chromatography
(HILIC) method coupled to negative ionization (LC/MS Polar) (82). All the methods alternated between
full-scan MS and data-dependent MSn scans. The scan ranges differed slightly between methods but
generally covered 70 to 1,000 m/z.

Metabolites were identified by automated comparison of the ion features in the experimental
samples to a reference library of chemical standard entries that included retention time, molecular
weight (m/z), preferred adducts, and in-source fragments as well as associated MS spectra and were
curated by visual inspection for quality control using software developed at Metabolon. Identification of
known chemical entities was based on comparisons to metabolomic library entries of purified standards
(83).

Two types of statistical analyses were performed: (i) significance tests and (ii) classification analyses.
Standard statistical analyses were performed in ArrayStudio on log-transformed data. For those analyses
that are not standard analyses available in ArrayStudio, R software (https://cran.r-project.org/) was used.
Following log transformation and imputation of missing values, if any, with the minimum observed value
for each compound, contrast ANOVA was used as a significance test to identify biochemicals that differed
significantly (P � 0.05) among all time points. An estimate of the false-discovery-rate (q) value was
calculated to take into account the multiple comparisons that normally occur in metabolomic-based
studies. For the scaled-intensity graphics, each biochemical in the original scale (raw area count) was
rescaled to set the median across all animals and time points to a value of 1.

Additional statistical analyses and data visualization was performed in MetaboAnalyst 3.0 (http://
www.metaboanalyst.ca/faces/ModuleView.xhtml) (31). Briefly, the data were uploaded in the Statistical
Analysis module with default settings and no further data filtering. The data were log transformed using
the glog option, and the Kruskal-Wallis one-way ANOVA option was used to determine statistical
significance. The heat map was built using the top 50 metabolites identified by Random Forest analysis
with the Ward clustering algorithm and Euclidean distance.

Extraction of C. difficile RNA from cecal content. Paired samples of cecal content (n � 4 per time
point; 2 males and 2 females at 12 h, 24 h, and 30 h) harvested for the untargeted metabolomics analyses
were suspended in RNAlater (Thermo Fisher Scientific) and stored at �80°C until RNA extraction, at which
point the samples were centrifuged and the RNAlater supernatant was removed. Pelleted cecal content
was resuspended in 10 ml TRIzol reagent (Thermo Fisher Scientific) and distributed to 1.5-ml centrifuge
tubes in 1-ml aliquots. Due to the volume of the tubes, the RNA extraction was performed with two
samples at a time. Phase separation was performed using 200 �l chloroform per 1 ml cecal content/
TRIzol. The aqueous phase (~500 �l) was added to ice-cold isopropanol with 5 �g/ml glycogen at 1:1.
Samples were centrifuged at 4°C for 20 min, after which pellets were washed three times with 70%
ethanol. Pellets were resuspended in water and stored at �80°C until further processing. RNA quality was
assessed via the use of an Agilent 2100 Bioanalyzer. All subsequent manipulations were performed on
all samples simultaneously. RNA samples were depleted of DNA by two rounds of treatment with Turbo
DNase (Thermo Fisher) per the manufacturer’s protocol; all samples were column purified with a Zymo
Clean and Concentrator kit (R1015). Depletion of contaminating genomic DNA was confirmed via PCR
performed with rpoC primers (see Table S1 in the supplemental material).

RNA Seq library preparation and analysis. RNA was assessed for quality using a BioAnalyzer
(Agilent Technologies, Santa Clara, CA). Samples with RNA integrity numbers (RINs) of 8 or greater were
depleted of rRNA using RiboZero (Illumina catalog no. MRZH116). One of 12 samples was not used due
to a poor RIN score (less than 8). The rRNA-depleted RNA was sent to the University of Michigan DNA
Sequencing Core, Ann Arbor, MI, where samples were processed in a blind manner and converted to a
library capable of cluster generation and sequencing using a TruSeq Stranded mRNA Library Prep kit
(Illumina catalog no. RS-122-2001 and RS-122-2001) per the supplier’s protocol. Libraries were checked
for size on a TapeStation and quantified using a Kapa Biosystems library quantification kit (catalog no.
KK4835) for Illumina adapters. The libraries were pooled and sequenced on a HiSeq 4000 system as a
paired-end 50-nucleotide run following the Illumina protocol. The input RNA (100 ng) underwent 12
cycles of PCR, and 11 libraries were multiplexed and run across 5 lanes to reduce lane-to-lane or
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run-to-run variation. Raw fastq.gz files were imported into Geneious 10.2 (Biomatters) (51). BBDuk was
used in Geneious to trim adapters, low-quality bases (Phred score of less than 30), and short reads (less
than 30 nucleotides), as well as reads with an average Phred score of less than 30. Trimmed paired-end
reads were then mapped to the C. difficile VPI 10463 genome (NZ_CM000604) using the Geneious
mapper with default settings, mapping only those reads in which each member of the pair mapped at
the expected distance from the other member, resulting in averages of 9.74 � 104, 1.49 � 106, and
1.45 � 106 reads mapping at 12, 24, and 30 h, respectively. Differential expression analysis was
performed with the DESeq2 plugin within Geneious, defining a gene as differentially expressed if there
was at least a 2-fold change in expression with an adjusted P value (P-adj.) of �0.05 to account for
multiple-testing results (52). A Venn diagram of unique and shared differentially expressed genes was
generated in Venny 2.1 (84), and volcano plots were constructed in R. Protein sequences from every
differentially expressed gene were obtained via Batch Entrez and loaded into Blast2GO for Gene
Ontology mapping, Enzyme Commission (EC) assignment, and mapping onto KEGG pathways. Among
the 24 h versus 12 h DEGs, 237 of 297 successfully completed the Blast2GO pipeline and were assigned
Gene Ontology (GO) annotations, as did 390 of 520 DEGs from the 30 h versus 12 h comparison; 12 of
14 from the 30 h versus 24 h comparison completed the pipeline. Many of those that did not complete
the pipeline were proteins of unknown function for which no GO annotation could be assigned or those
with no homologs identified via BLAST. These sequences were also uploaded to the STRING 10.5
database via the Web interface for prediction of protein interaction networks and enrichment analysis of
KEGG pathways (85). No changes from the default settings were made. The predicted interaction
networks for C. difficile VPI 10463 are unavailable in the STRING 10.5 database, so those for C. difficile 630
were used instead. Briefly, the STRING database compares the number of edges between the nodes in
a network to those in a random network of proteins of similar number and performs Fisher’s exact test
with multiple-comparison corrections to ascertain if pathways are enriched in the submitted network.

Reverse transcription and quantitative real-time PCR. DNA-depleted RNA was used as the
template for reverse transcription performed with Moloney murine leukemia virus (MMLV) reverse
transcriptase (NEB) following the manufacturer’s protocol. The cDNA samples were then diluted 1:5 in
water and used in quantitative real-time PCR with gene-specific primers (Table S1) using SsoAdvanced
Universal Sybr green Supermix (Bio-Rad) according to the manufacturer’s protocol. Amplifications were
performed in technical triplicate, and copy numbers were calculated by the use of a standard curve and
normalized to that of the housekeeping gene rpoC.

Multivariate-based integration of the gut metabolome and C. difficile transcriptome. To identify
associations between the gut metabolome and C. difficile transcriptome, we performed a sparse partial
least-squares-discriminant analysis (sPLS-DA) as implemented in the mixOmics package (86). sPLS-DA is
a supervised approach that combines dimensionality reduction with variable selection through penal-
ization (87). Within the mixOmics package, we applied the framework DIABLO, which focuses on the
integration of multiple omics measurements across n samples. We used the 11 pairwise samples of the
transcriptomics and metabolomics. Prior to utilizing the mixOmics package, we preprocessed the data
and used only those variables where the measurements had a standard deviation of greater than 0.1
across all time points. Additionally, we calculated the median absolute deviation for the transcriptomics
data and also utilized a threshold of 0.1 (88). Preprocessing the data reduced our variables to 621
metabolites and 1,771 transcripts across 11 time points as follows: three samples at the 12 h time point
and four samples each at the 24 h and 30 h time points.

The aim of the analysis was to identify a highly correlated multiomics signature discriminating the
time points throughout infection at 12 h, 24 h, and 30 h. We assumed that the transcriptome and
metabolome data were highly correlated and choose a design matrix where all blocks are connected
with a link value of 0.9. We tested this design link at values of 0.1 to 0.9 and did not find any noticeable
differences for varied correlation links. We fitted an sPLS-DA model, assessed the global performance,
and optimized the number of components. We choose the two-component approach on the basis of the
decrease in the overall balanced error and of the overall error decrease of the centroid and maximum
distances.

Using the optimal number of components, we then selected the optimum number of variables to use
for sPLS-DA. We created a grid with values of 2 to 100 and used the leave-one-out cross-validation scores
and the tuning function to determine the optimal sparsity parameters to classify the discrete outcome.
The tuning process chooses 2 and 12 metabolites and chooses 34 and 6 transcripts on the first
component and the second component, respectively, for the supervised analysis.

Data availability. Metabolomics data were deposited in the Metabolomics Workbench repository
under study number ST000930. Raw sequences have been deposited in the Sequence Read Archive (SRA)
with submission number SRP134023. The accession numbers are SAMN08639656, SAMN08639657,
SAMN08639658, SAMN08639659, SAMN08639660, SAMN08639661, SAMN08639662, SAMN08639663,
SAMN08639664, SAMN08639665, SAMN08639666. Other raw data are provided in the supplemental
tables.

SUPPLEMENTAL MATERIAL
Supplemental material for this article may be found at https://doi.org/10.1128/

mSphere.00089-18.
TEXT S1, DOCX file, 0.1 MB.
FIG S1, PDF file, 0.8 MB.
FIG S2, PDF file, 21.4 MB.
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