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A B S T R A C T

Objective: Papanicolaou and Giemsa stains used in cytology have different characteristics and complementary
roles. In this study, we focused on cycle-consistent generative adversarial network (CycleGAN), which is an image
translation technique using deep learning, and we conducted mutual stain conversion between Giemsa and
Papanicolaou in cytological images using CycleGAN.
Methods: A total of 191 Giemsa-stained images and 209 Papanicolaou-stained images were collected from 63
patients with lung cancer. From those images, 67 images from nine cases were used for testing and the remaining
images were used for training. For data augmentation, the number of training images was increased by rotation
and inversion, and the images were pipelined to CycleGAN to train the mutual conversion process involving
Giemsa- and Papanicolaou-stained images. Three pathologists and three cytotechnologists performed visual
evaluations of the authenticity of cell nuclei, cytoplasm, and cell layouts of the test images translated using
CycleGAN.
Results: As a result of converting Giemsa-stained images into Papanicolaou-stained images, the background red
blood cell patterns present in Giemsa-stained images disappeared, and cell patterns that reproduced the shape and
staining of the cell nuclei and cytoplasm peculiar to Papanicolaou staining were obtained. Regarding the reverse-
translated results, nuclei became larger, and red blood cells that were not evident in Papanicolaou-stained images
appeared. After visual evaluation, although actual images exhibited better results than converted images, the
results were promising for various applications.
Discussion: The stain translation technique investigated in this paper can complement specimens under conditions
where only single stained specimens are available; it also has potential applications in the massive training of
artificial intelligence systems for cell classification, and can also be used for training cytotechnologist and
pathologists.
1. Introduction

Cytology, which allows the evaluation of the structure of nuclei,
cytoplasmic properties, and cell layout taken from living organisms,
plays an important role in pathological diagnosis. Among the staining
methods employed in cytology, Papanicolaou and Giemsa stains are
major staining techniques.

Papanicolaou staining is a general multichromatic staining method
for cytology, which allows cells to be stained with three different dyes via
amoto).
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wet fixation [1]. It is possible to observe cell aggregation and to make
detailed observations of chromatin structure. However, this staining
process is cumbersome and is often difficult to adapt to situations in
which rapid specimen preparation is required.

In contrast, Giemsa staining is a method of staining cells with two
types of blue dyes [2]. Specimens can be prepared in a short period of
time with few staining steps. In addition, it has good fixation properties,
which allows for the creation of specimens even when only a small
number of cells can be collected. It is used for the rapid diagnosis and
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differentiation of benign and malignant cells. However, it is not possible
to prepare specimens from liquid samples at the time of biopsy because of
the dry method. In addition, compared to Papanicolaou staining, it is less
proficient to delineate nuclear and cytoplasmic structures, making it
difficult to differentiate the tissue type.

Because of the trade-off between the two staining methods, as
described above, it is desirable to use both of these to make a diagnosis.
However, it is often difficult to prepare both stains due to the limitations
imposed by the collecting method of the cells.

Here, if the image of one stained specimen can be converted to
another type of image, it can be used for diagnosis and other purposes.
Therefore, we focused on a domain transformation technique, which is
one of the deep learning techniques [3, 4, 5, 6, 7, 8, 9, 10, 11].

This is a method of transforming an image of one category into
another type of image, and it has been proposed to transform the style of
a photograph or painting, or to redraw an object in an image, into
another type of object. In this study, we focused on cycle-consistent
generative adversarial network (CycleGAN), a domain transformation
technique [10]. Regarding medical applications, Jelmer et al. success-
fully converted magnetic resonance images into computed tomography
(CT) images with CycleGAN [11]. If it is possible to convert Papanico-
laou- and Giemsa-stained images into each other, it may be possible to
generate alternative stained images, even when only one of them can be
prepared, and this technology may be applied in clinical practice. To the
best of our knowledge, no study has been reported till date on the con-
version of Giemsa and Papanicolaou staining using deep learning.

The main contribution of this study is to propose a method for a
mutual conversion of Papanicolaou- and Giemsa-stained images using
CycleGAN, a domain transformation technique, and to discuss their
applicability to diagnosis based on subjective evaluation by experts.

2. Materials and methods

2.1. Image dataset

Lung cell samples from 63 patients with lung cancer were collected
with interventional cytology using either bronchoscopy or CT-guided
fine-needle aspiration cytology and comprised 43 cases of adenocarci-
noma and 20 cases of squamous cell carcinoma according to combined
histopathological and immunohistochemical diagnoses. The procedure of
image preparation for this study is shown in Figure 1.

Regarding specimens for Papanicolaou staining, we applied liquid-
based cytology using the BD SurePath™ liquid-based Pap test (Beckton
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Dickinson, Franklin Lakes, NJ, USA), with staining based on Papanico-
laou's method. Using a digital still camera (DP70, Olympus, Tokyo,
Japan) attached to a microscope (BX51, Olympus) with a � 40 objective
lens, 142 images of adenocarcinoma, and 67 images of squamous cell
carcinoma were collected in JPEG format. The initial matrix size of each
JPEG image was 2040 � 1536 pixels. Subsequently, 768 � 768 pixels
square images were generated via cropping, and these were further
resized to 256 � 256 pixels.

Specimens were prepared using the Giemsa staining method using a
brush-scraped specimen at the time of bronchoscopy. Using a digital still
camera (Axiocam 506 color, Carl Zeiss, Jena, German) attached to a
microscope (Axio Imager A1, Carl Zeiss) with a � 40 objective lens, 146
images of adenocarcinoma, and 45 images of squamous cell carcinoma
were acquired in JPEG format. The initial matrix size of each JPEG image
was 2752 � 2208 pixels. Subsequently, 706 � 706 pixels square images
(same field of view as Papanicolaou images) were generated via cropping
and were further resized to 256 � 256 pixels. The final image resolution
input to CycleGAN was 3.2 μm per pixel.

From those images, 5 cases (45 images) of adenocarcinoma and 4
cases (22 images) of squamous cell carcinoma were used for testing and
the remaining images were used for training.

Training of CycleGAN requires a large amount of data, as a small
dataset may cause mode collapse [12]. To prevent overfitting, we
augmented the training dataset using image processing. Microscopic
images are direction invariant, and the sharpness of the target cell in each
image varies according to the position of the focal plane of the micro-
scope. Therefore, we performed data augmentation via rotating, flipping,
smoothing, and sharpening of the original images [7].

This study was approved by an institutional review board (Fujita
Health University), and patient consent was obtained under the condition
that all data were anonymized (number HM16-155).

2.2. CycleGAN architecture

ThearchitectureofCycleGANused for image translation in this study is
shown in Figure 2. The CycleGAN architecture consists of two cycles - a
forward cycle and a backward cycle. In the forward cycle, a synthesis
network, SYNP, is trained to translate a givenGiemsa-stained image IG into
a Papanicolaou-stained image; network SYNG is trained to translate the
resulting Papanicolaou-stained image back into a Giemsa-stained image
that redraws the original Giemsa-stained image. DISP discriminates be-
tween real and synthesized Papanicolaou-stained images; it is trained to
accurately classify real and synthesized Papanicolaou-stained images.
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Figure 2. Cycle GAN architecture.
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Similarly, in the backward cycle, SYNG synthesizes Giemsa-stained
images from given Papanicolaou-stained images; SYNP reconstructs the
Papanicolaou image from the synthesized Giemsa-stained image, and
DISG discriminates between real and synthesized Giemsa-stained images.

To enforce bidirectional translation, reconstructed images of SYN-
G(SYNP(IG)) and SYNP(SYNG(IP)) were compared with real Giemsa-
stained images and real Papanicolaou-stained images, respectively.
Figure 3. Original software
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As for the implementation of CycleGAN for this study, we introduced
Python code using TensorFlow by Xiaowei Hu [13]. As for architecture of
SYNG and SYNP, ResNet having nine residual blocks [14] was used, and
Patch GAN [15] was used for DISG and DISP. The procedure for deter-
mining the parameters of CycleGAN was as follows. After each epoch of
training, the generated images were monitored to see whether there were
any abnormalities such as pixel value inversion or artifacts. In most cases,
for visual evaluation.
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Figure 4. Generator, discriminator, and cycle-consistency loss curves. Gray lines are raw data and black lines are smoothened data.
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these problems were resolved as the number of training epochs
increased. However, if the output of abnormal images persisted even
with further training, we changed the training coefficient and ran the
training process again. As a result, we set the number of training epochs
as 200, the learning rate as 0.0002, and beta as 0.5 for the Adam opti-
mization algorithm [16]. A Python program developed using Keras and
TensorFlow was executed on a computer equipped with AMD Ryzen 9
3900X as a CPU and NVIDIA TITAN RTX as a GPU. During the training of
CycleGAN, the image quality of the generated images was checked, and
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the training process was carried out while confirming the stability of the
generation.

2.3. Evaluation

Visual evaluation of the images converted by CycleGAN was per-
formed. Among the image data set, nine cases in which both Giemsa and
Papanicolaou stains were available were used for evaluation. These con-
sisted of 33 Giemsa-stained images and 34 Papanicolaou-stained images.
Papanicolaou
to Giemsa

Real
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s for adenocarcinoma specimens.
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Visual evaluation of image quality was performed by three pathol-
ogists (cytology specialists) and three cytotechnologists. Image quality
was evaluated from 0 to 100 points for authenticity of cell nucleus
(external shape of cellular nucleus, chromatin, nucleolus state), cyto-
plasm, and cell layout. As shown in Figure 3, we developed and used
original evaluation software, which shows real images and converted
images at random for visual evaluation. The above evaluations were
conducted using Microsoft Surface GO. The display conditions of the PC
monitors were standardized and the same ones were used for
evaluation.

Moreover, to make a general consideration of the translated image,
evaluation comments regarding overall image quality were collected
from the observer after the above-mentioned visual evaluation.

3. Results

The losses in CycleGAN include generator loss, discriminator loss, and
cycle consistency loss. These curves in the training phase are shown in
Figure 4.

The results of the mutual translation of images from Giemsa-stained
and Papanicolaou-stained specimens of adenocarcinoma and squamous
cell carcinoma are shown in Figures 5 and 6, respectively. The results of
the visual assessment of image quality by six observers are plotted on the
box whisker diagram, as shown in Figure 7.
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Unpaired Student's t-test was also performed on the evaluation results
of the image quality of the real and translated images for the six ob-
servers, and p-value results were <0.001, confirming that there was a
significant-difference in the scores between the real and translated
images.

Next, the sum of the evaluation results of the three items evaluated by
the six observers was calculated for each image, and the best- and worst-
three images are shown in Figure 8.

4. Discussion

As for Papanicolaou-stained images translated to Giemsa-stained
images, faithful representations of blue cell nuclei and light green cyto-
plasm were obtained. In addition, the erythrocytes were removed, and
nucleoli and chromatin that are normally difficult to visualize using Gi-
emsa staining appeared. In many cases, out-of-focus nuclei appeared in
the translated Papanicolaou-stained images in the cytoplasmic regions in
Giemsa-stained images.

When Papanicolaou-stained images were converted to Giemsa-
stained images, the nuclei and cytoplasm were converted to purple,
and many red blood cell patterns appeared that were not included in the
Papanicolaou-stained images. Giemsa stain tends to render cell nuclei
thinner and more spread out because the cells are dried to prepare the
specimen. The nuclei in the translated Giemsa-stained images were large,
Papanicolaou
to Giemsa

Real
Papanicolaou

r squamous cell carcinoma specimens.
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Figure 7. Box plots of visual evaluation results (Left: Giemsa to Papanicolaou, Right: Papanicolaou to Giemsa).
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and this feature was reproduced. In addition, in Papanicolaou-stained
specimens, there was a mixture of focused and unfocused cells, since
specimens maintain the three-dimensional structure of cells. The number
of nuclei was reduced by the loss of unfocused nuclei as a result of
translating them into Giemsa-stained images with thin structures.

In terms of visual evaluation results, although there was some vari-
ation among observers, overall scores for real images were higher than
for translated images, with statistically significant differences (P value
<0.001) for all evaluation items.

However, there was an overlap between scores for the real and
translated groups, which suggested that there was a mix of well- and
poorly-transformed images. Therefore, the best three and worst three
images with overall scores in the observer test were shown in Figure 8.
When we interviewed observers regarding these images, we obtained the
6

following comments. As for the best-three images, the characteristics of
nucleus, cytoplasm, and cell layout specific to the tissue type were well-
represented. In contrast, the worst-three images shown in Figure 8(c)
were out of focus (Figure 8(c) left), the relationship between the cell
nucleus and the cytoplasm was broken, the shape of the cell nucleus was
disrupted (Figure 8(c) center and right), and artifacts were observed
(Figure 8(c) right). In Figure 8(d), keratinized cells (stained orange with
Papanicolaou stain) were not correctly converted (Figure 8(b) center),
the cytoplasmic margins were unnatural (Figure 8(b) left), and the
intracytoplasmic state was unclear (Figure 8(b) right). These might be
improved by using more images to train CycleGAN.

The stain translation technique investigated in this paper can com-
plement the specimen in conditions where only single stained specimen
is available. It also has potential applications in the massive training of
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Figure 8. Best-three and worst-three translated images.
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artificial intelligence for cell classification, and education of trainee cy-
totechnologists and pathologists.

In this study, we introduced a method to convert the staining of lung
cytology specimens and examined the possibility of applying this to
diagnosis. In cytology, cells collected by biopsy are stained on glass, and
different stains cannot be applied to the same cells. Here, we focused on
CycleGAN as an image transformation technique using unpaired images.
In future studies, we aim to incorporate new models into our research
and investigate whether they can produce images that are further
improved.

In this method, we employed data augmentation to prevent over
fitting and mode collapse. However, the effects of data augmentation
7

are often limited [8]. Future work includes collecting many addi-
tional images to improve the image representation capability of the
transformed images. In addition, it will be necessary to utilize the
deep learning method for cell differentiation and tissue type
classification.

5. Conclusion

In this study, we developed a mutual conversion technique involving
Giemsa- and Papanicolaou-stained images using CycleGAN. Experi-
mental results indicated that proposed stain translation techniquemay be
useful for the diagnosis, artificial intelligence, and education.
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