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Abstract Circadian oscillations are generated via transcriptional-translational negative feedback

loops. However, individual cells from fibroblast cell lines have heterogeneous rhythms, oscillating

independently and with different period lengths. Here we showed that heterogeneity in circadian

period is heritable and used a multi-omics approach to investigate underlying mechanisms. By

examining large-scale phenotype-associated gene expression profiles in hundreds of mouse clonal

cell lines, we identified and validated multiple novel candidate genes involved in circadian period

determination in the absence of significant genomic variants. We also discovered differentially co-

expressed gene networks that were functionally associated with period length. We further

demonstrated that global differential DNA methylation bidirectionally regulated these same gene

networks. Interestingly, we found that depletion of DNMT1 and DNMT3A had opposite effects on

circadian period, suggesting non-redundant roles in circadian gene regulation. Together, our

findings identify novel gene candidates involved in periodicity, and reveal DNA methylation as an

important regulator of circadian periodicity.

Introduction
Circadian oscillations maintain daily rhythms to control multiple physiological and behavioral pro-

cesses, including metabolism, cell growth, immune response, and the sleep-wake cycle. Disruptions

of the circadian clock have been linked with various disease processes and aging (Takahashi et al.,

2008; Kondratova and Kondratov, 2012). Circadian oscillations display remarkable fidelity in their

periodicity even in the absence of environmental cues. This precision of the internal biological clock

arises from a complex gene network. In mammals, the core of this network is composed of an autor-

egulatory transcriptional negative feedback loop involving Clock, Bmal1, Per1/Per2, and Cry1/Cry2,

and there are additional feedback loops interlocked with the core (Takahashi et al., 2008;

Mohawk et al., 2012; Takahashi, 2017). Interestingly, although the cell-autonomous clock is ubiqui-

tous, individual cells often do not maintain a perfect 24 hr circadian period, and within cell popula-

tions there are heterogeneous autonomous oscillations with a broad distribution of period length

(Nagoshi et al., 2004; Welsh et al., 2004; Leise et al., 2012). The heterogeneity in intrinsic period

of hypothalamic suprachiasmatic nucleus (SCN) neurons confers important functions of phase liability

and phase plasticity (Welsh et al., 1995; Liu et al., 1997; Ko et al., 2010; Mohawk et al., 2012).

However, it is still unclear how heterogeneous circadian periodicity is established and maintained

under physiological conditions, or how much of this heterogeneity is heritable.

The origin of heterogeneity is complex, but may be driven by genetic variation, epigenetic modi-

fications, and/or transcriptional noise (Jaenisch and Bird, 2003; Raser and O’Shea, 2005; Raj and

van Oudenaarden, 2008; Burrell et al., 2013; Kelsey et al., 2017; Cavalli and Heard, 2019;
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Liu et al., 2019). We have recently shown that nonheritable noise is the predominant source of inter-

cellular variation in circadian period within clonal cell lines (Li et al., 2020). However, it is still unclear

what heritable factors contribute to period variation among different clonal cells. DNA methylation

has been recognized as a chief contributor to gene expression states, and it is essential for mamma-

lian embryonic development, with genome-wide methylation patterns changing during differentia-

tion (Greenberg and Bourc’his, 2019). There are three canonical cytosine-5 DNA

methyltransferases that catalyze the addition of methylation marks. DNMT3A and 3B, the de novo

methyltransferases, set up DNA methylation patterns during early development. Once established,

DNMT1 will copy those patterns onto the daughter strand during DNA replication ensuring methyla-

tion maintenance (Jaenisch and Bird, 2003). DNMT dysfunction has been associated with various

diseases, and DNMT-deficient mice exhibit embryonic lethality (Greenberg and Bourc’his, 2019).

Numerous studies have supported the role of DNA methylation in gene silencing; however, more

recent work suggests that DNA methylation can also be involved in transcriptional activation

(Rinaldi et al., 2016; Yin et al., 2017b; Harris et al., 2018; Lyko, 2018). Interestingly, despite high

fidelity in mitotic inheritance, DNA methylation is variable across individuals, tissues, and cell types

(Jaenisch and Bird, 2003; Jones, 2012; Varley et al., 2013). Thus, we hypothesized that differential

DNA methylation could contribute as a heritable factor underlying heterogeneous circadian oscilla-

tions in clonal cell lines.

Here, by examining phenotype-associated high-throughput multi-omics profiles in clonal cell pop-

ulations, we identified and validated a pool of novel candidate genes regulating circadian period

length and uncovered complex gene co-expression networks highly enriched in stress response and

metabolic pathways. We next explored the origins of heterogeneous gene expression and found dif-

ferences in global DNA methylation patterns that were associated with both silencing and activation

of differentially expressed genes. Using gene knockdown studies, we also found that DNMT1 and

DNMT3A have opposite effects on period length. Together, our findings demonstrate the important

role of DNA methylation in the regulation of circadian period.

Results

Heritable circadian periodicity in clonal cell lines
To assess cellular phenotypic heterogeneity, we utilized an immortalized mouse ear fibroblast cell

line carrying a PER2::LUCsv bioluminescence reporter generated from Per2::lucSV knockin mice

(Chen et al., 2012; Yoo et al., 2017). We recently showed that these cells express persistent,

robust, and cell-autonomous circadian oscillations over a 2 week period. Moreover, clonal cell lines

generated from the parent culture had period distributions similar to those seen with single cells,

indicating that circadian period is a heritable phenotype (Figure 1A–B; Li et al., 2020). Here, we

used the clonal cell lines to address the underlying molecular mechanism for heterogeneous circa-

dian periodicity. To examine the stability of this heritability, twenty clonal cell lines were randomly

selected and cultured continuously for 20 passages and tested for circadian period every five pas-

sages. Although two-way ANOVA revealed significant effects (p<0.01) of both cell line and passage,

there was no interaction (p=0.09). Moreover, cell line was the dominant source of variation (74.70%),

while passage only contributed 2.64% of the total variation. Multiple comparisons within each clonal

cell line across passages identified a significant difference (adjusted p<0.05) for only ~5% of compar-

isons (11 out of 200), which is consistent with 5% false positive rate. These results indicate that circa-

dian period of clonal cell lines is stable and transmissible for at least 20 cell passages (Figure 1C).

Transcriptomics identifies novel gene candidates determining period
length
To explore potential underlying mechanisms, we selected two groups of clonal cell lines from the

two tails of the period distribution (Table 1, 5 short period (SP) and five long period (LP) clones)

(Li et al., 2020) and performed RNA-seq analysis (Figure 2—source data 1). We compared their

transcriptomic profiles and identified 5,137 period-correlated differentially expressed (DE) genes,

with 2,782 genes upregulated and 2,355 genes downregulated in the LP group (Figure 2A, Fig-

ure 2—source data 1). To narrow down the target pool further and identify candidate genes more

directly responsible for periodicity differences, we selected four additional groups of subclones
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established from two representative clonal cell lines with different periods: a shorter period sub-

group and a longer period subgroup from short period clone#33 (SSP and LSP), or long period

clone#114 (SLP and LLP), respectively (Figure 2B; Li et al., 2020). These subclones and the original

10 clonal cell lines constituted a continuous period spectrum beneficial for identifying period-corre-

lated genes (Figure 2C, Table 1).

We identified 535 additional period-correlated DE genes from subclones originating from SP

clone#33 and 1,352 additional DE genes from subclones originating from LP clone#114 (Figure 2D–

E, Figure 2—source data 1). By comparing the three RNA-seq datasets, 67 overlapping DE genes

were identified (Figure 2F). From these, we selected 14 genes based on the strength of the correla-

tion between their expression and circadian period length from all 88 samples and performed knock-

down experiments to validate their function in circadian periodicity. Out of 7 positively correlated

DE genes, knockdown of Ak3 and Trim3 significantly shortened period, whereas knockdown of

Cpeb1, Lrrfip1, Rbfa, and Dars lengthened period (Figure 3A–C, Figure 3—source data 1). Out of

7 negatively correlated DE genes, knockdown of Ipo13 and Tmem165 significantly lengthened

period, whereas Slc8a3, Jun, Med23, and Cpa4 knockdown shortened period (Figure 3D–F, Fig-

ure 3—source data 1). Knockdown of two other genes, Eif4e2 and Rfx5, did not alter period length.

We also examined the effect of knockdown of five representative genes in 10 clonal cell lines and

found that they all showed the same period alterations as that seen in the parent culture
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Figure 1. Heritable Circadian Periodicity in Clonal Cell Lines. (A) Heatmap showing circadian oscillations of 83 single cells from parent culture tracked

continuously for 10 days (sorted by phase at day 8). (B) Histogram showing circadian period distributions of single cells compared to clonal cell lines

generated from the same parent culture. Single cells: 24.38 ± 1.20 hr (mean ± SD), ranged 21.55–27.82 hr. Clonal cell lines: 24.81 ± 0.83 hr, ranged

22.76–27.65 hr. Clonal cell lines were measured as a whole culture. Data are replotted from Li et al., 2020 and presented as averages from �3

experiments. (C) Periods of individual clonal cell lines of different generations. Periods were analyzed for the whole culture at passages 1, 5, 10, 15, and

20. Data are presented as averages from �3 experiments.

Li et al. eLife 2020;9:e54186. DOI: https://doi.org/10.7554/eLife.54186 3 of 22

Research article Neuroscience

https://doi.org/10.7554/eLife.54186


. . . . . .

. . . . .SP                              LP

SSP      LSP      LSP      LLP

B

#128

#80

#137#33
#44

#108

#114

#74
#34

#86

#33-123
#33-112

#33-3

#33-141

#33-117
#33-26

#33-51

#33-27

#33-53

#33-22

#33-84

#33-49

#114-91
#114-49

#114-80

#114-41

#114-82
#114-96

#114-57

#114-31#114-129

#114-62 #114-125

#114-65

22

23

24

25

26

27

28
C

   
S

P

  
 L

P

S
S

P

 L
S

P

 S
L

P

 L
L

P
  
  
 

P
e

ri
o

d
 (

h
r)

SP Group LP Group

2

0

-2

# 128 80 137 33 44  86  34 74 114 108

n
 =

 2
7

8
2

n
 =

 2
3

5
5

A

SSP           LSP 

D

171

364

Subclones from #33

SLP            LLP
E

6
3

7
7

1
5

Subclones from #114

SP vs LP

 SSP 

vs LSP

 SLP 

vs LLP

F

67
146

281
725

519

4064

Figure 2. Differentially Expressed Genes Correlated with Circadian Period Heterogeneity. (A) Heatmap of 5,137 period-correlated differentially

expressed (DE) genes identified between two groups of clonal cell lines. SP: short period. LP: long period. Clones were sorted based on period length.

Clone IDs shown at top. Four columns for each clone indicate two time-points, two replicates. From left to right: replicate1_T1, replicate1_T2,

replicate2_T1 and replicate2_T2. Color scale represents z-score. (B) Experimental scheme for establishing subgroups of clonal cell lines carrying

Figure 2 continued on next page

Li et al. eLife 2020;9:e54186. DOI: https://doi.org/10.7554/eLife.54186 4 of 22

Research article Neuroscience

https://doi.org/10.7554/eLife.54186


demonstrating the overall consistency of the gene knockdowns on circadian period (Figure 3G, Fig-

ure 3—source data 1). These results suggest that multiple genes function together to determine cir-

cadian period length and that there were no unique (clone-specific) effects on the direction (long or

short) of the period changes. Since the majority of the DE genes identified here have never been

reported as having effects on circadian period, these data provide a new pool of candidate genes

functioning in circadian periodicity.

Large-scale gene networks are associated with period heterogeneity
Because functionally related genes are usually co-expressed (Heyer et al., 1999), we further charac-

terized the period-correlated DE genes by examining their co-expression patterns. Using weighted

Table 1. Period of Clonal Cell Lines

Group Clone # Period (hr)* STDEV Group Clone # Period (hr)* STDEV

SP #128 22.35 0.13 LP #86 25.07 0.12

#80 22.78 0.10 #34 25.60 0.50

#137 23.42 0.21 #74 25.80 0.50

#33 23.43 0.07 #114 26.43 0.15

#44 23.70 0.10 #108 26.90 0.14

SSP #33–123 22.15 0.43 SLP #114–65 24.74 0.20

#33–112 22.18 0.18 #114–125 24.80 0.14

#33–3 22.20 0.21 #114–62 24.81 0.21

#33–26 22.43 0.21 #114–129 24.82 0.16

#33–117 22.43 0.27 #114–31 24.93 0.35

#33–141 22.44 0.38 #114–57 25.19 0.13

LSP #33–49 23.95 0.27 LLP #114–96 26.69 0.68

#33–84 24.13 0.27 #114–82 27.02 0.47

#33–22 24.16 0.13 #114–41 27.16 0.45

#33–53 24.16 0.20 #114–80 27.77 0.44

#33–27 24.22 0.32 #114–49 27.97 0.99

#33–51 24.68 0.13 #114–91 28.00 0.66

* Average of �3 experiments.

SP: short period group.

LP: long period group.

SSP: shorter period subgroup from short period clone#33.

LSP: longer period subgroup from short period clone#33.

SLP: shorter period subgroup from long period clone#114.

LLP: longer period subgroup from long period clone#114.

Figure 2 continued

different circadian periods. SSP: shorter period subgroup from short period clone. LSP: longer period subgroup from short period clone. SLP: shorter

period subgroup from long period clone. LLP: longer period subgroup from long period clone. (C) Scatter plot showing period length of different

groups. Each dot represents a clonal cell line. (D) Heatmap of 535 period-correlated DE genes identified between two groups of subclones derived

from SP clone#33. Each group include six subclones sorted based on period length. From left to right: #33–123, #33–112, #33–3, #33–26, #33–117, #33–

141, #33–49, #33–84, #33–22, #33–53, #33–27, #33–51. Two columns for each sample indicate two time-points. (E) Heatmap of 1,352 period-correlated

DE genes identified between two groups of subclones derived from LP clone#114. Each group include six subclones sorted based on period length.

From left to right: #114–65, #114–125, #114–62, #114–129, #114–31, #114–57, #114–96, #114–82, #114–41, #114–80, #114–49, #114–91. Two columns for

each sample indicate two time-points. (F) Area-proportional Venn diagram comparing DE genes identified above. For more information, see

Figure 2—source data 1.

The online version of this article includes the following source data for figure 2:

Source data 1. RNA-seq of All Clonal Cell Lines; List of Period-correlated DE Genes.
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Figure 3. Validation of Novel Candidate Genes Regulating Circadian Periodicity. (A) Scatter plot of seven novel candidate genes showing positive

correlation between gene expression and period length across all 88 samples. (B) Histogram comparing periods after knocking down seven positively

correlated genes in parent culture. n � 3 for each gene. Error bar indicates SD. (C) QPCR results showing knockdown efficiency of seven positively

correlated genes. Error bar indicates SD. (D) Scatter plot of seven novel candidate genes showing negative correlation between gene expression and

Figure 3 continued on next page
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gene co-expression network analysis (WGCNA), we generated 31 modules from the 10 clonal cell

lines RNA-seq data (Figure 4A, Figure 4—source data 1). Several modules exhibited significant

enrichment for period-correlated DE genes. Blue, lightgreen, green and darkred modules were

enriched for positively correlated DE genes, while salmon, pink, red, and darkgreen modules were

enriched for negatively correlated DE genes (Figure 4B).

Ingenuity pathway analysis (IPA) revealed stress response signaling pathways and metabolic path-

ways were associated with the period-correlated DE genes, suggesting their important roles in circa-

dian periodicity (Figure 4C, Figure 4—source data 1). IPA analysis of the correlated modules also

revealed overlapping functional pathways. For example, the blue module is highly enriched for DE

genes, and is also enriched for the EIF2 signaling pathway, which has been recently shown to regu-

late circadian period, consistent with the predicted elevated translational activity in LP group

(Pathak et al., 2019; Figure 4C). To validate these results further, we used two different small mole-

cules to activate the EIF2 signaling pathway in parent culture and observed significantly shortened

period, consistent with what has been previously reported (Pathak et al., 2019; Figure 4D). In addi-

tion, the darkred module was enriched for the mTOR signaling pathway; the green and salmon mod-

ules were enriched for the protein ubiquitination pathway; and the pink module was enriched for

NRF2-mediated oxidative stress response pathway (Figure 4—source data 1). Interestingly, all three

of these pathways have been shown to be functional in circadian periodicity, further confirming the

functional importance of the co-expressed gene networks (Stojkovic et al., 2014;

Ramanathan et al., 2018; Wible et al., 2018). Further analysis of Protein-protein Interactions (PPI)

revealed that co-expressed DE genes were also physically interconnected. For example, within the

blue module there were several different tightly linked clusters, including those enriched for ribo-

somal RNA processing, protein ubiquitination, nucleotide and amino acid metabolism, and mRNA

splicing, emphasizing the blue module as a transcriptional/translational related gene network

(Figure 4E). Taken together, our results suggest that period heterogeneity is regulated by changes

in large-scale functional gene co-expression networks.

Global DNA methylation contributes to gene Co-expression networks
To explore whether there was a genetic basis for heterogeneous gene expression, we performed

whole-exome sequencing on SP clone#33 and LP clone#114. Interestingly, only four annotated

genes carrying unique variants were identified (Supplementary file 1), but 2 of them are not

expressed (Figure 2—source data 1), and none of them have known circadian functions, suggesting

that somatic mutations are unlikely to underlie the heterogeneous period distributions.

Cell-to-cell variability is also partially heritable via epigenetic modifications such as DNA methyla-

tion (Jaenisch and Bird, 2003; Jones, 2012). To assess the contribution of DNA methylation in het-

erogeneous circadian periodicity, we used reduced representation bisulfite sequencing (RRBS) to

explore DNA methylation profiles and their correlation with the period-correlated transcriptomes.

Using 1,000 bp tiling windows genome-wide, we identified 16,520 significant differentially methyl-

ated regions (DMRs). Importantly, none of the core clock genes, even the few that were differentially

expressed in the parental lines, had coding mutations or differential DNA methylation, except for a

small DMR spanning ~10 nucleotides located in exon 1 of Per1 (Table 2). Of the DMRs found, 62%

(10,212 DMRs) were up-regulated, whereas 38% (6,308 DMRs) were down-regulated in the SP group

(Figure 5A, Figure 5—source data 1). 6055 genes were annotated as DMR-associated with DMRs

falling in either the gene body or 5 kb upstream of the transcription start site (TSS), and of these,

1,315 DMR-associated genes overlapped with period-correlated DE genes (Figure 5B). Interestingly,

for period-correlated DE genes associated with DMRs, in addition to negative correlations, we also

observed positively correlated DMRs, indicating both repression and enhancement of functional

Figure 3 continued

period length across all 88 samples. (E) Histogram comparing periods after knocking down seven negatively correlated genes in parent culture. n � 3

for each gene. Error bar indicates SD. (F) QPCR results showing knockdown efficiency of seven negatively correlated genes. Error bar indicates SD. (G)

Knockdown of five representative candidate genes in 10 clonal cell lines. For more information, see Figure 3—source data 1.

The online version of this article includes the following source data for figure 3:

Source data 1. Gene Knockdown in Parent Culture; Gene Knockdown in 10 Clonal Cell lines.
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Figure 4. Large-scale Co-expressed Gene Networks Associated with Period-correlated DE Genes. (A) Gene co-expression modules identified via

WGCNA for 10 clonal cell lines. Each branch in the dendrogram on top represents a cluster of highly correlated genes. Thirty-one modules were

identified and marked by colors on the horizontal bar. Bottom row shows period-correlated DE genes identified in Figure 2a. Red bars indicate

positive correlation (Pearson correlation coefficient >0.5). Blue bars indicate negative correlation (Pearson correlation coefficient <�0.5). (B) Bubble plot

Figure 4 continued on next page
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gene expression by DNA methylation (Figure 5C–D) as reported by others (Jones, 2012;

Rinaldi et al., 2016; Yin et al., 2017b; Harris et al., 2018).

The overall clustering pattern of the methylomes resembled that of the transcriptomes, indicating

an important role for global DNA methylation in regulating the co-expressed genes (Figure 5—fig-

ure supplement 1). We examined the modules enriched for period-correlated DE genes and found

that several hub genes were regulated by differential DNA methylation. For example, the hub gene

of the blue module, Htatip2, which exhibited the same expression pattern of the module eigengene

(Figure 6A–B), was hypermethylated at the promoter region and repressed in the SP group

(Figure 6C–D). On the contrary, Parvb and Rftn1, two hub genes from negatively correlated mod-

ules, were hypermethylated and repressed in the LP group (Figure 6A–D). Except for these negative

correlations, some genes with hypermethylation in the gene body or enhancer showed enhanced

expression levels (Figure 6—figure supplement 1), supporting recent findings that DNA methyla-

tion in these regions may activate gene expression (Jones, 2012; Rinaldi et al., 2016; Yin et al.,

2017b). To validate the function of DMR-associated DE genes further, we also performed gene

knockdown experiments in two different clonal cell lines. Knockdown of Htatip2 and Dusp18 in LP

clone#114 significantly shortened period, whereas knockdown of Rftn1 in SP clone#128 significantly

lengthened circadian period (Figure 6E), consistent with predictions that deficiency of Htatip2 short-

ens circadian period possibly by activating the AKT/mTOR signaling pathway (Yin et al., 2017a;

Figure 4 continued

showing enrichment of period-correlated DE genes in each module. Rows from top to bottom indicate enrichment of positively correlated, negatively

correlated, and all period-correlated DE genes, respectively. Dark grey bars highlight the top 10 enriched modules. (C) Top five Ingenuity pathways

associated with 5,137 period-correlated DE genes comparing SP and LP groups (top) or blue module (bottom). Brown threshold line refers to

p-value=0.05. (D) Two small molecule activators of EIF2 signaling pathway, halofuginone and tunicamycin, significantly shortened circadian period in

parent culture. Error bar indicates SD. (E) The main PPI network of genes in blue module. Disconnected nodes were hidden. Red indicates period-

correlated DE genes. Line thickness indicates confidence. For more information, see Figure 4—source data 1.

The online version of this article includes the following source data for figure 4:

Source data 1. WGCNA Module Lists and Enrichment Analysis Results; IPA Canonical Pathway Analysis of DE Genes and WGCNA Modules.

Table 2. Summary of Sequencing Results of Clock Genes

Gene
DE gene
(SP vs LP) Fold change (LP/SP)

Adjusted
P-Value

DE gene
(SSP vs LSP)

DE gene
(SLP vs LLP) Coding mutation

DMR
(SP vs LP)

Clock Yes 0.83 6.30E-07 No No No No

Bmal1 No N/A N/A No No No No

Per1 Yes 1.49 4.14E-05 No No No Yes

Per2 Yes 1.74 0.05 No No No No

Per3 No N/A N/A No No No No

Cry1 No N/A N/A No No No No

Cry2 No N/A N/A No No No No

Dbp No N/A N/A No No No No

Npas2 No N/A N/A No No No No

Fbxl3 No N/A N/A No No No No

Fbxl21 No N/A N/A No No No No

Nr1d1 No N/A N/A No No No No

Nr1d2 Yes 0.63 1.56E-04 No No No No

Csnk1a1 Yes 1.29 5.38E-03 No No No No

Csnk1d No N/A N/A No No No No

Csnk1e Yes 1.16 0.05 No No No No

Csnk2a1 No N/A N/A No No No No

Csnk2a2 No N/A N/A No No No No

Li et al. eLife 2020;9:e54186. DOI: https://doi.org/10.7554/eLife.54186 9 of 22

Research article Neuroscience

https://doi.org/10.7554/eLife.54186


Methylation Difference (%) 

              (SP-LP)

L
o

g
2
F

C
(S

P
/L

P
)

 7.5

 5.0

 2.5

   0

-2.5

-5.0

-7.5

-75  -50  -25    0    25   50   75   

D

0

3

6

9

−1.0 −0.5 0 0.5 1.0

Correlation Coefficient

−
L

o
g

1
0
 (

Q
−

V
a

lu
e

)

618(-)          583(+)

C

Period-correlated
DE Genes

DMR-associated 
Genes

B

1315

3816

4740

−100

−50

0

50

100

75

25

-25

-75

Chromosome

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 17 19 X Y16 18

M
e

th
y
la

ti
o

n
 D

if
fe

re
n

c
e

 (
%

) 
(S

P
-L

P
)A

Figure 5. DNA Methylation Landscape Associated with Heterogeneous Circadian Periods. (A) Manhattan plot showing 16,520 significant DMRs with 1

kb bins. 10,212 DMRs were up-regulated and 6,308 DMRs were down-regulated in the SP group. (B) Area-proportional Venn diagram showing overlap

between period-correlated DE genes and DMR-associated genes comparing SP and LP groups. Red indicates 5,131 period-correlated DE genes.

Blue indicates 6,055 genes associated with significant DMRs. Overlapping area represents 1,315 period-correlated DE genes associated with significant

DMRs. (C) Volcano plot showing correlation coefficients (Pearson’s r) between gene expression and DMR methylation for 1,315 DMR-associated DE

genes. X axis indicates Pearson’s r. Yellow line indicates q-value = 0.05. Turquoise indicates all significant correlations, including 618 negative and 583

positive correlations. (D) Quadrant plot showing relationship between gene expression and DNA methylation. There were 1,915 significant DMRs

associated with 1,315 period-correlated DE genes. X axis indicates methylation difference of the associated DMRs. Y axis indicates fold change of

averaged gene expression. Blue indicates negative correlations. Black indicates positive correlations. See also Figure 5—figure supplement 1 and

Figure 5—source data 1.

The online version of this article includes the following source data and figure supplement(s) for figure 5:

Source data 1. DMRs Comparing SP and LP Groups.

Figure supplement 1. Clustering of Methylomes Resembles Transcriptomes.
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Figure 6. DNA Methylation Regulates Expression of Hub Genes from Period-associated Modules. (A) Eigengene expression patterns in four top

period-associated modules. Blue and lightgreen modules are enriched in positively correlated DE genes with up-regulated gene expression in LP

group. Salmon and pink modules are enriched in negatively correlated DE genes with down-regulated gene expression in the LP group. (B) Gene

expression plot for hub genes of four modules shown in a): Htatip2, Dusp18, Parvb and Rftn1. Each clonal cell line includes four data points (two time-

Figure 6 continued on next page
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Ramanathan et al., 2018), and that hypomethylation and upregulated expression of Dusp18 length-

ens circadian period, possibly by inhibiting the SAPK/JNK signaling pathway (Wu et al., 2006;

Chansard et al., 2007; Yoshitane et al., 2012).

Opposite effects of different DNMTs on circadian period
To assess the role of DNA methylation in circadian periodicity further, we manipulated global DNA

methylation either by knocking down DNA methyltransferases or by applying small molecule inhibi-

tors. Interestingly, deficiency of Dnmt1 significantly shortened period length, whereas knockdown of

Dnmt3a slightly, but significantly, lengthened period (Figure 7A–B). Dnmt1 and Dnmt3a knockdown

in the ten clonal cell lines showed the same overall results, suggesting that DNA methylation affects

circadian periodicity in the same way in all clones tested (Figure 7C). As pharmacological validation,

administration of SGI-1027, which selectively induces degradation of the DNMT1 protein

(Datta et al., 2009), significantly shortened period, while administration of zebularine, which induces

significant reduction of both DNMT1 and DNMT3A (Billam et al., 2010; You and Park, 2012),

lengthened period (Figure 7D). Drug administration in primary MEF cells with PER2::LUCsv and

NIH3T3 cells carrying an E2-box-luc reporter also revealed similar results (Figure 7E). Taken

together, these findings suggest that different DNA methyltransferases contribute to the regulation

of circadian periodicity, likely via different mechanisms.

Discussion
Using clonal cell analysis, we show that the heterogeneity of single-cell circadian periodicity is herita-

ble and stable for at least 20 cell passages. The heritability of circadian period is consistent with an

epigenetic mechanism, likely mediated by DNA methylation. By analyzing gene expression profiles

of multiple clonal cell lines with different circadian periods, we identified groups of differentially

expressed genes that were significantly correlated with period length. Although a few core clock

genes were differentially expressed in parental cultures, there were no significant differences in

these genes among subclones, suggesting they are not responsible for the period heterogeneity

seen in these homogeneous cell populations. By comparing subclones, we narrowed down the com-

mon candidate gene list and further validated that 86% of the novel candidates regulated circadian

period using gene knockdown assays. While some of these genes had effects on period length that

were aligned with our predictions, others had effects counter to our expectations which were proba-

bly masked in the complex gene networks. Overall, our results are consistent with the hypothesis

that period is determined by the ensemble interactions of many genes that can either shorten or

lengthen period individually. Importantly, the vast majority of the DE genes identified here have

never been reported as having effects on circadian period. Thus, we have provided a new pool of

candidate genes functioning in circadian periodicity.

We also provide evidence that the genome-wide DNA methylation landscape underlies much of

the complex gene networks. Multiple hub genes of period-correlated modules were under the regu-

lation of DNA methylation, showing remarkable coherence in DNA methylation, gene expression,

and circadian phenotype. The similar clustering patterns of transcriptomes and methylomes further

suggested an important role of DNA methylation in shaping circadian period heterogeneity through

regulating large-scale gene networks. Previous studies have linked DNA methylation of core clock

Figure 6 continued

points, two replicates). (C) UCSC genome browser view of DNA methylation at promoter regions of the four hub genes. Red indicates methylated C.

Blue indicates unmethylated C. Arrows indicate the direction of transcription. Track height from left to right: 50,–50; 100,–80; 45,–60; 70,–80. (D) Scatter

plot showing correlation between gene expression and DNA methylation at the promoter regions of the four hub genes. X axis indicates average

methylation level of the associated DMRs for each clonal cell line. Y axis indicates gene expression level of two replicates at timepoint T1. Trendline

and R2 of Pearson correlation coefficient are shown. Blue indicates SP group. Red indicates LP group. DMR loci for each gene are listed as below:

Htatip2: chr7:49759001–49760000; Dusp18: chr11:3894001–3896000. Parvb: chr15:84232001–84233000; Rftn1: chr17:50190001–50191000. (E) Knockdown

effect of four DMR associated DE genes in different clonal cells. Left: Htatip2 and Dusp18 knockdown in LP clone#114. Right: Parvb and Rftn1

knockdown in SP clone#128. n � 3 for each experiment. Error bar indicates SD. See also Figure 6—figure supplement 1.

The online version of this article includes the following figure supplement(s) for figure 6:

Figure supplement 1. Example Genes Associated with Positively Correlated DMRs.
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Figure 7. Deficiency of Different DNMTs Reveal Opposite Effects on Circadian Period. (A) Effects of knockdown of DNMT1 in parent culture. Left:

baseline-subtracted LumiCycle traces of a typical experiment; middle: comparison of average period from �3 experiments; right: qPCR results showing

knockdown efficiency. Error bar indicates SD. (B) Effects of knockdown of DNMT3A. (C) Effects of knockdown of DNMT1 and DNMT3A in 10 clonal cell

lines. Left: comparison of period length from �3 experiments. Right: qPCR results showing knockdown efficiency. Error bar indicates SD. (D)

Figure 7 continued on next page
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genes with different diseases (Joska et al., 2014; Peng et al., 2019); however, the results presented

here have revealed how global DNA methylation can regulate circadian clock function via genome-

wide changes in gene expression. Our whole exome sequencing failed to detect significant coding

mutations, further supporting the role of differential DNA methylation in establishing circadian het-

erogeneity. However, we cannot rule out that genetic variation in regulatory regions, or other epige-

netic modifications could be involved. Additional experiments will help to understand better the full

array of underlying mechanisms regulating circadian period.

We observed both negatively and positively correlated DMRs in almost equal proportions, indi-

cating both repression and activation of gene expression by DNA methylation and supporting the

revised view of the functions of DNA methylation (Greenberg and Bourc’his, 2019). In addition, we

found that knockdown of DNMT1 and DNMT3A had opposite effects on circadian period. It is not

surprising that DNMT1 knockdown alters period length, since it is the methyltransferase responsible

for DNA methylation maintenance through mitotic inheritance (Jones, 2012). However, as DNMT3A

is responsible for de novo DNA methylation, it is less clear how its knockdown affects circadian

period. One possibility is that DNMT3A is also involved in transcriptional activation associated with

active enhancers (Rinaldi et al., 2016; Lyko, 2018). Another possibility is that some genes might

undergo dynamic demethylation and de novo methylation since both Tet2 and Tet3 are expressed

at comparable levels to Dnmt3a in our cellular system (Oh et al., 2018; Oh et al., 2019; Figure 2—

source data 1). Additional studies targeting DNMT1 and DNMT3A may help to explain the functions

of different DNMTs in circadian regulation.

In conclusion, our findings have identified a novel pool of candidate genes involved in circadian

period regulation, and have revealed the important role of DNA methylation underlying circadian

period heterogeneity by bidirectionally regulating large-scale gene co-expression networks. Our

study not only expands the knowledge about circadian clock regulation, but also may benefit epige-

netic research by providing multiple candidate genes repressed or activated by DNA methylation.

Materials and methods

Key resources table

Reagent type
(species) or
resource Designation

Source or
reference Identifiers

Additional
information

Cell line
(M. musculus, male)

Per2::lucSV EF (Chen et al., 2012;
Yoo et al., 2017)

Immortalized mouse ear
fibroblast cells carrying PER2::
LUCsv bioluminescence reporter

Cell line
(Human)

HEK293T ATCC CRL-3216

Cell line
(M. musculus)

Per2::lucSV MEF This paper Primary mouse embryonic
fibroblast cells carrying PER2::
LUCsv bioluminescence reporter

Cell line
(M. musculus)

NIH3T3/E2LB This paper NIH3T3 cells carrying Per2
E-box (E2)-driven luciferase
bioluminescence reporter

Recombinant
DNA reagent

pLKO.1-TRC (Moffat et al., 2006)
Addgene

Plasmid #10878

Commercial
assay or kit

RRBS kit Diagenode Cat#C02030033

Other RNA-seq for all
clonal cell lines

This paper https://www.ncbi.nlm.nih.gov/geo/
query/acc.cgi?acc=GSE132663

Continued on next page

Figure 7 continued

Administration of different DNA methyltransferase inhibitors in parent culture altered period length. Left: SGI-1027. Right: zebularine. n � 3 for each

experiment. Error bar indicates SD. (E) Administration of different DNA methyltransferase inhibitors in primary mouse embryonic fibroblasts (MEFs) or

NIH3T3 cells altered period length. Left: MEF. Right: NIH3T3. n � 3 for each experiment. Error bar indicates SD.
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Continued

Reagent type
(species) or
resource Designation

Source or
reference Identifiers

Additional
information

Other RRBS-seq for 10
clonal cell lines

This paper https://www.ncbi.nlm.nih.gov/geo/
query/acc.cgi?acc=GSE132665

Other Exome sequencing for
clone#33 and #114

This paper https://www.ncbi.nlm.nih.
gov/sra/PRJNA548837

Software,
algorithm

FastQC other https://www.bioinformatics.
babraham.ac.uk/projects/fastqc/

Software,
algorithm

TopHat (Trapnell et al., 2009) http://ccb.jhu.edu/
software/tophat/index.shtml

Software,
algorithm

Samtools (Li et al., 2009) http://www.htslib.org/

Software,
algorithm

HOMER (Heinz et al., 2010) http://homer.ucsd.edu/homer/

Software,
algorithm

DESeq2 (Love et al., 2014) https://bioconductor.org/packages/
release/bioc/html/DESeq2.html

Software,
algorithm

edgeR (Robinson et al., 2010) https://bioconductor.org/packages
/release/bioc/html/edgeR.html

Software,
algorithm

featureCounts (Liao et al., 2014) http://bioinf.wehi.
edu.au/featureCounts/

Software,
algorithm

WGCNA (Langfelder and Horvath, 2008) https://cran.r-project.org/web/
packages/WGCNA/index.html

Software,
algorithm

Trim Galore other https://www.bioinformatics.bab
raham.ac.uk/projects/trim_galore/

Software,
algorithm

Bismark (Krueger and Andrews, 2011) https://www.bioinformatics.bab
raham.ac.uk/projects/bismark/

Software,
algorithm

methylKit (Akalin et al., 2012) https://bioconductor.org/packages/
release/bioc/html/methylKit.html

Software,
algorithm

STRING (Szklarczyk et al., 2019) https://string-db.org/

Software,
algorithm

MeV other https://sourceforge.
net/projects/mev-tm4/

Software,
algorithm

ggplot2 (Wickham, 2016) https://github.com/
tidyverse/ggplot2

Software,
algorithm

qqman (Turner, 2014) https://github.com/
stephenturner/qqman

Software,
algorithm

dplyr (Wickham et al., 2018) https://dplyr.tidyverse.org

Software,
algorithm

Ingenuity Pathway Analysis Qiagen https://www.qiagenbioinformatics.
com/products/ingenuity-pathway-analysis

Software,
algorithm

ImageJ2 (Fiji)
with trackmate

NIH https://imagej.net/ImageJ2

Software,
algorithm

BioVenn (Hulsen et al., 2008) http://www.biovenn.nl/

Software,
algorithm

Prism GraphPad Software https://www.graphpad.com/
scientific-software/prism/

Generation of clonal cell lines and cell culture
Immortalized mouse ear fibroblast cells from male mice carrying PER2::LUCsv bioluminescence

reporter were maintained in DMEM (Corning) supplemented with 10% fetal bovine serum (FBS). To

generate clonal cell lines, cells were diluted and seeded at a density of ~30 cells per 96-well plate

with conditioned medium. Each well was monitored on a daily basis to make sure only single colo-

nies were picked. 20 clonal cell lines were randomly selected and cultured continuously for 20 gener-

ations (3 days/generation) to verify stability of circadian period. Primary mouse embryonic fibroblast

(MEF) cells carrying PER2::LUCsv bioluminescence reporter were isolated from 13.5 day mouse
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embryos. NIH3T3 cells stably expressing Per2 E-box (E2)-driven luciferase bioluminescence reporter

were established by lentivirus transduction followed by blasticidin selection. Our cell line stocks have

all tested negative for mycoplasma contamination. For authentication of cell lines, as described

below, two clonal cell lines, #33 and #114, were sequenced by whole exome sequencing; and a total

of 34 clones and subclones were assessed by RNA-seq and were found to be valid.

Bioluminescence imaging and data analysis
To measure luminescence rhythms from 35 mm culture dishes, confluent cells were synchronized

with 100 nM dexamethasone for 2 hr, then changed to HEPES-buffered recording medium contain-

ing 2% FBS (Welsh et al., 2004), and loaded into a LumiCycle luminometer (Actimetrics). The period

was analyzed with LumiCycle Analysis program (Actimetrics). All LumiCycle period analysis results

shown in this paper were averages of �3 experiments. Baseline-subtracted signals were exported to

Excel to generate bioluminescence traces.

For single-cell imaging, cells were changed to recording medium containing 2% B27% and 1%

FBS without dexamethasone synchronization. An inverted microscope (Leica DM IRB) in a heated

lucite chamber custom-engineered to fit around the microscope stage (Solent Scientific, UK) kept

the cells at a constant 36˚C was mounted on an anti-vibration table (TMC) equipped with a 10X

objective. A cooled CCD camera with backside illuminated E2V CCD 42–40, 2048 � 2048 pixel,

F-mount adapter, �100˚C cooling (Series 600, Spectral Instruments) was used to capture the lumi-

nescence signal at 30 min intervals, with 29.6 min exposure duration, for at least 12 days. 8 � 8 bin-

ning was used to increase the signal-to-noise ratio. The bioluminescence signal of each single cell,

outlined with a region of interest (ROI), was tracked using ImageJ (Schindelin et al., 2012;

Rueden et al., 2017) with the Trackmate plugin (Tinevez et al., 2017) and analyzed as described

previously (Li et al., 2020).

Next generation sequencing and data analysis
For exome sequencing, two clonal cell lines #33 and #114 were sequenced representing short period

and long period clones, respectively. Genomic DNA was purified using a ChargeSwitch gDNA Mini

Tissue Kit (Invitrogen). Libraries were made using the SureSelectXT Reagent Kit (Agilent) following

the manufacturer’s instruction. All reads were mapped to mm10 genome assembly. We used Haplo-

typeCaller and UnifiedGenotyper from GATK to call variants and the results were the union of both

callers. SnpEff was used to annotate variants. Results were further filtered as follows: threshold

GQ � 20, total counts � 8, and alternate frequency (defined as the ratio of alternates to total

counts)�30%.

For RNA-seq, cells were collected at two time-points after synchronization: the first peak (T1) and

the following trough (T2) based on LumiCycle recording. At each time-point, we collected 2 repli-

cates for 10 clonal cell lines and 1 replicate for 24 subclones. RNA was isolated using TRIzol (Life

technologies), and libraries were prepared as described previously (Takahashi et al., 2015). Raw

reads were tested for quality using FastQC. The resulting reads were mapped to mm10 annotation

from UCSC using TopHat (Trapnell et al., 2009). The output BAM file was then filtered for uniquely

mapped reads using Samtools (Li et al., 2009), and RPKM calculations were performed using ana-

lyzeRepeats.pl of HOMER suite (Heinz et al., 2010).

The average RPKM value for each gene was calculated separately for each of the six groups (SP,

LP, SSP, LSP, SLP, LLP). To identify significant DE genes, the list was further filtered based on

expression level. Only genes for which the maximum average RPKM value among six groups was

greater than 0.5 were preserved. Differential gene expression analysis was carried out with DESeq2

(Love et al., 2014) and edgeR (Robinson et al., 2010) using a raw read counts matrix generated

with featureCounts tool (Liao et al., 2014). Genes with FDR < 0.05 were deemed significant. Results

from both programs were combined to generate a final DE gene list. Pearson correlation coefficient

between circadian period length and gene expression was calculated across all 88 samples (including

replicates and different time-points) in Excel. P-value was adjusted using Benjamini-Hochberg (BH)

method, and FDR < 0.05 was considered as significant. The overlaps between significant DE genes

and period-correlated genes were defined as period-correlated DE genes. Multidimensional scaling

(MDS) analysis with Euclidean distance was performed using edgeR. Ingenuity Pathway Analysis
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(Qiagen) was used to identify the pathways associated with period-correlated DE genes, using all

expressed 22,786 genes (average RPKM >0) as a reference set.

For DNA methylation sequencing, cells were collected at the first peak (T1) after synchronization.

Each clone included two replicates. DNA was purified using a PureLink Genomic DNA Mini Kit (Invi-

trogen). Libraries were made using the Premium Reduced Representation Bisulfite Sequencing

(RRBS) Kit (Diagenode) following the manufacturer’s instruction. Raw reads were tested for quality

using FastQC and trimmed with Trim Galore. The trimmed reads were aligned to mm10 using Bis-

mark (Krueger and Andrews, 2011). The CpG reports from Bismark methylation extractor were

then analyzed using methylKit (Akalin et al., 2012). We used default settings to discard bases that

had coverage below 10X and/or more than 99.9th percentile of coverage in each sample. Differen-

tially methylated regions (DMR) were identified using a tiling window of 1,000 bp and a step size of

1,000 bp comparing SP and LP group. Clone#44 was excluded for DMR analysis because of the out-

lying clustering (Figure 5—figure supplement 1). Overdispersion correction with Fisher’s extract

test was applied. P-value was adjusted with BH method. DMRs with FDR < 0.05 and methylation dif-

ference >25% were considered as significant. Genes with significant DMRs located either in the

gene body or 5 kb upstream of the transcription start site (TSS) were considered as DMR-associated

genes. Principal component analysis (PCA) was performed using methylKit. All sequencing was per-

formed by the UTSW McDermott Sequencing Core Facility.

Weighted Gene Co-expression Network Analysis (WGCNA)
Weighted gene co-expression network analysis was performed using WGCNA package

(Langfelder and Horvath, 2008). Only genes for which the maximum average RPKM value among

six groups was greater than 0.5 RPKM were used. A soft-threshold power was automatically calcu-

lated to achieve approximate scale-free topology (R2 >0.85). Networks were constructed with

blockwiseModules function with biweight midcorrelation (bicor). We used corType = bicor,

networkType = signed, TOMtype = signed, TOMDenom = mean, maxBlockSize = 16000,

mergingThresh = 0.10, minCoreKME = 0.4, minKMEtoStay = 0.5, reassignThreshold =

1e-10, deepSplit = 4, detectCutHeight = 0.999, minModuleSize = 100, power = 26. The

modules were then determined using the dynamic tree-cutting algorithm. Deep split of 4 was used

to split more aggressively the data and create more specific modules. Spearman’s rank correlation

was used to compute module eigengene – covariates associations. Gene set enrichment applied for

module – period-correlated DE genes was performed using a Fisher’s exact test in R with the follow-

ing parameters: alternative = ‘greater’, conf.level = 0.99. The PPI network was gener-

ated using STRING without textmining, and the minimum required interaction score was 0.7

(Szklarczyk et al., 2019).

Gene Knockdown Assay shRNA sequences were cloned into pLKO.1-TRC vector (gift from David

Root, Addgene plasmid # 10878) (Moffat et al., 2006). Scramble shRNA (5’ -CCTAAGGTTAAG

TCGCCCTCG- 3’) was used as control. Lentiviruses were produced using HEK293T cells as described

previously (Huang et al., 2012). Viruses were harvested twice after transfection, at 48 and 72 hr, to

infect fibroblasts. Forty-eight hours after first infection, cells were synchronized and loaded for Lumi-

Cycle analysis. RNA was extracted at the first peak after synchronization to check knockdown effi-

ciency via qPCR. Average of three reference genes (Gapdh, Hprt and Ywhaz) served as internal

control. See Supplementary files 2 and 3 for shRNA target sequences and primer sequences,

respectively.

Drug treatment
The EIF2 signaling pathway activator halofuginone (Sigma-Aldrich) was dissolved in DMSO as 10 mM

stock and used at 50 nM. Tunicamycin (Sigma-Aldrich) was dissolved in DMSO as 5 mg/ml stock and

used at 5 mg/ml. Cells were treated for 4 hr and 6 hr, respectively, before loading for LumiCycle

analysis. DNMT inhibitor SGI-1027 (Sigma-Aldrich) was dissolved in DMSO as 200 mM stock and

used at 10 mM. Zebularine (Sigma-Aldrich) was dissolved in water as 200 mM stock and used at 50

mM or 100 mM. The parent culture was continuously treated for up to 60 days and split when neces-

sary. MEFs and NIH3T3 cells were treated for 3 days.
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Quantification and statistical analysis
Statistical analysis of single-cell imaging was performed with a Python code as described previously

(Li et al., 2020). Student’s T-test and two tailed F-test were performed in Excel. P-values were

adjusted using Benjamini-Hochberg (BH) method. Two-way ANOVA analysis with multiple compari-

sons via Tukey test was performed using GraphPad Prism. Heatmaps for single-cell imaging analysis

and gene expression were generated using MeV based on z-score. GraphPad prism was used to

generate heatmaps for T-test and F-test based on log transformed q-value. Volcano plot was gener-

ated in R using ggplot2 (Wickham, 2016). Venn diagrams were generated using BioVenn

(Hulsen et al., 2008). Manhattan plots were generated in R using qqman (Turner, 2014). Quadrant

plots were generated using dplyr package in R.
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Data availability

RNA Sequencing data have been deposited in GEO under accession codes: GSE132663 and

GSE132665. Exome sequencing data have been deposited in SRA under accession number:

PRJNA548837. All data generated or analyzed during this study are included in the manuscript and

supporting files. Source data have been provided for Figures 2 and 4.
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Author(s) Year Dataset title Dataset URL
Database and
Identifier

Li Y, Takahashi JS 2019 Transcriptional Profiling of Clonal
Cell Lines with Different Circadian
Period

https://www.ncbi.nlm.
nih.gov/geo/query/acc.
cgi?acc=GSE132663

NCBI Gene
Expression Omnibus,
GSE132663

Li Y, Takahashi JS 2019 RRBS Profiling of Clonal Cell Lines
with Different Circadian Period

https://www.ncbi.nlm.
nih.gov/geo/query/acc.
cgi?acc=GSE132665

NCBI Gene
Expression Omnibus,
GSE132665

Li Y, Takahashi JS 2019 Exome-seq of mouse immortalized
ear fibroblast clonal cell lines with
different circadian periods

http://www.ncbi.nlm.nih.
gov/bioproject/?term=
PRJNA548837

NCBI BioProject,
PRJNA548837
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TC, Ralph MR, Gordevičius J, Koncevičius K, Petronis A. 2018. Cytosine modifications exhibit circadian
oscillations that are involved in epigenetic diversity and aging. Nature Communications 9:644. DOI: https://doi.
org/10.1038/s41467-018-03073-7, PMID: 29440637
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Li et al. eLife 2020;9:e54186. DOI: https://doi.org/10.7554/eLife.54186 21 of 22

Research article Neuroscience

https://doi.org/10.1371/journal.pgen.1007369
https://doi.org/10.1371/journal.pgen.1007369
http://www.ncbi.nlm.nih.gov/pubmed/29750810
https://doi.org/10.1126/science.1105891
http://www.ncbi.nlm.nih.gov/pubmed/16179466
https://doi.org/10.1016/j.stem.2016.06.020
http://www.ncbi.nlm.nih.gov/pubmed/27476967
https://doi.org/10.1093/bioinformatics/btp616
https://doi.org/10.1093/bioinformatics/btp616
http://www.ncbi.nlm.nih.gov/pubmed/19910308
https://doi.org/10.1186/s12859-017-1934-z
https://doi.org/10.1186/s12859-017-1934-z
http://www.ncbi.nlm.nih.gov/pubmed/29187165
https://doi.org/10.1038/nmeth.2019
http://www.ncbi.nlm.nih.gov/pubmed/22743772
https://doi.org/10.3389/fnmol.2014.00069
http://www.ncbi.nlm.nih.gov/pubmed/25147498
https://doi.org/10.1093/nar/gky1131
http://www.ncbi.nlm.nih.gov/pubmed/30476243
https://doi.org/10.1038/nrg2430
https://doi.org/10.1038/nrg2430
http://www.ncbi.nlm.nih.gov/pubmed/18802415
https://doi.org/10.1016/bs.mie.2014.10.059
http://www.ncbi.nlm.nih.gov/pubmed/25662462
https://doi.org/10.1038/nrg.2016.150
http://www.ncbi.nlm.nih.gov/pubmed/27990019
https://doi.org/10.1016/j.ymeth.2016.09.016
https://doi.org/10.1093/bioinformatics/btp120
http://www.ncbi.nlm.nih.gov/pubmed/19289445
https://doi.org/10.1101/005165
https://doi.org/10.1101/gr.147942.112
https://doi.org/10.1101/gr.147942.112
http://www.ncbi.nlm.nih.gov/pubmed/23325432
https://doi.org/10.1016/0896-6273(95)90214-7
https://doi.org/10.1016/0896-6273(95)90214-7
http://www.ncbi.nlm.nih.gov/pubmed/7718233
https://doi.org/10.1016/j.cub.2004.11.057
http://www.ncbi.nlm.nih.gov/pubmed/15620658
https://doi.org/10.7554/eLife.31656
http://www.ncbi.nlm.nih.gov/pubmed/29481323
https://doi.org/10.1007/978-0-387-98141-3
https://doi.org/10.1007/978-0-387-98141-3
https://CRAN.R-project.org/package=dplyr
https://CRAN.R-project.org/package=dplyr
https://doi.org/10.2741/2001
http://www.ncbi.nlm.nih.gov/pubmed/16720344
https://doi.org/10.1038/oncsis.2017.49
http://www.ncbi.nlm.nih.gov/pubmed/28604762
https://doi.org/10.7554/eLife.54186


cytosine methylation on DNA binding specificities of human transcription factors. Science 356:eaaj2239.
DOI: https://doi.org/10.1126/science.aaj2239, PMID: 28473536

Yoo SH, Kojima S, Shimomura K, Koike N, Buhr ED, Furukawa T, Ko CH, Gloston G, Ayoub C, Nohara K, Reyes
BA, Tsuchiya Y, Yoo OJ, Yagita K, Lee C, Chen Z, Yamazaki S, Green CB, Takahashi JS. 2017. Period2 3’-UTR
and microRNA-24 regulate circadian rhythms by repressing PERIOD2 protein accumulation. PNAS 114:E8855–
E8864. DOI: https://doi.org/10.1073/pnas.1706611114, PMID: 28973913

Yoshitane H, Honma S, Imamura K, Nakajima H, Nishide SY, Ono D, Kiyota H, Shinozaki N, Matsuki H, Wada N,
Doi H, Hamada T, Honma K, Fukada Y. 2012. JNK regulates the photic response of the mammalian circadian
clock. EMBO Reports 13:455–461. DOI: https://doi.org/10.1038/embor.2012.37, PMID: 22441692

You BR, Park WH. 2012. Zebularine inhibits the growth of HeLa cervical Cancer cells via cell cycle arrest and
caspase-dependent apoptosis. Molecular Biology Reports 39:9723–9731. DOI: https://doi.org/10.1007/s11033-
012-1837-z, PMID: 22718513

Li et al. eLife 2020;9:e54186. DOI: https://doi.org/10.7554/eLife.54186 22 of 22

Research article Neuroscience

https://doi.org/10.1126/science.aaj2239
http://www.ncbi.nlm.nih.gov/pubmed/28473536
https://doi.org/10.1073/pnas.1706611114
http://www.ncbi.nlm.nih.gov/pubmed/28973913
https://doi.org/10.1038/embor.2012.37
http://www.ncbi.nlm.nih.gov/pubmed/22441692
https://doi.org/10.1007/s11033-012-1837-z
https://doi.org/10.1007/s11033-012-1837-z
http://www.ncbi.nlm.nih.gov/pubmed/22718513
https://doi.org/10.7554/eLife.54186

