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a b s t r a c t

Human behaviour significantly affects the dynamics of infectious disease transmission as
people adjust their behavior in response to outbreak intensity, thereby impacting disease
spread and control efforts. In recent years, there have been efforts to incorporate behav-
ioural change into spatio-temporal individual-level models within a Bayesian MCMC
framework. In this past work, parametric spatial risk functions were employed, depending
on strong underlying assumptions regarding disease transmission mechanisms within the
population. However, selecting appropriate parametric functions can be challenging in
real-world scenarios, and incorrect assumptions may lead to erroneous conclusions. As an
alternative, non-parametric approaches offer greater flexibility. The goal of this study is to
investigate the utilization of semi-parametric spatial models for infectious disease trans-
mission, integrating an “alarm function” to account for behavioural change based on
infection prevalence over time within a Bayesian MCMC framework. In this paper, we
discuss findings from both simulated and real-life epidemics, focusing on constant
piecewise distance functions with fixed change points. We also demonstrate the selection
of the change points using the Deviance Information Criteria (DIC).

© 2024 The Authors. Publishing services by Elsevier B.V. on behalf of KeAi
Communications Co. Ltd. This is an open access article under the CC BY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Infectious disease transmission models can be used to advise policymakers on preparing for and addressing (re)emerging
infectious diseases, especially in the absence of ample data from controlled experiments. Given the influence of host behavior
on disease transmission and policy effectiveness, there is a growing interest in integrating behavioural change responses to
perceived threat from disease into disease transmission models (Verelst et al. [2016]).

A behavioural change epidemic model (BCEM) is characterized by individuals’ responsiveness to external information
regarding the disease, prompting them to adopt one or more preventive measures to mitigate the risk of contracting the
disease (Funk et al. [2010]). Individuals’ responses to external information can be categorized as either global, universally
accessible and pertinent to all individuals, such as news disseminated by media channels and information provided by public
health authorities, or local, contingent on physical or social proximity to the information source. Moreover, this information
may pertain to actual risks (prevalence-based), perceptions of these risks (belief-based), or a combination of both (Funk et al.
[2010]). Most research on BCEMs has concentrated on population-averaged frameworks, valued for their computational
by Elsevier B.V. on behalf of KeAi Communications Co. Ltd. This is an open access article under the CC
ses/by-nc-nd/4.0/).
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efficiency and applicability to large populations. However, these models assume uniform susceptibility and mixing patterns
across individuals, potentially overlooking the need for more nuanced models in certain diseases and smaller populations to
accurately represent transmission dynamics (Ward et al. [2023b]). There is growing interest in individual-level models within
the behavioural change (BC) modeling literature due to their ability to incorporate population and behavioural heterogeneity,
address clustering of vaccine sentiment, and analyze stochastic and localized outbreaks of infectious diseases, particularly in
highly vaccinated populations, as in the case of diseases such as measles. Additionally, individual-level models are well-
equipped to simulate social distancing behaviors, such as reduced contacts, as a preventive measure, particularly in the
context of an underlying contact structure (Verelst et al. [2016]).

A compartmental framework is commonly employed in infectious disease models to depict how individuals transition
between different disease states. For instance, at any given time point in an SIR framework, the susceptible (S) class comprises
individuals vulnerable to infection, the infectious (I) class includes potential transmitters of the disease, and the removed (R)
class represents those who have recovered with immunity, been isolated, or died.

Typically, inference for thesemodels is conductedwithin a BayesianMarkov chainMonte Carlo (MCMC) framework, which
combines the robust mathematical principles of Bayesian analysis with the computational power of MCMC methods, known
for effectively handling intricate models (e.g., Robert and Casella [2002]).

In modeling infectious disease spread while considering behavioural change, parametric models are frequently employed,
depending on strong underlying assumptions regarding disease transmission mechanisms within the population (Ward et al.
[2023a,b]). However, making appropriate parametric assumptions can be challenging in real-world scenarios, and incorrect
assumptions may lead to erroneous conclusions (Gardner et al. [2011]). As an alternative, non-parametric approaches offer
greater flexibility by not assuming a simple parametric model (Kypraios and O’Neill, 2018, Rahul and Deardon [2024]).

In this paper, we establish a framework for basic non-parametric spatial BC infectious disease transmission models using
piecewise constant spatial kernels within a Bayesian Markov Chain Monte Carlo (MCMC) framework, building upon the ILM
framework outlined in Rahul and Deardon [2024]. These BC-ILMs enable dynamic changes in susceptibility or transmission
rates driven by prevalence-based behavioural change effects.

The layout of the rest of the paper is as follows. In Section 2, we introduce our proposed semi-parametric spatial BC model
and inference method. In Section 3, we demonstrate the simulation process and the findings in detail. In Section 4, we apply
our model to 2001 UK foot-and-mouth disease (FMD) data. Then lastly, in Section 5, we recap the study and offer plans for
further research.
2. Methodology

2.1. The General ILM

To understand the spatiotemporal dynamics of infectious disease transmission in heterogeneous populations, individual
level models (ILMs) of transmission can be used (Deardon et al. [2010]). In spatial ILMs, individuals are considered separate
entities across both time and space, with events occurring at discrete time t representing their occurrence within the
continuous time interval ½t; t þ 1Þ.

This paper examines SIR (susceptible-infectious-removed) and SEIR(susceptible-exposed-infectious-removed) compart-
mental frameworks in simulated and real-world data scenarios, respectively. According to the SEIR framework, a person can
be susceptible (S), exposed (E), infectious (I), or removed (R) at any discrete time point. Susceptible individuals have not yet
been infected, while exposed individuals are infected but not yet contagious, experiencing a latent period (the length of which
is denoted by mE). Infectious individuals can transmit the disease and are actively contagious for a duration known as the
infectious period (denoted by mI). Those in the removed class may have recovered with immunity, died, or have been
separated from the population, for example, through quarantine. Individuals in any of these states at a specific time are
represented as members of the respective sets S(t), E(t), I(t), or R(t). In the SIR framework, the E state is omitted with in-
dividuals becoming infectious when they are infected.

Deardon et al. [2010] proposed the following general form of the epidemic ILM:

Pði; tÞ ¼ 1� exp

248<:� USðiÞ
X
j2IðtÞ

UT ðjÞkði; jÞ
9=;� eði; tÞ

35;USðiÞ;UT ðjÞ; kði; jÞ; eði; tÞ � 0; (1)

where P(i, t) is the probability of a susceptible individual i being infected at discrete time point t. I(t) is the set of individuals
who are infectious at time t. US(i) and UT(j) denote susceptibility and transmissibility functions, respectively. These functions
encapsulate various risk factors, such as environmental or genetic factors, associated with susceptible individual i contracting
the disease and infectious individual j transmitting it. The infection kernel k(i, j) accounts for shared risk factors between pairs
of infectious and susceptible individuals, which could be based on spatial distance or connection through a network. A
common term used for an infectious kernel derived from spatial distance is a spatial kernel. Additionally, infections not
explained by US(i), UT(j), or k(i, j) can be attributed to the sparks term e(i, t), which often represents potential infections
originating from outside the observed population.
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2.2. The General Behavioural Change ILM (BC-ILM)

Based on the ILMs of Deardon et al. [2010], Ward et al. [2023b] proposed a new class of BC-ILM. These models incorporate
an alarm function, denoted as gt, that is a function of disease prevalence or incidence. It serves as a proxy for the perceived risk
within the population over time. It is assumed that a higher alarm function is accompanied by a higher level of disease-
mitigating behaviour. Thus, as the alarm function increases, infection rates should decrease. This alarm function over-
comes the problem that arises from not having BC-related data, as it’s often hard to get information about the factors that
capture behavioural change in reality (e.g., information about wearing a mask, physical distancing, or reducing movement).

According to the framework proposed byWard et al. [2023b], the alarm function gt, can be integrated into any component
of equation (1) in a multiplicative manner that ensures that an increase in gt leads to a decrease in P(i, t). The general BC-ILM
proposed by Ward et al. [2023b] is as follows:

Pði; tÞ ¼ 1� exp

248<:� USði; gtÞ
X
j2IðtÞ

UT ðj; gtÞkði; j; gtÞ
9=;� eði; t; gtÞ

35: (2)
2.3. Non-parametric Spatial BC-ILMs

Rahul and Deardon [2024] proposed a new non-parametric ILM framework by setting US(i) ¼ UT(j) ¼ 1, e(i, t) ¼ 0, and
kði; jÞ ¼ ekði; jÞ to equation (1) to give

PitðqÞ ¼ 1� exp

8<:�
X
j2It

ekði; jÞ
9=; (3)

where,

ekði; jÞ ¼ (eklðdijÞ dl�1 � dij < dl; l ¼ 1;…;n� 1eklðdijÞ dij � dl�1; l ¼ n; (4)

and where, d0, d1, …, dn�1 are change points and d0 ¼ 0.
They considered eklðdijÞ ¼ al where al2Rþ, to define an n-step piecewise constant model, with infection kernel:

ekði; jÞ ¼
8>>>><>>>>:

a1 d0 � dij < d1;
a2 d1 � dij < d2;

«
an�1 dn�2 � dij < dn�1;
an dij � dn�1:

(5)

Here, similar to Ward et al. [2023b], we incorporate a smooth exponential alarm function in the equations (3) and (5), where
the impact of behaviour change increases as prevalence grows. Specifically, the alarm function is given by,

gt ¼ 1� expð�ljIt�1jÞ; (6)

where l > 0 determines the rate at which gt will approach an asymptote of one, and jIt�1j is the prevalence at time t � 1.
Examples of this alarm function are shown in Figure A.1 (see Appendix).

Then, our semi-parametric BC-ILM framework is given by:

PitðqÞ ¼ 1� exp

8<:�
X
j2It

ekði; j; gtÞ
9=; (7)

where,

ekði; j; gtÞ ¼
(eklðdij; gtÞ dl�1 � dij < dl; l ¼ 1;…;n� 1eklðdij; gtÞ dij � dl�1; l ¼ n; (8)

and where, d0, d1, …, dn�1 are change points and d0 ¼ 0.
Thus, we can derive an n-step BC piecewise constant model, with infection kernel given by:
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ekði; j; gtÞ ¼
8>>>><>>>>:

a1 � ð1� gtÞ d0 � dij < d1;
a2 � ð1� gtÞ d1 � dij < d2;

«
an�1 � ð1� gtÞ dn�2 � dij < dn�1;
an � ð1� gtÞ dij � dn�1;

(9)

where, a1;…; an2Rþ. We can see that in the BC kernel, the a parameters that define the infection rate over space are
multiplied by (1 � gt). This ensures that as the alarm increases, suggesting protective behavioural change, the infection rates
reduce. Note that, our n-step BC piecewise kernel has n-1 change points. Here, predefined change points are established prior
to model fitting. However, it is also possible to estimate the location of the change points.

In this context, a random-walk Metropolis-Hastings (Metropolis et al. [1953], Hastings [1970], Chib and Greenberg [1995])
approach is employed for parameter estimationwithin a Bayesian framework. Let q be the vector of unknownparameters, and
let X be the observed epidemic data recorded at discrete time points t ¼ 1, …, (T � 1). For the n-step BC piecewise constant
model X consists of information on the location of each individual, and individual event times (e.g., infection and removal
times for an SIR compartmental framework). Where relevant X might also contain individual-level covariates.

Then for the compartmental framework SEIR, the likelihood is

f ðXjqÞ ¼
YT�1

t¼1

24 Y
i2Eðtþ1ÞyEðtÞ

Pði; tÞ
3524 Y

i2Sðtþ1Þ
½1� Pði; tÞ�

35; (10)

where, E(t þ 1)yE(t) represents the group of individuals newly exposed at time t þ 1; and S(t þ 1)yS(t) is the set of in-
dividuals who are in susceptible state at time t þ 1.

For an SIR compartmental framework, our likelihood function will be

f ðXjqÞ ¼
YT�1

t¼1

24 Y
i2Iðtþ1ÞyIðtÞ

Pði; tÞ
3524 Y

i2Sðtþ1Þ
½1� Pði; tÞ�

35; (11)

where I(t þ 1)yI(t) is the group of newly infectious or infected individuals at time t þ 1.
We assume independent marginal priors for our parameters q¼ (a1, a2,…, an, l), and combinewith the likelihood as given

in equation (10) or (11), depending on the respective compartmental framework (SEIR or SIR), to form the posterior distri-
bution p(qjX) up to a constant of proportionality. As stated previously, we assume the change-points, d0, d1,…, dn�1, are known.
3. Simulation

Here, we detail a simulation study carried out to evaluate howwell the suggested semi-parametric BC constant piecewise
kernel spatial ILM characterized the dynamics of infectious diseases under three different scenarios of BC effects in an SIR
compartmental framework.

Epidemics were simulated from a BC picewise constant kernel ILM for fixed change points (d’s) for three different values of
BC parameter l: l ¼ 0 (“no” BC effect or basic constant piecewise kernel), l ¼ 0.02 (a “medium” BC effect) and l ¼ 0.04 (a
“strong” BC effect). Here, we consider three-step (n¼ 3) and seven step (n¼ 7) cases for the constant piecewise spatial kernel.
For three-step cases, we consider a population of size N ¼ 250 located with spatial coordinates x ¼ ðx1;…; x250Þ and y ¼ ðy1;
…;y250Þ, generated from independent uniform distributions x ~ U[0, 10] and y ~ U[0, 10]. For seven-step cases, we consider a
population of N ¼ 400 individuals and the spatial coordinates sampled randomly from uniform distribution over a 25 � 25
unit square; i.e., x ~ U[0, 25], y ~ U[0, 25]. The parameters utilized in the three-step and seven-step cases under various BC
effect scenarios are shown in Figures 2 and A.5 to A.9 (see Appendix), respectively. Three randomly chosen individuals were
selected to initiate the epidemics, with their infectious periods commencing at t ¼ 1 and the infectious period mI ¼ 3 time
units for all individuals. The simulations were carried out for a duration of T ¼ 20 time units.

We used “vague” positive half-normal priors for the a’s (al ~ Nþ(0, 105); l ¼ 1, 2, …, n) and a “weakly informative” gamma
distribution prior for l (l ~ Gamma(1, 5)). Note, we also explored alternative priors for l to assess their influence on the
posterior estimates. Specifically, we tested “weakly informative” and “vague” half-normal priors (e.g., l ~ Nþ(0, 8) and l ~
Nþ(0, 105)) but did not obtain noticeably different results from those obtained with the Gamma(1, 5) prior. Here, we present
the results based on the Gamma(1, 5) prior.

We assessed MCMC convergence by visually inspecting traceplots and utilizing Geweke’s diagnostic (Geweke [1992]) for
eachmodel parameter. If any chains failed to converge according to Geweke’s diagnostic test, thenwe used the Gelman-Rubin
diagnostic (Gelman and Rubin [1992]) using three MCMC chains. We then calculate the posterior mean, median, and 95%
percentile intervals (PIs) for each model parameter. Figures A.2 - A.4 (see Appendix) show the spatiotemporal dynamics of
305



Figure 1. Epidemic curve under three different BC scenarios, where the blue, green, and red curves represent no (l ¼ 0), medium (l ¼ 0.02) and strong (l ¼ 0.04)
BC effects, respectively.

Figure 2. Posterior medians (red points) and 95% PIs for (a) a1, a2, a3 and l and (b) a1, a2, a3 for 10 different simulated epidemics when the change points (d’s) are
considered fixed and l are considered to be included or not in the model. The true parameter values a1 ¼ 0.08, a2 ¼ 0.01, a3 ¼ 0.0003 and l ¼ 0 for three-step
cases with fixed d1 ¼ 1.5, and d2 ¼ 3 are represented by the blue dashed line.

C.R. Rahul, R. Deardon Infectious Disease Modelling 10 (2025) 302e324
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typical epidemics under the model and Figure 1 the epidemic curves of those epidemics, generated from the three-step
piecewise constant kernel model with BC effects l ¼ 0, 0.02 and 0.04, respectively.

Figure 2 shows the posterior medians and 95% PIs for the parameters of both the standard piecewise constant ILM and the
BC piecewise constant ILM across ten distinct epidemics and populations. When l ¼ 0 (no BC) under three-step cases, all the
parameters (i.e., a1, a2, and a3) arewell estimated in the non-BC ILM, and all the 95% PIs capture the true parameter values that
were used to generate the epidemics. In three-step cases the posterior medians of all parameters (apart from l itself) closely
approximate their true values, and all 95% PIs encompass the true parameter values employed for generating the epidemics.
Thus, the incorporation of the BC effect into the model when it is not required still results in good estimates of the a pa-
rameters, as well as low estimates of l itself.

Figure A.5 (see Appendix) shows the posterior medians and 95% PIs for the parameters of the BC and non-BC piecewise
constant ILMs for ten distinct epidemics and populations, when l¼ 0.02 (medium BC effect) under three-step cases. In three-
step cases where BC is incorporated, the posterior medians of all the parameters are close to their true values, andmost of the
95% PIs contain the true parameter values (a1, a2, a3, and l) employed for generating the epidemics. However, in the non-BC
models, a1 and a2 posterior estimates underestimate the true parameter value, and the 95% PIs do not encompass the true
parameter values.

Figure A.6 (see Appendix) shows the posterior medians and 95% PIs for the parameters of the BC and non-BC piecewise
constant model across ten distinct epidemics and populations, when l ¼ 0.04 (strong BC effect) in three-step scenarios. Once
again, the true parameter values (i.e., a1, a2, a3, and l) used to generate data for the three-step cases with fixed change points
mostly fall within their posterior 95% PIs, with posterior medians generally close to the true parameter values. However, most
of the a parameters are not well estimated when the BC effect is not incorporated into the model. Overall, this seems to show
that we can generally estimate all the parameters from epidemic data generated from BC piecewise constant spatial ILMs well
when fitting the truemodel to data. However, the spatial kernel estimates are biased if we fail to incorporate the BC effect into
our model.

Figure 3 shows the DIC values of the models for the three-step cases discussed above for three different values of BC
parameter l for 10 different epidemics. We can see from Figure 3(a) that when there was no BC effect (l¼ 0), the DIC correctly
identifies the non-BCmodel as that with the best fit. However, Figures 3(b)-(c) suggest that when l¼ 0.02 or 0.04 the DIC can
successfully identify that the BC mechanism is required in each case.

Figures A.7 to A.9 (see Appendix) show the posterior medians and 95% PIs for the parameters of the BC and non-BC
constant piecewise ILMs across ten epidemics, with l ¼ 0, 0.02, and 0.04 under seven-step scenarios. These cases demon-
strate the performance of our model for a higher number of steps with varying degrees of BC. Once again, in the seven-step
scenarios, the true parameter values employed for generating the data are containedwithin their respective posterior 95% PIs,
with posterior medians generally reflecting proximity to the true parameter values.
Figure 3. DIC values for three-step cases for 10 different simulated epidemics when the change points (d’s) are considered fixed and BC effects parameter (a) l ¼
0, (b) l ¼ 0.02 and (c) l ¼ 0.04 are considered to be included or not in the model.
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Figure 4. DIC values for seven-step cases for 10 different simulated epidemics when the change points (d’s) are considered fixed and BC effects parameter (a) l ¼
0, (b) l ¼ 0.02 and (c) l ¼ 0.04 are considered to be included or not in the model.

Figure 5. Posterior predictive distribution of the epidemic curve for three typical simulated epidemics for three-step cases with incorporating BC effects (a) l ¼
0 and (b) without BC effect. The black solid line represents the true epidemic curve, the green solid line represents the estimated median curve and the blue
dotted lines represent the 95% PI, respectively.

C.R. Rahul, R. Deardon Infectious Disease Modelling 10 (2025) 302e324
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Figure 4 displays the DIC values of the models for seven-step cases across ten different epidemics, considering three
different values of the BC parameter l. From Figure 4(a), it is evident that when therewas no BC effect (l¼ 0), the DIC correctly
identifies the non-BC model as having the best fit. However, Figures 4(b)-(c) indicate that when l ¼ 0.02 or 0.04, the DIC
effectively demonstrates the necessity of the BC mechanism in each case.

3.1. Posterior Predictive Ability

In this section, we present results regarding the posterior predictive distribution (PPD) of the epidemic curve for three
randomly chosen epidemics, typical of those generated from the model with and without BC effects for three-step and seven-
step cases, in order to evaluate the proposed model’s predictive accuracy across various scenarios of BC effects, namely, l ¼ 0,
0.02, and 0.04.

Figure 5 shows the PPD of the epidemic curve for three simulated epidemics for both the BC and non-BC piecewise
constant ILMs, when l¼ 0 (no BC effect) under three-step cases. In three-step cases, under the non-BC ILMs, the true epidemic
curves are very well enveloped by the 95% PIs of the epidemic curves under the true model. In addition, the true epidemic
curves are also mostly enveloped by the 95% PIs of the epidemic curves under the true model when BC is incorporated in the
same scenario. This suggests that the epidemic simulation remains reasonably robust evenwhen the incorporation of the BC
effect into the model is not necessary.

Figure A.10 (see Appendix) shows the PPD of the epidemic curve for three simulated epidemics for both the BC and non-BC
piecewise constant ILMs, when l ¼ 0.02 (medium BC effect) under three-step cases. In three-step cases where BC is incor-
porated in the model, the true epidemic curves are very well enveloped by the 95% PIs of the epidemic curves under the true
BC piecewise constant spatial model. However, the true epidemic curves are not fully captured by the 95% PIs of the epidemic
curves under the piecewise constant spatial model when BC is not considered in the model.

Similarly, Figure A.11 (see Appendix) shows the PPD of the epidemic curve for three simulated epidemics for both the BC
and non-BC piecewise constant ILMs, when l ¼ 0.04 (strong BC effect) under three-step cases. The true epidemic curves are
very well enveloped by the 95% PIs of the epidemic curves under the true BC piecewise constant spatial model for three-step
cases. However, the true epidemic curves are not entirely captured by the 95% PIs of the epidemic curves under the piecewise
constant spatial model ignoring the BC effect. Further, the oscillatory nature of the epidemic curves are completely missed.
Overall, this indicates that our approach is adaptable enough to capture epidemic dynamics when the true kernel is based on
the spatial BC piecewise constant kernel. However, it fails to capture the epidemic dynamics if we neglect to integrate the BC
effect into our model.

Figures A.12 - A.14 (see Appendix) show the PPD of the epidemic curve for three simulated epidemics for both the BC and
non-BC piecewise constant ILMs, when l ¼ 0, 0.02 and 0.04 under seven-step cases. Once again, the results justify that our
approach is flexible enough to capture epidemic dynamics with correct model (BC or non-BC) which generated the data.

4. UK 2001 Foot-and-Mouth Disease (FMD) Data

Here, we utilize the BC constant piecewise kernel models outlined in Section 2.3 within an SEIR framework to analyze the
foot-and-mouth disease (FMD) data from the 2001 epidemic in the UK. We contrast the outcomes of these models with those
obtained using the standard piecewise constant ILM as given in equations (3) and (5).

We analyze a portion of the UK FMD dataset from the county of Cumbria, located in the northwest of England, as used in
Rahul and Deardon [2024]. This subset comprises 1,079 individual farms housing cattle and/or sheep, along with their cor-
responding x/y Cartesian coordinates. Each farm is considered to be an individual-level unit, with no consideration given to
farm size or type here. Within the SEIR framework, when a farm initially susceptible to infection becomes infected, it enters
an exposed or latent period before being capable of transmitting the infection to others. We assume a fixed and known latent
period of 5 days (mE ¼ 5) before transitioning from the exposed (E) state to the infectious (I) state. The infectious period is
determined by the cull date for each farm; if no cull date is available, we assign an infectious period of 4 days (mI ¼ 4). Our
analysis focuses on a temporal subset of the complete dataset, encompassing infections where the recorded exposure times
fall between 28 and 66 days after the initial infection on February 19, 2001. The national ban on animal movements was
implemented on February 23, 2001 (Chis Ster and Ferguson, 2007). So here, analysis is conducted using data collected well
after this date, and any observed behavioural change effect detected would be in addition to the ban on animal movements.

The model described in equation (7) is adjusted to incorporate a constant sparks term, denoted as e(i, t) ¼ 3. Specifically,
our model takes the form:

PitðqÞ ¼ 1� exp

8<:�
0@X

j2It

�ekði; j; gtÞ þ e

1A9=;: (12)
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Figure 6. Posterior medians and 95% PIs for different change point (d) models (a-h) with BC and Non-BC piecewise constant kernel which fitted to FMD data are
represented by red and blue dashed lines, respectively.

C.R. Rahul, R. Deardon Infectious Disease Modelling 10 (2025) 302e324
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Figure 7. Posterior medians and 95% PIs for different change point (d) models (a-j) with BC and Non-BC piecewise constant kernel which fitted to FMD data are
represented by red and blue dashed lines, respectively.

C.R. Rahul, R. Deardon Infectious Disease Modelling 10 (2025) 302e324
The inclusion of the sparks term serves to introduce a small, random chance of a farm becoming infected at any particular
moment. This accounts for the possibility of infections occurring randomly within the observed subset of the UK foot-and-
mouth disease data, potentially originating from sources external to the observed spatial region.

Under our SEIR framework, the form of the likelihood is given by equation (10). For BC piecewise constant kernel models,
we once again use “vague” positive half-normal priors for the a’s (al ~ Nþ(0, 105); l ¼ 1, 2, …, n) and a “weakly informative”
gamma distribution prior for l (l ~ Gamma(1, 5)). We evaluate MCMC convergence using traceplot visual inspection and
Geweke’s diagnostic (Geweke [1992]) for each model parameter.

4.1. Results

Figures 6 and 7 show the fitted BC and non-BC piecewise constant kernel models for different change points under the
posterior when themodels have been fitted to the 2001 UK FMD data. This represents the spatial kernel when gt¼ 0 (baseline
behaviour) under the BC-ILMs.We see that the 95% PI of non-BC piecewise constant kernel models are narrower than those of
BC piecewise constant kernel models with the same change points. However, similar spatial dynamics are suggested for all
models under baseline behaviour.

Table 1 presents the DIC values for both BC and non-BC piecewise constant kernel models across various change points. It
is evident that the BC constant piecewise kernel ILMs exhibit lower DIC values compared to their non-BC counterparts for
corresponding change points. However, the discrepancy in DIC values between BC and non-BC models with the same change
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Table 1
DIC values and l estimates (median) with 95% PIs for different semi-parametric BC and DIC values for different semi-parametric non-BC piecewise constant
kernel ILMs when fitted to FMD data.

Model Change point d DIC for with BC DIC for without BC l (95% CI)

Two-step 3 2769 2775 0.0385 (0.0256 - 0.0523)
Two-step 4 2758 2765 0.0369 (0.0223 - 0.0496)
Two-step 5 2741 2749 0.0396 (0.0264 - 0.0527)
Three-step (4,7) 2735 2742 0.0387 (0.0249 - 0.0517)
Three-step (5,8) 2734 2740 0.0399 (0.0268 - 0.0526)
Four-step (3,5,7) 2732 2738 0.0401 (0.0262 - 0.0545)
Four-step (4,7,9) 2727 2735 0.0409 (0.0274 - 0.0539)
Five-step (2,4,6,8) 2728 2733 0.0414 (0.0285 - 0.0542)
Five-step (3,5,7,9) 2725 2732 0.0422 (0.0294 - 0.0543)
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points is relatively small, ranging from 5 to 8, though this would be considered a “significant” reduction in DIC. Additionally,
we note that the DIC values decrease for both BC and non-BC piecewise constant kernel ILMs as the number of change points
increases, indicating a preference for greater model flexibility. Specifically, the smallest DIC value of 2725 is attained by the
five-step BCmodel with change points occurring at distances 3, 5, 7, and 9. Table 1 also shows the posterior median estimates
of the BC effects (l) along with their 95% CIs for the same BC piecewise constant kernel models across various change points
examined in this analysis. It’s noticeable that the estimates are highly consistent, and the smallest 95% CI is also achieved by
the five-step BCmodel with change points occurring at distances 3, 5, 7, and 9. The fact that lx 0.04 in each case suggest that
the BC mechanism is similarly estimated under each kernel, and that l estimation is fairly robust to the choice of change
points.

Overall, our results suggest evidence of a moderate BC effect. This might well be expected. First we would expect to see
alarm (and maybe biosecurity) to increase as the number of cases increases within any region. However, since the major
change in behavioural occurred before thewindowof data observed (i.e., government restrictions on animalmovements) that
behavioural change might not be expected to be very severe.
5. Discussion

This study introduces a framework for semi-parametric spatial infectious disease individual-level models that incorporate
BC piecewise constant kernels, and it contrasts the outcomes with those obtained using standard piecewise constant kernels
within a Bayesian Markov Chain Monte Carlo (MCMC) framework. Through simulated epidemic scenarios, we demonstrate
that spatial individual-level models (ILMs) utilizing BC piecewise constant kernels can accurately estimate the true param-
eters when the correct model is applied to the data. Additionally, evenwhen the BC effect is unnecessary, incorporating it into
the model still yields accurate parameter estimates, typically with low estimates of the BC effect parameter. Furthermore, the
accurate models demonstrate strong posterior predictive ability and effectively capture the true epidemic curve. We also
show that there is evidence of BC effects on the spatial dynamics of spread of FMD in the UK 2001 epidemic.

There are various avenues for future research that we could pursue. We have utilized a prevalence-based exponential
alarm function in the constant piecewise kernel to model any BC effects. Alternatives exist, however. One possible approach
could involve incorporating different types of prevalence-based alarm functions, such as the Hill-type or threshold alarm
function (Ward et al. [2023b]). We can also consider alarm functions based on incidence or smoothed averages of prevalence
or incidence over time. Here, wemay also interested in optimizing the exact form of the metric (e.g., window size) used in the
alarm function.

Up to this point, we have focused on utilizing a BC piece-wise constant kernel. However, there is potential value in
exploring the development of semi-parametric models that incorporate BC polynomial piece-wise spatial kernels (e.g., linear
or cubic; see, for example, Silverman [1985], Friedman et al. [2001], Kwong et al. [2013]). This approachwould offer a different
perspective from our current use of BC piece-wise constant kernels.

In this paper, we employed the widely used Deviance Information Criterion (DIC) to carry out model selection. Our
simulation study results do seem to suggest that the DIC works well within this context. However, other criteria, such as the
Watanabe-Akaike Information Criterion (WAIC), or other variants of the DIC (Deeth et al. [2015]) could also be considered.

Our study exclusively examined models without covariates, yet in real-world scenarios, individual or group-level factors
are likely to influence infection transmission or susceptibility. Expanding our model to include covariates would allow for the
consideration of more complex dynamics. For instance, while our foot-and-mouth disease models omitted the number of
cattle and sheep on the farm to emphasize the spatial aspect of disease spread, these variables are frequently employed as
covariates in similar models (Deardon et al. [2010], Ward et al. [2023b]).

In our research, we initially assumed a fixed rate parameter in our alarm function. However, in real-world scenarios,
human behavior evolves over time and in response to infection prevention measures. To address this, we could incorporate a
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continuous function for the rate parameter, enabling a time-varying alarm function that better captures the effects of
changing behavior over time. This might capture effects such as “lockdown fatigue”.

Finally, we explored models with fixed and known latent and/or infectious periods to manage computational complexity
and maintain simplicity in our analysis. However, this assumption may not hold true in many scenarios, as these periods can
significantly vary between individuals, and the timing of exposure, infection onset, and removal may often be censored.
Addressing this uncertainty can involve techniques like data-augmented MCMC, albeit at the expense of significantly
increased computational workload.

Chinmoy Roy Rahul: Writing e review & editing, Writing e original draft, Visualization, Software, Methodology, Inves-
tigation, Formal analysis, Conceptualization. Rob Deardon:Writinge review& editing, Validation, Supervision, Methodology,
Investigation, Conceptualization
Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have
appeared to influence the work reported in this paper.
Declaration of Competing Interest

☒ The authors declare that they have no known competing financial interests or personal relationships that could have
appeared to influence the work reported in this paper.
Acknowledgements

This research was funded by the Natural Sciences and Engineering Research Council of Canada (NSERC) Discovery Grant
program (RGPIN/03292 � 2022) and the Alberta Innovates Advance e NSERC Alliance program (222302037).
Appendix A

Figure A.1. Exponential Alarm function with different BC effects (l) where brown, green, red, blue, and purple lines represents alarm values for l ¼ 0.001, 0.01,
0.015, 0.02, and 0.04, respectively.
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Figure A.2. Typical simulated epidemic realization across a grid of individuals for basic picewise constant kernel ILM, where susceptible individuals are denoted
by blue circles, infected individuals are denoted by red circles and removed individuals are denoted by yellow circles.
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Figure A.3. Typical simulated epidemic realization across a grid of individuals for picewise constant kernel ILM with medium BC effect, where susceptible
individuals are denoted by blue circles, infected individuals are denoted by red circles and removed individuals are denoted by yellow circles.
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Figure A.4. Typical simulated epidemic realization across a grid of individuals for picewise constant kernel ILM with strong BC effect, where susceptible in-
dividuals are denoted by blue circles, infected individuals are denoted by red circles and removed individuals are denoted by yellow circles.
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Figure A.5. Posterior medians (red points) and 95% PIs for (a) a1, a2, a3 and l and (b) a1, a2, a3 for 10 different simulated epidemics when the change points (d’s)
are considered fixed and l are considered to be included or not in the model. The true parameter values a1 ¼ 0.08, a2 ¼ 0.01, a3 ¼ 0.0003 and l ¼ 0.02 for three-
step cases with fixed d1 ¼ 1.5, and d2 ¼ 3 are represented by the blue dashed line.
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Figure A.6. Posterior medians (red points) and 95% PIs for (a) a1, a2, a3 and l and (b) a1, a2, a3 for 10 different simulated epidemics when the change points (d’s)
are considered fixed and l are considered to be included or not in the model. The true parameter values a1 ¼ 0.08, a2 ¼ 0.01, a3 ¼ 0.0003 and l ¼ 0.04 for three-
step cases with fixed d1 ¼ 1.5, and d2 ¼ 3 are represented by the blue dashed line.
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Figure A.7. Posterior medians (red points) and 95% PIs for (a) a1 to a7 and l and (b) a1 to a7 for 10 different simulated epidemics when the change points (d’s) are
considered fixed and l are considered to be included or not in the model. The true parameter values a1 ¼ 0.11, a2 ¼ 0.08, a3 ¼ 0.005, a4 ¼ 0.003, a5 ¼ 0.002, a6 ¼
0.0006, a7 ¼ 0.0005 and l ¼ 0 for seven-step cases with fixed d1 ¼ 2.5, d2 ¼ 4, d3 ¼ 5.5, d4 ¼ 6.5, d5 ¼ 7.5, and d6 ¼ 8.5 are represented by the blue dashed line.
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Figure A.8. Posterior medians (red points) and 95% PIs for (a) a1 to a7 and l and (b) a1 to a7 for 10 different simulated epidemics when the change points (d’s) are
considered fixed and l are considered to be included or not in the model. The true parameter values a1 ¼ 0.11, a2 ¼ 0.08, a3 ¼ 0.005, a4 ¼ 0.003, a5 ¼ 0.002, a6 ¼
0.0006, a7 ¼ 0.0005 and l ¼ 0.02 for seven-step cases with fixed d1 ¼ 2.5, d2 ¼ 4, d3 ¼ 5.5, d4 ¼ 6.5, d5 ¼ 7.5, and d6 ¼ 8.5 are represented by the blue dashed line.
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Figure A.9. Posterior medians (red points) and 95% PIs for (a) a1 to a7 and l and (b) a1 to a7 for 10 different simulated epidemics when the change points (d’s) are
considered fixed and l are considered to be included or not in the model. The true parameter values a1 ¼ 0.11, a2 ¼ 0.08, a3 ¼ 0.005, a4 ¼ 0.003, a5 ¼ 0.002, a6 ¼
0.0006, a7 ¼ 0.0005 and l ¼ 0.04 for seven-step cases with fixed d1 ¼ 2.5, d2 ¼ 4, d3 ¼ 5.5, d4 ¼ 6.5, d5 ¼ 7.5, and d6 ¼ 8.5 are represented by the blue dashed line.
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Figure A.10. Posterior predictive distribution of the epidemic curve for three typical simulated epidemics for three-step cases with incorporating BC effects (a) l
¼ 0.02 and (b) without BC effect. The black solid line represents the true epidemic curve, the green solid line represents the estimated median curve and the blue
dotted lines represent the 95% PI, respectively.

Figure A.11. Posterior predictive distribution of the epidemic curve for three typical simulated epidemics for three-step cases with incorporating BC effects (a) l
¼ 0.04 and (b) without BC effect. The black solid line represents the true epidemic curve, the green solid line represents the estimated median curve and the blue
dotted lines represent the 95% PI, respectively.
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Figure A.12. Posterior predictive distribution of the epidemic curve for three typical simulated epidemics for seven-step cases with incorporating BC effects (a) l
¼ 0 and (b) without BC effect. The black solid line represents the true epidemic curve, the green solid line represents the estimated median curve and the blue
dotted lines represent the 95% PI, respectively.

Figure A.13. Posterior predictive distribution of the epidemic curve for three typical simulated epidemics for seven-step cases with incorporating BC effects (a) l
¼ 0.02 and (b) without BC effect. The black solid line represents the true epidemic curve, the green solid line represents the estimated median curve and the blue
dotted lines represent the 95% PI, respectively.
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Figure A.14. Posterior predictive distribution of the epidemic curve for three typical simulated epidemics for seven-step cases with incorporating BC effects (a) l
¼ 0.04 and (b) without BC effect. The black solid line represents the true epidemic curve, the green solid line represents the estimated median curve and the blue
dotted lines represent the 95% PI, respectively.

References

Chib, S., & Greenberg, E. (1995). Understanding the Metropolis-Hastings algorithm. The American Statistician, 49(4), 327e335.
Chis Ster, I., & Ferguson, N. M. (2007). Transmission parameters of the 2001 foot and mouth epidemic in Great Britain. PloS one, 2(6), Article e502.
Deardon, R., Brooks, S. P., Grenfell, B. T., Keeling, M. J., Tildesley, M. J., Savill, N. J., Shaw, D. J., & Woolhouse, M. E. (2010). Inference for individual-level models

of infectious diseases in large populations. Statistica Sinica, 20(1), 239.
Deeth, L. E., Deardon, R., & Gillis, D. J. (2015). Model choice using the deviance information criterion for latent conditional individual-level models of in-

fectious disease spread. Epidemiologic Methods, 4(1), 47e68.
Friedman, J., Hastie, T., Tibshirani, R., et al. (2001). The Elements of Statistical Learning. Springer Series in Statistics.
Funk, S., Salath�e, M., & Jansen, V. A. (2010). Modelling the influence of human behaviour on the spread of infectious diseases: a review. Journal of the Royal

Society Interface, 7(50), 1247e1256.
Gardner, A., Deardon, R., & Darlington, G. A. (2011). Goodness-of-fit measures for individual-level models of infectious disease in a bayesian framework.

Spatial and Spatio-temporal Epidemiology, 2(4), 273e281.
Gelman, A., & Rubin, D. B. (1992). Inference from iterative simulation using multiple sequences. Statistical Science, 7(4), 457e472.
Geweke, J. (1992). Evaluating the accuracy of sampling-based approaches to the calculations of posterior moments. Bayesian Statistics, 4, 641e649.
Hastings, W. K. (1970). Monte Carlo sampling methods using Markov chains and their applications. Biometrika, 57, 97e109.
Kwong, G. P., Poljak, Z., Deardon, R., & Dewey, C. E. (2013). Bayesian analysis of risk factors for infection with a genotype of porcine reproductive and

respiratory syndrome virus in Ontario swine herds using monitoring data. Preventive Veterinary Medicine, 110(3-4), 405e417.
Kypraios, T., & O’Neill, P. D. (2018). Bayesian nonparametrics for stochastic epidemic models. Statistical Science, 33(1), 44e56.
Metropolis, N., Rosenbluth, A. W., Rosenbluth, M. N., Teller, A. H., & Teller, E. (1953). Equation of state calculations by fast computing machines. The Journal of

Chemical Physics, 21(6), 1087e1092.
Rahul, C. R., & Deardon, R. (2024). Individual-level models of disease transmission incorporating piecewise spatial risk functions. ArXiv Preprint arXiv:2405.

00835.
Robert, C. P. and Casella, G. (2002). Monte Carlo Statistical Methods. Springer.
Silverman, B. W. (1985). Some aspects of the spline smoothing approach to non-parametric regression curve fitting. Journal of the Royal Statistical Society:

Series B (Methodological), 47(1), 1e21.
Verelst, F., Willem, L., & Beutels, P. (2016). Behavioural change models for infectious disease transmission: a systematic review (2010e2015). Journal of The

Royal Society Interface, 13(125).
Ward, C., Deardon, R., & Schmidt, A. M. (2023a). Bayesian modeling of dynamic behavioral change during an epidemic. Infectious Disease Modelling, 8(4),

947e963.
Ward, M. A., Deardon, R., & Deeth, L. E. (2023b). A framework for incorporating behavioural change into individual-level spatial epidemic models. Canadian

Journal of Statistics, Article e11828.
324

http://refhub.elsevier.com/S2468-0427(24)00121-0/sref1
http://refhub.elsevier.com/S2468-0427(24)00121-0/sref1
http://refhub.elsevier.com/S2468-0427(24)00121-0/sref2
http://refhub.elsevier.com/S2468-0427(24)00121-0/sref3
http://refhub.elsevier.com/S2468-0427(24)00121-0/sref3
http://refhub.elsevier.com/S2468-0427(24)00121-0/sref4
http://refhub.elsevier.com/S2468-0427(24)00121-0/sref4
http://refhub.elsevier.com/S2468-0427(24)00121-0/sref4
http://refhub.elsevier.com/S2468-0427(24)00121-0/sref6
http://refhub.elsevier.com/S2468-0427(24)00121-0/sref6
http://refhub.elsevier.com/S2468-0427(24)00121-0/sref6
http://refhub.elsevier.com/S2468-0427(24)00121-0/sref6
http://refhub.elsevier.com/S2468-0427(24)00121-0/sref7
http://refhub.elsevier.com/S2468-0427(24)00121-0/sref7
http://refhub.elsevier.com/S2468-0427(24)00121-0/sref7
http://refhub.elsevier.com/S2468-0427(24)00121-0/sref8
http://refhub.elsevier.com/S2468-0427(24)00121-0/sref8
http://refhub.elsevier.com/S2468-0427(24)00121-0/sref9
http://refhub.elsevier.com/S2468-0427(24)00121-0/sref9
http://refhub.elsevier.com/S2468-0427(24)00121-0/sref10
http://refhub.elsevier.com/S2468-0427(24)00121-0/sref10
http://refhub.elsevier.com/S2468-0427(24)00121-0/sref11
http://refhub.elsevier.com/S2468-0427(24)00121-0/sref11
http://refhub.elsevier.com/S2468-0427(24)00121-0/sref11
http://refhub.elsevier.com/S2468-0427(24)00121-0/sref12
http://refhub.elsevier.com/S2468-0427(24)00121-0/sref12
http://refhub.elsevier.com/S2468-0427(24)00121-0/sref13
http://refhub.elsevier.com/S2468-0427(24)00121-0/sref13
http://refhub.elsevier.com/S2468-0427(24)00121-0/sref13
http://refhub.elsevier.com/S2468-0427(24)00121-0/sref14
http://refhub.elsevier.com/S2468-0427(24)00121-0/sref14
http://refhub.elsevier.com/S2468-0427(24)00121-0/sref16
http://refhub.elsevier.com/S2468-0427(24)00121-0/sref16
http://refhub.elsevier.com/S2468-0427(24)00121-0/sref16
http://refhub.elsevier.com/S2468-0427(24)00121-0/sref17
http://refhub.elsevier.com/S2468-0427(24)00121-0/sref17
http://refhub.elsevier.com/S2468-0427(24)00121-0/sref17
http://refhub.elsevier.com/S2468-0427(24)00121-0/sref18
http://refhub.elsevier.com/S2468-0427(24)00121-0/sref18
http://refhub.elsevier.com/S2468-0427(24)00121-0/sref18
http://refhub.elsevier.com/S2468-0427(24)00121-0/sref19
http://refhub.elsevier.com/S2468-0427(24)00121-0/sref19

	Behavioural Change Piecewise Constant Spatial Epidemic Models
	1. Introduction
	2. Methodology
	2.1. The General ILM
	2.2. The General Behavioural Change ILM (BC-ILM)
	2.3. Non-parametric Spatial BC-ILMs

	3. Simulation
	3.1. Posterior Predictive Ability

	4. UK 2001 Foot-and-Mouth Disease (FMD) Data
	4.1. Results

	5. Discussion
	Declaration of competing interest
	Declaration of Competing Interest
	Acknowledgements
	References


