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For studying the pathogenesis of complex diseases, it is important to identify the disease
modules in the system level. Since the protein-protein interaction (PPI) networks contain a
number of incomplete and incorrect interactome, most existing methods often lead to
many disease proteins isolating from disease modules. In this paper, we propose an
effective disease module identification method IDMCSS, where the used human PPI
networks are obtained by adding some potential missing interactions from existing PPI
networks, as well as removing some potential incorrect interactions. In IDMCSS, a network
adjustment strategy is developed to add or remove links around disease proteins based on
both topological and semantic information. Next, neighboring proteins of disease proteins
are prioritized according to a suggested similarity between each of them and disease
proteins, and the protein with the largest similarity with disease proteins is added into a
candidate disease protein set one by one. The stopping criterion is set to the boundary of
the disease proteins. Finally, the connected subnetwork having the largest number of
disease proteins is selected as a disease module. Experimental results on asthma
demonstrate the effectiveness of the method in comparison to existing algorithms for
disease module identification. It is also shown that the proposed IDMCSS can obtain the
disease modules having crucial biological processes of asthma and 12 targets for drug
intervention can be predicted.

Keywords: complex disease, module identification, protein-protein interaction network, locally adjust networks,
connectivity and semantic similarities

1 INTRODUCTION

There exist a number of complex diseases, which are not caused by the malfunction of an individual
gene product, but the dysfunction of biological systems formed by several disease-related genes
(Zheng et al., 2006; Zheng et al., 2008; Schadt, 2009; Zanzoni et al., 2009; Albert-László et al., 2011; Su
et al. 2019). These disease-related genes and their products (e.g., proteins) are not randomly
distributed on a molecular network, but they prefer to work together as a group for similar biological
functions Sol et al., 2010. The above evidence suggests the existence of disease modules, which were
firstly defined by Barabasi et al. as the connected subgraphs formed by proteins associated with a
disease (Menche et al., 2015). The disease modules can be considered as the characteristic of a
particular disease phenotype (Susan Dina et al., 2015). It becomes quite important to identify the
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disease modules, which is helpful for understanding the
molecular mechanisms of disease origin and progression, and
thus aiding the identification of synergistic drug combinations
(Cheng et al., 2019).

With the rapid accumulation of protein-protein interactions,
the investigation of interactions between proteins in the human
protein-protein interaction (PPI) networks has become one of the
primary approaches for detecting disease modules of complex
diseases (Igor et al., 2008; Sebastian et al., 2008;Wang et al., 2011).
These approaches usually are performed by using the
connectivity information in the PPI network, and can be
roughly classified into four categories, i.e., neighborhood
scoring methods (Krauthammer et al., 2004; Jonsson and
Bates, 2006; Tu et al., 2006; Xu and Li, 2006), seed expanding-
based methods (Sharma et al., 2012; Susan Dina et al., 2015;
Zhang et al., 2017b), diffusion-based methods Sebastian et al.
(2008) and representation learning methods (Härtner et al.,
2018). However, the disease modules achieved by these
connectivity-based approaches usually show insufficient
reliability to illustrate a specific disease phenotype, since nearly
80% of actual associations between proteins are not included in
the existing PPI network and these missing associations leave
many disease proteins isolated from their disease modules
(Menche et al., 2015). Besides, high throughput experiments
often produce a large number of interactions with noise,
which makes several irrelevant proteins included in the disease
module (Cho and Montanez, 2013).

To obtain better detection results, several studies have been
performed by combining the protein-protein interaction data
with other types of biological data, such as sequence-based
features, epigenomic data, gene ontology (GO) annotation and
expression patterns (Csaba and Mauno, 2009; Franke et al.,
2006b; Liu et al., 2015). Among these biological data, GO
annotation has shown to be an effective semantic resource
which usually serves as a complement to protein-protein
interactions to reflect functional information, where the
semantic information of a gene is defined as the molecular
function of genes and the biological processes in which the
genes are involved (Franke et al., 2006b; Liu et al., 2015).
Disease modules achieved by existing approaches have
shown the ability to combine the connectivity information
with the semantic information for the prioritizing of
candidate disease genes (Franke et al., 2006b; Liu et al.,
2015). For example, in Franke et al. (2006b), a gene network
is developed by the intergation of the GO annotation
information, interactions between proteins and microarray
coexpressions, and genes are ranked based on the network.
In Liu et al. (2015), Liu et al. proposed a method combining the
topological similarity in the PPI network with the semantic
similarity to select the candidate disease genes. However, the
detection results of existing methods need to be further
improved, since several unreliable interactions will hinder
the detection effectiveness.

Recent studies on complex networks show that an ambiguous
community structure can be converted into a structure much
clearer than the original one by adding and reducing several links
in the network (Su et al., 2021). It is known that about 80% of the

disease proteins are disconnected from disease modules because
of the incomplete biological network, where these proteins tend to
be localized in the neighborhood of the disease modules (Menche
et al., 2015). This means that the implementing of removing
associations from the PPI network and adding into associations
around the known disease proteins can compensate for the
incomplete and incorrect interactions between the proteins in
the PPI network, which will facilitate the detection of disease
modules. For this reason, we proposed a connectivity and
semantic similarities based method (termed as IDMCSS) to
identify disease modules by locally adjusting a given PPI
network in the detection process in a conference paper (Su
et al., 2020). The connectivity similarity reflects the closeness
of proteins based on protein-protein interactions and the
semantic similarity represents functional similarities of
proteins based on GO annotation information. In Su et al.
(2020), due to the page limitation, the IDMCSS was only
briefly presented and some simple experiments demonstrated
the effectiveness of the algorithm for disease module
identification. In this paper, we give an extended version of
the paper in Su et al. (2020) by adding more analysis and
discussions on the algorithm. Specifically, we present a
detailed description of the strategies used in the IDMCSS and
a series of experimental results are reported with detailed
discussions to illustrate the competitiveness of the IDMCSS.
We also add the related work section to highlight the
difference between the IDMCSS and existing algorithms, as
well as the complexity analysis of the IDMCSS. To sum up,
the IDMCSS algorithm contains the following two main
contributions:

1) A strategy of network structure adjustment is proposed to
locally change the structure of the existing PPI network by
adding several missing links which are likely to be related to
disease proteins and removing some existing links which have
an extremely weak correlation to disease proteins. To this end,
the strong-linked or weak-linked proteins are firstly selected
from the neighbors of disease proteins, where the strong-
linked proteins and the weak-linked proteins have large and
small connective similarities with disease proteins,
respectively. Then, two key operators, i.e., adding link
operator and removing link operator, are designed to add
several links between strong-linked proteins and disease
proteins, and remove some links between strong-linked
proteins and disease proteins.

2) A disease module detection method IDMCSS is proposed by
using the strategy of network structure adjustment based on
both connective and semantic similarity. In the proposed
method, a strategy to expand the set of disease proteins is
tailored for the disease module identification. The proposed
IDMCSS is verified to be superior over some representative
disease module identification approaches.

The rest of the paper is organized as follows. Section 2
presents the disease module detection problem and reviews the
related methods for disease module identification. Then, we
describe the details of the proposed algorithm in Section 3.
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Section 4 shows the experimental results and Section 5 concludes
the paper and gives the future work.

2 RELATED WORK

Recently, the PPI network has become a popular resource for
disease module identification (Cagney et al., 2000; Navlakha and
Kingsford, 2010). Several disease protein prioritization strategies
have been developed to detect disease modules by taking
advantage of the existing PPI networks (Agrawal et al., 2017;
Cui et al., 2018; Tian et al., 2020). Due to the unreliability of the
connective information, there exist some disease modules that are
not observable in the PPI networks (Wu et al., 2013). There are
also some approaches which are performed by combining
connective information and other information such as GO
annotation information and expression patterns, to change the
structure of the PPI networks (Liu et al., 2015; Franke et al., 2006a;
Luo and Liang, 2015; Zhang et al., 2017a). In what follows, we
only recall several approaches based on changing network
structure, which can be roughly divided into two groups.

The first group changes the network structure by adding
several potential missing links to make the network more
reliable or adding extra nodes to connect disassociated disease
proteins. In order to achieve a reliable network, Franke et al.
(2006a) collected a set of validated protein-protein interactions
and made use of GO annotation, coexpression data to predict
interactions of the remaining protein pairs by a Bayesian
classifier. The achieved network was applied to detect
candidate disease proteins. To avoid spurious interactions in
the PPI networks, a network was reconstructed by connecting
pairs of disconnected proteins in the PPI network whose higher-
order topological similarities were larger than a certain threshold,
where the higher-order topological similarity between two
proteins was measured by a link prediction algorithm. Then,
candidate inherited disease proteins were prioritized by a random
walk-based algorithm on the reconstructed network (Luo and
Liang, 2015). Based on a similar idea, Liu et al. developed an
algorithm (CTSS) to detect disease proteins by adding the weak
interactions between genes which were not connected in the
existing network based on the semantic similarity between them
(Liu et al., 2015). Experimental results indicated that the PPI
network became more perfect by involving reliable associations.
In order to connect known disease proteins to be a coherent
network module, a seed connector algorithm was developed to
detect disease modules by adding as few extra hidden proteins to
the set of known proteins as possible (Wang and Loscalzo, 2018).
The newly added proteins have been demonstrated useful, since
they show significant biological relevance in terms of their
functional similarity to known disease proteins and their
enrichment of drug targets.

The second group focuses on eliminating potential incorrect
associations in the existing networks to achieve a more reliable
network or removing several links which are not related to a
particular disease phenotype to obtain a disease-specific network.
For instance, in order to eliminate potential incorrect
associations, the structure of the human PPI network is

adjusted by measuring the correlation coefficient between a
pair of connected proteins and removing those with a low
correlation coefficient (<0.75) in gene expression data (Liu
et al., 2011). In Zhang et al., 2017a), a gene co-expression
network was constructed according to the expression patterns
of genes, and the links which were not included in the gene co-
expression network were removed from the existing PPI network
to improve the prediction accuracy of disease proteins. As for a
disease-specific network, only the interactions between the
immunome proteins in the PPI network were taken into
account for the construction of primary immunodeficiencies
network, where no new nodes were added, and proteins
without interactions were removed (Ortutay and Vihinen,
2008. Similarly, in Bragina et al. (2016), an associative
network, which represents molecular interactions between
proteins and genes associated with Tuberculosis, was
reconstructed and analyzed, and new candidate genes for TB
susceptibility were discovered.

Although various network structure based techniques have
been developed for the identification of disease modules,
traditional approaches are still far from satisfactory, since little
approaches focus on dealing with the missing and incorrect links
simultaneously. In this paper, we propose a disease module
identification method, which is achieved by both adding
several potential missing interactions and removing several
potential incorrect interactions from the existing PPI
networks, based on two types of data, i.e., connective
information and semantic information of proteins.

3 THE IDMCSS METHOD

In this section, we give the details of the proposed IDMCSS
algorithm. Firstly, the general framework of IDMCSS is
presented, and then the network adjustment strategy as well as
the way to identify disease proteins which are the main
components of IDMCSS are elaborated.

3.1 Framework of IDMCSS
The proposed IDMCSS is a network-based disease module
detection method, where the keypoint is to expand a seed
module based on an adjusted PPI network. To be specific, let
a biological network beG and let the set of known disease proteins
be S0, the IDMCSS performs seven main steps to detect a disease
module. First, we initialize the disease protein set S to be the set of
known disease proteins S0, and let the candidate disease protein
set C be empty. Then, we select all the neighbors of known disease
proteins, i.e., NS � (b1, . . ., bα), based on the current network G,
where bi (i � 1, . . ., α) is a neighbor of a certain node in S. Third,
the structure of the current network is locally changed into a new
network, Gnew, by the suggested network adjustment strategy,
which focuses on removing the potential incorrect links and
adding the potential missing links around the nodes in S. Fourth,
the neighbors of the nodes in S, i.e., NS, are updated according to
the adjusted network Gnew. Fifth, we select the protein b from NS
which is most likely to be a disease protein by the suggested
similarity, and add the node b into the set S and the candidate
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disease protein set C. The above the second to the fifth steps are
repeated until a certain disease-related information (gene
ontology, differential expression genes, pathways) is not
significantly enriched in the set C, where the significance
estimation used in Wen et al. (2013) is adopted here for
enrichment analysis. Sixth, the subnetwork Gs is extracted
from the adjusted network Gnew, where the node set of the
subnetwork is S. Note that, Gs may be disconnected. Finally,
the connected network with the largest number of nodes in Gs is
selected as a disease module, denoted as Gcs. Algorithm 1
presents the pseudo code of the framework of IDMCSS.

Algorithm 1. Framework of the IDMCS.

3.2 Network Adjustment Strategy
For the network G � (V, E) and the disease protein set S, the
IDMCSS starts to locally change the network structure of the
original network G around the nodes in S, in order to discard
several potential incorrect links and retrieve several missing
links in G. To this end, a network adjustment strategy is
developed to focus on removing several potential incorrect
links associated to the nodes in S and adding potential missing
links between a node S and its neighbors. Algorithm 2 details
the procedure of network adjustment strategy, which is
performed as follows.

Algorithm 2. Network-adjustment (G, S, NS).

First, we calculate both the connective similarity and the
semantic similarity between each protein in NS and the

diseases proteins in S � (p1, . . ., pn). For a node b ∈ NS, it is
supposed that the node b has the degree k and connects to ks
nodes in S. The connective similarity between node b and the
nodes in S is calculated by a hypergeometric test as Eq. 1., which
represents how closely protein b connects to disease proteins in S
(Susan Dina et al., 2015).

cs(b, S) � 1 − ∑
k

t�ks

Ct
nC

k−t
N−n

Ck
N

, (1)

where n is the number of nodes in S, and N is the number of
nodes in G.

Then, we can calculate the semantic similarity between protein
b and disease proteins S. Assume that the set T � {ti|i �
1, . . . ,M} consists of all of the terms annotating N proteins in
network G.

ss(b, S) � ∑
n

i�1

∑ti∈ Ab ∩ Api( )I ti( )
Imax(S) , (2)

where Ab � {txk|k � 1, . . . , m} and Api � {tyj|j � 1, . . . , m′} are
the sets of terms used to annotate the proteins b and pi, and t*
represents a term in T. I (ti) �−log [pro (ti)] is the information of
the term ti, where pro (ti) denotes the probability of the presence
of the term ti and its descendants in the term set T. The
information of protein p is I(p) � ∑m

k�1I(txk). Imax(S) � max[I
(p1), . . ., I (pn)] denotes the largest value of the information of
proteins in S.

Second, the strong-linked nodes (SN) and the weak-linked
nodes (WN) are selected from NS, denoting proteins in NS
closely and weakly related with disease proteins in S, where a
strong-linked node is defined as the protein having a connective
similarity with S larger than 0.99, and a weak-linked node is
defined as the protein when it has a connective similarity with S
smaller than the average value in NS. Note that, the connective
similarity ranges from 0 to 1, and the average value of
connective similarity is always smaller than 0.99. Thus, there
is no intersection between the strong-linked nodes (SN) and the
weak-linked nodes (WN). Third, the network G is changed to
Gnew by adding or removing several links associated with the
strong-linked or weak-linked nodes, according to the suggested
network adjustment strategy. The network adjustment strategy
includes two key operators, i.e., adding and removing links,
which are designed as follows.

1) Adding link operator: For a strong-linked node p′ ∈ SN, we
check whether a link needs to be added between p′ and the
node in S which is not connected with p′ in the current
network. Let S1′ � {pi1, . . . , pir}4S and S2′ � S/S1′ be the two
sets of nodes which are connected and not connected to
node p′. For each node pie ∈ S2′ , a link between node p′ and
node pie is added into the current network when
ss(p′, pie)>φ1. This means that a link is added if the
semantic similarity ss(p′, pie) between p′ and node pie is
larger than φ1, where φ1 is the mean semantic similarity
between p′ and each node in S1′ .
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Figure 1 presents an example to show how the suggested
adding link operator works. As shown in this figure, the set of
disease proteins S contains three nodes 1, 2 and 3, and NS � (4).
For node 4, S1′ � {1, 3} includes the nodes in S which are
connected with 4, and S2′ � {2} contains node 2 which is not
connected with node 4. Node 4 is a strong-linked node in NS,
since the connective similarity between node 4 and S � (1, 2, 3) is
0.9964 according to Eq. 1, which is larger than the threshold 0.99.
Further, the link between node 2 and node 4 is added, since the
semantic similarity between them is 0.83 which is larger than the
threshold φ1 � 0.68+0.79

2 .

2) Removing link operator: For a weak-linked node p″ ∈WN, the
network adjustment strategy checks whether some links
deserve to be removed to ensure that the weak-linked node
p″ is not connected to any node in S. Let S1″ �
{pj1, . . . , pjs}4S and S2″ � S/S1″ be the two sets of nodes
which are not connected and connected to node p″. For
each node pje ∈ S2″, a link between p″ and pje is removed
when the semantic similarity between p″ and pje is smaller
than φ2, where φ2 denotes the mean semantic similarity
between node p″ and each node in S1″.

Figure 2 presents an illustrative example of the removing link
operator. In this example, S � (1, 2, 3) represents the set of disease
proteins andNS � (4, 7, 9) consists of all neighbors of nodes in S. For
node 7, there are two nodes 1 and 3 which are not connected with it
(S1″ � {1, 3}), and one node 2 which is connected with it (S2″ � {2}).
By simple calculation, we can obtain that the connective similarity
between node 7 and set S is 0.9964 and the average connective
similarity of the nodes inNS is 0.9984. Since the connective similarity
is smaller than the average value, the node 7 is weak-linked. Hence,
we need to remove the link between nodes 7 and 2 from the network,
due to the fact that the threshold 0.35+0.28

2 is larger than the semantic
similarity between nodes 7 and 2 in S2″ (i.e., 0.14).

3.3 The Similarity Between a Protein and
Disease Proteins
In the IDMCSS, the protein having the largest similarity with the
nodes in S is selected as a disease protein, where the similarity is
measured based on both connective similarity and semantic
similarity. Specifically, considering a protein p and a set of
disease proteins S � (p1, . . ., pt), the similarity between the
protein p and the set of disease proteins S, denoted as sv (p,
S), is the normalization of the sum of the connective similarity
and the semantic similarity, which is defined as Eq. 3.

sv(p, S) � cs(p, S) + ss(p, S)
2

, (3)

where cs (p, S) represents the connective similarity between p and
S, and ss (p, S) represents the semantic similarity between p and S.

3.4 Complexity Analysis
Here, an upper bound of the time complexity of the IDMCSS is
presented. As described above, the main complexity of IDMCSS
lies in the following five steps: 1) the identification of NS, 2) the
network adjustment, 3) the selection of disease protein, 4)
extracting the subnetwork Gs from the adjusted network, 5)
selecting a disease module Gcs. Note that, the first three steps
are in a while loop.

The complexity for the identification of NS is O (dmax × n),
where |S| � n, the largest degree of nodes in S is dmax. Suppose the
number of nodes in NS is n′, a complexity of O (4 × n′ + n′2) is
needed for the network adjustment, since the complexity for
calculating connective and semantic similarity as well as selecting
strong and weak nodes is O (4 × n′), and the maximum
complexity for adding and removing links is O (n′2). The
maximum complexity for the selection of disease protein is O
(n′). The first three steps holds a time complexity ofO (dmax × n +
n′2), since O (dmax × n + n′2) ≈ O (dmax × n + 4 × n′ + n′2 + n′).
After the iteration of maxgen times, it needs a complexity of O

FIGURE 2 | An illustrative example of the suggested removing link
operator. Network 1 is the original network, where the red nodes denote
disease proteins 1, 2 and 3 in S, and the gray nodes 4, 7, and 9 represent the
neighbors of nodes in S, i.e.,NS � (4, 7, 9); Node 7 is a weak-linked node
in NS. Network 2 represents the values of the semantic similarity between 7
and each node in S. Network 3 represents the adjusted network, where the
link between nodes 7 and 2 is removed.

FIGURE 1 | An illustrative example of the suggested adding link
operator. Network 1 is the original network, where the red nodes denote
disease proteins 1, 2 and 3 in S, and the gray node 4 represents a neighbor of
nodes in S, and node 4 is a strong-linked node; Network 2 represents
the semantic similarity network, where the marked edge weights are the
semantic similarity. Network 3 represents the adjusted network, where a link is
added between nodes 2 and 4.
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((dmax × n + n′2) × maxgen) for identifying the disease proteins.
The fourth step needs a time complexity of O(M) to extract the
subnetwork Gs from the adjusted network Gnew, where M is the
number of links in Gnew. Finally, it holds a time complexity of O
(M′) to select a disease module, whereM′ is the number of links in
Gs. Therefore, the IDMCSS holds a computational complexity of
O (dmax × n × maxgen + n′2 × maxgen +M), since O ((dmax ×n +
n′2) ×maxgen + M + M′) ≈ O (dmax ×n×maxgen + n′2
×maxgen + M).

4 EXPERIMENTAL RESULTS

In this section, we first analyze the module of asthma obtained by
the proposed IDMCSS, and then compare the performance of the
IDMCSS with that of four existing algorithms for disease module
detection.

4.1 Datasets
The IDMCSS performs the detection of asthma-related modules
based on the protein-protein interaction network. The stopping
criterion of the algorithm is set according to the information of
gene ontology, differential expression genes and pathways which
are related to the asthma. Specifically, the protein-protein
interactions, microarray expression data, asthma-related genes
and pathways are presented as follows.

First, the protein-protein interaction network is obtained by
considering seven kinds of physical interactions simultaneously,
which yields a network having 13, 460 proteins and 141, 296
physical interactions. The seven physical interactions considered
here are regulatory interactions (Matys et al., 2003), biophysical
interactions Aranda et al. (2009), Ceol et al. (2007), literature
curated interactions Prasad et al. (2009), metabolic enzyme-
coupled interactions Lee et al. (2008), protein complexes
Ruepp and et al. (2010), kinase network Hornbeck and et al.
(2012) and signaling interactions Vinayagam and et al. (2011) in
human interactome. From the gene ontology annotation database
(GOA) Huntley and et al. (2015), we extract 19, 707 genes
annotated with GO terms and hence the obtained network
consists of 12, 562 proteins and 130, 390 physical interactions.

Next, we adopt nine asthma-related microarray expression
data sets consisting of the gene expression values for the
differential expression analysis. The nine data sets are GSE470,
GSE2125, GSE3004, GSE4302, GSE16032, GSE31773, GSE35571,
GSE41649 and GSE43696, which can be available from the NCBI
Gene Expression Omnibus database (GEO)1. It is worth noting
that we use 107 known asthma-related genes in the protein-
protein interaction network for experimental analysis in this
paper, which are compiled from pervious literature Vercelli
(2008) and several datasets2. In addition, 23 asthma-related
pathways collected from the literature (Song and Lee, 2013;
Sharma et al., 2012) are used in this paper (Supplementary
Appendix S1).

4.2 Identification of Disease Modules
We use the IDMCSS to identify disease modules based on an
adjusted network, where the final disease module of asthma is
achieved by running the proposed IDMCSS 217 iterations. The
reason for the iterations for 217 times is that “differential
expression genes” is not significantly enriched in current
disease proteins earlier than “GO annotation information” and
“pathway information”, and the enrichment of the differential
expression genes included in the disease proteins is smaller than
0.05 when the algorithm iterates 218 times.

For the disease module of asthma obtained by the suggested
IDMCSS, it consists of 279 nodes and 2,819 links. Among the 279
nodes, 62 nodes are known asthma-related proteins and the other
217 nodes are newly discovered relating to asthma-related
proteins. In the 2,819 links found in the disease module, 489
links are newly added and 19 links are removed from the original
network by the proposed IDMCSS. It is worth noting that some
known disease proteins associated with asthma are not included
in the obtained disease module of asthma and hence they may be
included in other connected subgraphs.

Finally, we take a close look at the closeness of the obtained
disease module. We here use the ratio of the number of inner-
links to that of external-links as the closeness of the disease
module. The module has 2,819 inner-links and 47,657 external-
links, and thus the closeness of the disease module is 0.0592. This
confirms that the disease module is not a locally dense
community as stated by Susan Dina et al. (2015). It can also
be found that the obtained disease module has statistically larger
closeness than the subnetworks randomly selected from the
adjusted protein-protein interaction network according to the
Student’s t-test.

4.3 Asthma-Related Pathways and Genes in
the Disease Module
In this subsection, we analyze the asthma-related pathways and
genes in the disease module. To this end, from 304 human
pathways in the Biocarta database given in Supplementary
Appendix S2, we extract the 72 candidate pathways which has
at least half of genes in the disease module obtained by the
algorithm. It can be found that the 72 pathways are possible
asthma-related pathways as shown in Supplementary Appendix

FIGURE 3 | The recall rate of disease module.

1http://www.ncbi.nlm.nih.gov/geo/
2http://gene2mesh.ncibi.org

Frontiers in Genetics | www.frontiersin.org October 2021 | Volume 12 | Article 7265966

Liu et al. Disease Module Detection

%20http://www.ncbi.nlm.nih.gov/geo/
%20http://gene2mesh.ncibi.org
https://www.frontiersin.org/journals/genetics
www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


S3, since they are statistically significantly enriched in the disease
module. Among the 72 pathways, two are included in the 23
known asthma-related pathways and the rest 70 are the newly
asthma-related pathways predicted by the algorithm. For the 70
pathways, five pathways, “h-il7Pathway”, “h-pkcPathway”, “h-
melanocytepathway”, “h-ngfPathway”, and “h-trkaPathway”, are
considered to be associated with asthma in previous literature
(Kelly and et al., 2009; Hou and et al., 2017; Raap et al., 2003;
Abram, 2008).

Next, we will predict several targets of glucocorticoid based on
the disease module of asthma, since they are an effective anti-
inflammatory drug for asthma. The genes will be considered as the
targets of glucocorticoid in asthma if they are differentially
expressed between asthmatic fibroblasts untreated and asthmatic
fibroblast cells treated with glucocorticoid, but not between normal
untreated fibroblast cells and normal fibroblasts treated with
glucocorticoid. For this reason, in this paper the 12 genes,
acvrl1, ar, cdk1, ctgf, ddit3, icam1, jak1, rora, smad1, snca, tgfb2,
and tlr4, are considered to be targets of glucocorticoid. To verify the
effectiveness of the targets, we use the enrichment analysis of the
differential expression genes before and after the treatment of
glucocorticoid. For 217 expanded proteins, 23 and 17 expanded
proteins are differentially expressed in normal and asthmatic
samples, respectively. As for the 62 known asthma-related
proteins, 10 and 8 known asthma-related proteins are
differentially expressed in normal and asthmatic samples,
respectively. Based on the Fisher’s exact test, in normal and
asthmatic samples the expanded proteins have the enrichment
of differential expression genes 6.0324 × 10−4 and 2.70, ×, 10−3, and
the known asthma-related proteins have the enrichment of
differential expression genes 4.32 × 10−2 and 4.30, ×, 10−2. This
means that the expanded proteins has significantly higher
enrichment of differential expression genes than the known
asthma-related proteins. Thus, we can conclude that the
algorithm can provide effective targets for therapeutic intervention.

4.4 Robustness of IDMCSS
To show the robustness of IDMCSS, Figure 3 gives the recall rate
of the disease module when 10, 20, and 30% of the known asthma
disease genes are randomly deleted, averaging over 30 times
experiments (Warren et al., 2002). It can be found that the
removal of the known disease genes has little influence on the
performance of the suggested IDMCSS, and it always detect

similar disease modules in the 217 iterations. Hence, we can
conclude that the suggested IDMCSS shows a good robustness in
detecting disease modules of asthma.

4.5 Performance Comparison
The IDMCSS is compared to four state-of-the-art disease module
identification approaches, including a network structure change-
based algorithm (CTSS) (Liu et al., 2015) and three traditional
approaches without changing network structures (DIAMOnD
Susan Dina et al. (2015), RWR Sebastian et al. (2008) and HRSS
Wu et al. (2013)), where DIAMOnD and RWR are connective-
based algorithms and HRSS is a semantic-based algorithm.
Specifically, CTSS identifies disease genes by adding weak
interactions between unconnected genes in the existing
network based on the semantic similarity between them. The
DIAMOnD algorithm is a seed-expanding method which
identifies a disease module around a set of known disease
proteins in the PPI network. RWR uses random walk analysis,
which is a global network distance measure, to measure
similarities among proteins in the PPI network. HRRS ranks
all nodes by calculating the relative specificity similarity of each
node in the network to known disease nodes, where the relative
specificity similarity is calculated by taking the global position of
relevant gene ontology terms into account. For the above
comparison algorithms, the best parameters recommended in
their original references are adopted.

Figure 4 presents performance (the number of proteins
annotated by asthma-related GO terms, the number of
differential expression genes, and the number of proteins in
asthma-related pathways) obtained by five approaches on the
asthma dataset. To be specific, the left one in Figure 4 draws the
number of proteins which are significantly annotated by
940 asthma-related GO terms for different iterations, where
the 940 asthma-related GO terms are those enriched in the
107 known asthma proteins (Supplementary Appendix S4).
From the figure, it can be found that IDMCSS achieves the
largest number of proteins annotated by asthma-related
GO terms.

The middle one in Figure 4 plots the number of differential
expression genes included in the disease module achieved by
IDMCSS and those by four compared algorithms when the
iteration ranges from 1 to 217. As can be seen from the figure,
the algorithm IDMCSS gains the largest number of differential

FIGURE 4 | Performance of IDMCSS, CTSS, DIAMOnD, RWR and HRSS on the asthma dataset. GO annotations: the number of asthma-related GO annotations
enriched in the disease module; DifferExpre: the number of differential expressed genes in the disease module; Pathways: the number of asthma-related pathways
enriched in the disease module.
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expression genes when the iteration is larger than 111. The main
reason may be attributed to the fact that by enhancing the
structure of PPI, it becomes relatively easy to detect the
differential expression genes, thus the IDMCSS can achieve a
competitive performance in detecting disease modules. The right
one in Figure 4 presents the number of proteins which belong to
the 23 known asthma-related pathways. It is found that the
IDMCSS is slightly worse than RWR, but it is better than
other algorithms. The main reason for the phenomenon is
that the proteins linked by physical interactions tend to
collaborate with each other in the same pathway (Venkatesan
et al., 2008. The proteins obtained by RWR are always the known
disease proteins’ neighbors which are connected to the known
disease proteins by physical interactions in the PPI network, while
those obtained by IDMCSS may be the nodes which are not
linked with the known disease proteins. Therefore, we can
conclude that the IDMCSS is a competitive disease module
detection algorithm in terms of detection quality.

5 CONCLUSION AND FUTURE WORK
3In this paper, we have developed a disease module
identification method IDMCSS by modifying the existing
PPI networks. In the suggested IDMCSS, some potential
interactions are added in the existing PPI network and
some incorrect interactions are removed based on the
connective and semantic similarities between the given
disease proteins and their neighboring proteins. The basic
idea of modifying the existing PPI network is that the
incorrect links and the missing links are in the original PPI
network, and we want to eliminate interference of the
incorrect links and missing links for detecting disease
module. However, due to the lack of the knowledge about
the accurate protein-protein interactions, it is hard to analyze
the validity of the modified PPI network, which may be
verified in the future. The protein having the best
connective and semantic similarities in the neighborhood
of known disease proteins is extended into the set of
disease proteins on the adjusted PPI network step by step
until a stopping criterion is reached. Further, the connected
subgraphs which include the disease proteins, as well as the
interactions between them, are extracted from the adjusted
network. Finally, the connected subgraph which contains the
largest number of disease proteins is selected as a disease
module.

We have performed a series of experiments on a particular
disease, i.e., asthma to show the effectiveness of the IDMCSS.
First, the disease module detected by the IDMCSS was not a dense
community which is in accordance with traditionary discovery,
and it was also significantly different from the random subgraphs.
Then, several pathways and genes discovered in the disease

module have been verified to be related to asthma. Further,
IDMCSS has little sensitivity to the number of known disease
proteins. Finally, IDMCSS was superior to state-of-the-art
approaches for disease module identification, since the disease
module achieved by IDMCSS includes more proteins which are
enriched in asthma-related GO terms, pathways and differential
expression genes than those achieved by other approaches. From
the above, the experiments have extensively demonstrated the
superiority of IDMCSS in disease module identification.

In this work, we have locally adjusted the network structure by
the suggested network adjustment strategy to deal with the PPI
network which suffers from both high false positive and false
negative rates. The IDMCSS performs based on the assumption
that the detection results will become better if the PPI network
becomes more perfect. Future attention can be given to combing
connective information with other kinds of information, such as
pathway information and phenotypic similarity information, to
further improve the IDMCSS.

DATA AVAILABILITY STATEMENT

Publicly available datasets were analyzed in this study. This data
can be found here: In this paper, we adopt nine asthma-related
microarray expression data sets consisting of the gene expression
252 values for the differential expression analysis. The nine data
sets are GSE470, GSE2125, GSE3004, GSE4302, 253 GSE16032,
GSE31773, GSE35571, GSE41649 and GSE43696, which can be
available from the NCBI Gene Expression Omnibus database
(GEO) http://www.ncbi.nlm.nih.gov/geo/.

AUTHOR CONTRIBUTIONS

JL: Software, Original draft preparation HZ: Data process,
Experiments JQ: Methodology, Investigation, Reviewing.

FUNDING

The National Natural Science Foundation of China (Grant No.
U1804262, 61822301, 61976001, and 61876184), the Ministry of
Science and Technology of China Key Project of Science and
Technology Innovation 2030 (Grant No. 2018AAA0101302 and
2018AAA0100105), and the Anhui Provincial Key Research and
Development Plan(Grand No. 202004j07020005), the Fundamental
Research Funds for the Central Universities (CUC210B001). Key
Program of Natural Science Project of educational Commission of
Anhui Province (KJ2019A0029), the Natural Science Foundation of
Anhui Province(2008085QF294, 1908085MF218).

SUPPLEMENTARY MATERIAL

The SupplementaryMaterial for this article can be found online at:
https://www.frontiersin.org/articles/10.3389/fgene.2021.726596/
full#supplementary-material

3This paper is an extended version of a paper of our published in the 14th
International Conference on Bio-inspired Computing: Theories and Applications
(BIC-TA 2019).

Frontiers in Genetics | www.frontiersin.org October 2021 | Volume 12 | Article 7265968

Liu et al. Disease Module Detection

http://www.ncbi.nlm.nih.gov/geo/
https://www.frontiersin.org/articles/10.3389/fgene.2021.726596/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fgene.2021.726596/full#supplementary-material
https://www.frontiersin.org/journals/genetics
www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


REFERENCES

Abram, M. (2008). Ngf increases cell viability of isolated plasma cells from
inflamed airways via trka signalling in a mouse model of allergic asthma.
J. Allergy Clin. Immunol. 121, S200. doi:10.1016/j.jaci.2007.12.745

Agrawal, M., Zitnik, M., and Leskovec, J. (2017). Large-scale analysis of disease
pathways in the human interactome. Pac. Symp. Biocomputing 23, 111–122.
doi:10.1142/9789813235533_0011

Albert-László, B., Natali, G., and Joseph, L. (2011). Network medicine: a network-
based approach to human disease. Nat. Rev. Genet. 12, 56–68.

Aranda, B., Achuthan, P., Alam-Faruque, Y., Armean, I., Bridge, A., Derow, C.,
et al. (2009). The IntAct molecular interaction database in 2010. Nucleic Acids
Res. 38, D525–D531. doi:10.1093/nar/gkp878

Bragina, E. Y., Tiys, E. S., Rudko, A. A., Ivanisenko, V. A., and Freidin, M. B. (2016).
Novel tuberculosis susceptibility candidate genes revealed by the reconstruction
and analysis of associative networks. Infect. Genet. Evol. 46, 118–123.
doi:10.1016/j.meegid.2016.10.030

Cagney, G., Uetz, P., and Fields, S. (2000). [1] High-throughput screening for
protein-protein interactions using two-hybrid assay. Methods Enzymol. 328,
3–14. doi:10.1016/s0076-6879(00)28386-9

Ceol, A., Aryamontri, A. C., Licata, L., Peluso, D., Briganti, L., Perfetto, L., et al.
(2007). Mint, the molecular interaction database: 2009 update. Nucleic Acids
Res. 35, 572–574. doi:10.1093/nar/gkl961

Cheng, F., Lu, W., Liu, C., Fang, J., Hou, Y., Handy, D. E., et al. (2019). A genome-
wide positioning systems network algorithm for in silico drug repurposing.Nat.
Commun. 10, 3476. doi:10.1038/s41467-019-10744-6

Cho, Y., and Montanez, G. (2013). Predicting false positives of protein-protein
interaction data by semantic similarity measures. Curr. Bioinformatics 8,
339–346.

Csaba, O., and Mauno, V. (2009). Identification of candidate disease genes by
integrating gene ontologies and protein-interaction networks: case study of
primary immunodeficiencies. Nucleic Acids Res. 37, 622–628.

Cui, Y., Cai, M., and Stanley, H. E. (2018). Discovering disease-associated genes in
weighted protein-protein interaction networks. Physica A: Stat. Mech. its Appl.
496, 53–61. doi:10.1016/j.physa.2017.12.080

del Sol, A., Balling, R., Hood, L., andGalas, D. (2010). Diseases as network perturbations.
Curr. Opin. Biotechnol. 21, 566–571. doi:10.1016/j.copbio.2010.07.010

Franke, L., Bakel, H. V., Fokkens, L., de Jong, E. D., Egmont-Petersen, M., and
Wijmenga, C. (2006a). Reconstruction of a functional human gene network,
with an application for prioritizing positional candidate genes. Am. J. Hum.
Genet. 78, 1011–1025. doi:10.1086/504300

Franke, L., Bakel, H. v., Fokkens, L., de Jong, E. D., Egmont-Petersen, M., and
Wijmenga, C. (2006b). Reconstruction of a functional human gene network,
with an application for prioritizing positional candidate genes. Am. J. Hum.
Genet. 78, 1011–1025. doi:10.1086/504300

Härtner, F., Andrade-Navarro, M. A., and Alanis-Lobato, G. (2018). Geometric
characterisation of disease modules. Appl. Netw. Sci. 3, 10. doi:10.1007/s41109-
018-0066-3

Hornbeck, P. V., Kornhauser, J. M., Tkachev, S., Zhang, B., Skrzypek, E., Murray,
B., et al. (2012). Phosphositeplus: a comprehensive resource for investigating
the structure and function of experimentally determined post-translational
modifications in man and mouse. Nucleic Acids Res. 40, D261–D270.
doi:10.1093/nar/gkr1122

Hou, L., Zhu, L., Zhang, M., Zhang, X., Zhang, G., Liu, Z., et al. (2017).
Participation of antidiuretic hormone (adh) in asthma exacerbations
induced by psychological stress via pka/pkc signal pathway in airway-related
vagal preganglionic neurons (avpns). Cell Physiol Biochem. 41, 2230–2241.
doi:10.1159/000475638

Huntley, R. P., Sawford, T., Mutowo-Meullenet, P., Shypitsyna, A., Bonilla, C.,
Martin, M. J., et al. (2015). The goa database: gene ontology annotation updates
for 2015. Nucleic Acids Res. 43, D1057–D1063. doi:10.1093/nar/gku1113

Igor, F., Andrey, R., and Dennis, V. (2008). Network properties of genes harboring
inherited disease mutations. Proc. Natl. Acad. Sci. United States America 105,
4323–4328.

Jonsson, P. F., and Bates, P. A. (2006). Global topological features of cancer
proteins in the human interactome. Bioinformatics 22, 2291–2297. doi:10.1093/
bioinformatics/btl390

Kelly, E. A. B., Koziol-White, C. J., Clay, K. J., Liu, L. Y., Bates, M. E., Bertics, P. J.,
et al. (2009). Potential contribution of il-7 to allergen-induced eosinophilic
airway inflammation in asthma. J. Immunol. 182, 1404–1410. doi:10.4049/
jimmunol.182.3.1404

Keshava Prasad, T. S., Goel, R., Kandasamy, K., Keerthikumar, S., Kumar, S.,
Mathivanan, S., et al. (2009). Human Protein Reference Database--2009 update.
Nucleic Acids Res. 37, D767–D772. doi:10.1093/nar/gkn892

Krauthammer, M., Kaufmann, C. A., Gilliam, T. C., and Rzhetsky, A. (2004).
Molecular triangulation: Bridging linkage and molecular-network information
for identifying candidate genes in Alzheimer’s disease. Proc. Natl. Acad. Sci.
101, 15148–15153. doi:10.1073/pnas.0404315101

Lee, D. S., Park, J., Kay, K. A., Christakis, N. A., Oltvai, Z. N., and Barabasi, A. L.
(2008). The implications of human metabolic network topology for disease
comorbidity. Proc. Natl. Acad. Sci. 105, 9880–9885. doi:10.1073/pnas.0802208105

Liu, B., Jin, M., and Zeng, P. (2015). Prioritization of candidate disease genes by
combining topological similarity and semantic similarity. J. Biomed. Inform. 57,
1–5. doi:10.1016/j.jbi.2015.07.005

Liu, T.-Y., Liu, Z.-P., Zhao, X.-M., and Chen, L. (2011). Future Work. J. Am. Med.
Inform. Assoc. 19, 241–248. doi:10.1007/978-3-642-14267-3_20

Luo, J., and Liang, S. (2015). Prioritization of potential candidate disease genes by
topological similarity of protein-protein interaction network and phenotype
data. J. Biomed. Inform. 53, 229–236. doi:10.1016/j.jbi.2014.11.004

Matys, V., Fricke, E., Geffers, R., Gößling, E., Haubrock, M., Hehl, R., et al. (2003).
TRANSFAC(R): transcriptional regulation, from patterns to profiles. Nucleic
Acids Res. 31, 374–378. doi:10.1093/nar/gkg108

Menche, J., Sharma, A., Kitsak, M., Ghiassian, S. D., Vidal, M., Loscalzo, J., et al.
(2015). Uncovering disease-disease relationships through the incomplete
interactome. Science 347, 1257601. doi:10.1126/science.1257601

Navlakha, S., and Kingsford, C. (2010). The power of protein interaction networks
for associating genes with diseases. Bioinformatics 26, 1057–1063. doi:10.1093/
bioinformatics/btq076

Ortutay, C., and Vihinen, M. (2008). Identification of candidate disease genes by
integrating gene ontologies and protein-interaction networks: case study of
primary immunodeficiencies. Nucleic Acids Res. 37, 622–628. doi:10.1093/nar/
gkn982

Raap, U., Brzoska, T., Sohl, S., Päth, G., Emmel, J., Herz, U., et al. (2003).
α-Melanocyte-Stimulating Hormone Inhibits Allergic Airway Inflammation.
J. Immunol. 171, 353–359. doi:10.4049/jimmunol.171.1.353

Ruepp, A., Waegele, B., Lechner, M., Brauner, B., Dunger-Kaltenbach, I., Fobo, G.,
et al. (2010). CORUM: the comprehensive resource of mammalian protein
complexes--2009. Nucleic Acids Res. 38, D497–D501. doi:10.1093/nar/gkp914

Schadt, E. E. (2009). Molecular networks as sensors and drivers of common human
diseases. Nature 461, 218–223. doi:10.1038/nature08454

Sebastian, K., Sebastian, B., Denise, H., and Peter N, R. (2008). Walking the
interactome for prioritization of candidate disease genes. Am. J. Hum. Genet.
82, 949–958.

Sharma, A., Menche, J., Huang, C. C., Ort, T., Zhou, X., Kitsak, M., et al. (2012). A
disease module in the interactome explains disease heterogeneity, drug
response and captures novel pathways and genes in asthma. Hum. Mol.
Genet. 46, 957–961.

Song, G. G., and Lee, Y. H. (2013). Pathway analysis of genome-wide association study
on asthma. Hum. Immunol. 74, 256–260. doi:10.1016/j.humimm.2012.11.003

Su, Y., Li, S., Zheng, C., and Zhang, X. (2019). A heuristic algorithm for identifying
molecular signatures in cancer. IEEE Trans. Nanobioscience 19, 132–141.
doi:10.1109/TNB.2019.2930647

Su, Y., Liu, C., Niu, Y., Cheng, F., and Zhang, X. (2021). A community structure
enhancement-based community detection algorithm for complex networks. IEEE
Trans. Syst. Man. Cybern, Syst. 51, 2833–2846. doi:10.1109/tsmc.2019.2917215

Su, Y., Zhu, H., Zhang, L., and Zhang, X. (2020). “Identifying disease modules
based on connectivity and semantic similarities,” in Proceedings of 14th
International Conference on Bio-inspired Computing: Theories and
Applications, 1–8. doi:10.1007/978-981-15-3415-7_3

Susan Dina, G., Jorg, M., and Albert-Laszlo, B. (2015). A disease module detection
algorithm derived from a systematic analysis of connectivity patterns of disease
proteins in the human interactome. Plos Comput. Biol. 11, e1004120.

Tian, Y., Su, X., Su, Y., and Zhang, X. (2020). EMODMI: A multi-objective
optimization based method to identify disease modules. IEEE Trans.
Emerging Top. Comput. Intelligence 1, 13. doi:10.1209/TETCI.2020.3325117

Frontiers in Genetics | www.frontiersin.org October 2021 | Volume 12 | Article 7265969

Liu et al. Disease Module Detection

https://doi.org/10.1016/j.jaci.2007.12.745
https://doi.org/10.1142/9789813235533_0011
https://doi.org/10.1093/nar/gkp878
https://doi.org/10.1016/j.meegid.2016.10.030
https://doi.org/10.1016/s0076-6879(00)28386-9
https://doi.org/10.1093/nar/gkl961
https://doi.org/10.1038/s41467-019-10744-6
https://doi.org/10.1016/j.physa.2017.12.080
https://doi.org/10.1016/j.copbio.2010.07.010
https://doi.org/10.1086/504300
https://doi.org/10.1086/504300
https://doi.org/10.1007/s41109-018-0066-3
https://doi.org/10.1007/s41109-018-0066-3
https://doi.org/10.1093/nar/gkr1122
https://doi.org/10.1159/000475638
https://doi.org/10.1093/nar/gku1113
https://doi.org/10.1093/bioinformatics/btl390
https://doi.org/10.1093/bioinformatics/btl390
https://doi.org/10.4049/jimmunol.182.3.1404
https://doi.org/10.4049/jimmunol.182.3.1404
https://doi.org/10.1093/nar/gkn892
https://doi.org/10.1073/pnas.0404315101
https://doi.org/10.1073/pnas.0802208105
https://doi.org/10.1016/j.jbi.2015.07.005
https://doi.org/10.1007/978-3-642-14267-3_20
https://doi.org/10.1016/j.jbi.2014.11.004
https://doi.org/10.1093/nar/gkg108
https://doi.org/10.1126/science.1257601
https://doi.org/10.1093/bioinformatics/btq076
https://doi.org/10.1093/bioinformatics/btq076
https://doi.org/10.1093/nar/gkn982
https://doi.org/10.1093/nar/gkn982
https://doi.org/10.4049/jimmunol.171.1.353
https://doi.org/10.1093/nar/gkp914
https://doi.org/10.1038/nature08454
https://doi.org/10.1016/j.humimm.2012.11.003
https://doi.org/10.1109/TNB.2019.2930647
https://doi.org/10.1109/tsmc.2019.2917215
https://doi.org/10.1007/978-981-15-3415-7_3
https://doi.org/10.1209/TETCI.2020.3325117
https://www.frontiersin.org/journals/genetics
www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


Tu, Z., Wang, L., Xu, M., Zhou, X., Chen, T., and Sun, F. (2006). Further
understanding human disease genes by comparing with housekeeping genes
and other genes. BMC Genomics 7, 31–13. doi:10.1186/1471-2164-7-31

Venkatesan, K., Rual, J.-F., Vazquez, A., Stelzl, U., Lemmens, I., Hirozane-
Kishikawa, T., et al. (2008). An empirical framework for binary interactome
mapping. Nat. Methods 6, 83–90. doi:10.1038/nmeth.1280

Vercelli, D. (2008). Discovering susceptibility genes for asthma and allergy. Nat.
Rev. Immunol. 8, 169–182. doi:10.1038/nri2257

Vinayagam, A., Stelzl, U., Foulle, R., Plassmann, S., Zenkner, M., Timm, J., et al.
(2011). A directed protein interaction network for investigating intracellular
signal transduction. Sci. Signaling 4, rs8. doi:10.1126/scisignal.2001699

Wang, R.-S., and Loscalzo, J. (2018). Network-based disease module discovery by a
novel seed connector algorithm with pathobiological implications. J. Mol. Biol.
430, 2939–2950. doi:10.1016/j.jmb.2018.05.016

Wang, X., Gulbahce, N., and Yu, H. (2011). Network-based methods for human
disease gene prediction. Brief. Funct. Genomics 10, 280–293. doi:10.1093/bfgp/
elr024

Warren, R. M. L., Pointon, L., Caines, R., Hayes, C., Thompson, D., and Leach, M.
O. (2002). What is the recall rate of breast mri when used for screening
asymptomatic women at high risk? Magn. Reson. Imaging 20, 557–565.
doi:10.1016/s0730-725x(02)00535-0

Wen, Z., Liu, Z. P., Liu, Z., Zhang, Y., and Chen, L. (2013). An integrated approach
to identify causal network modules of complex diseases with application to
colorectal cancer. J. Am. Med. Inform. Assoc. 20, 659–667. doi:10.1136/amiajnl-
2012-001168

Wu, X., Pang, E., Lin, K., and Pei, Z.-M. (2013). Improving the measurement of
semantic similarity between gene ontology terms and gene products: insights
from an edge- and ic-based hybrid method. Plos One 8, e66745. doi:10.1371/
journal.pone.0066745

Xu, J., and Li, Y. (2006). Discovering disease-genes by topological features in
human protein-protein interaction network. Bioinformatics 22, 2800–2805.
doi:10.1093/bioinformatics/btl467

Zanzoni, A., Soler-López, M., and Aloy, P. (2009). A network medicine approach to
human disease. Febs Lett. 583, 1759–1765. doi:10.1016/j.febslet.2009.03.001

Zhang, T., Wang, X., and Yue, Z. (2017a). Identification of candidate genes related
to pancreatic cancer based on analysis of gene co-expression and protein-
protein interaction network. Oncotarget 8, 71105–71116. doi:10.18632/
oncotarget.20537

Zhang, X., Wang, C., Su, Y., Pan, L., and Zhang, H.-F. (2017b). A fast overlapping
community detection algorithm based on weak cliques for large-scale networks.
IEEE Trans. Comput. Soc. Syst. 4, 218–230. doi:10.1109/tcss.2017.2749282

Zheng, C.-H., Huang, D.-S., Kong, X.-Z., and Zhao, X.-M. (2008). Gene expression
data classification using consensus independent component analysis.Genomics,
Proteomics & Bioinformatics 6, 74–82. doi:10.1016/s1672-0229(08)60022-4

Zheng, C.-H., Huang, D.-S., and Shang, L. (2006). Feature selection in independent
component subspace for microarray data classification. Neurocomputing 69,
2407–2410. doi:10.1016/j.neucom.2006.02.006

Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated organizations, or those of
the publisher, the editors and the reviewers. Any product that may be evaluated in
this article, or claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

Copyright © 2021 Liu, Zhu and Qiu. This is an open-access article distributed under
the terms of the Creative Commons Attribution License (CC BY). The use,
distribution or reproduction in other forums is permitted, provided the original
author(s) and the copyright owner(s) are credited and that the original publication
in this journal is cited, in accordance with accepted academic practice. No use,
distribution or reproduction is permitted which does not comply with these terms.

Frontiers in Genetics | www.frontiersin.org October 2021 | Volume 12 | Article 72659610

Liu et al. Disease Module Detection

https://doi.org/10.1186/1471-2164-7-31
https://doi.org/10.1038/nmeth.1280
https://doi.org/10.1038/nri2257
https://doi.org/10.1126/scisignal.2001699
https://doi.org/10.1016/j.jmb.2018.05.016
https://doi.org/10.1093/bfgp/elr024
https://doi.org/10.1093/bfgp/elr024
https://doi.org/10.1016/s0730-725x(02)00535-0
https://doi.org/10.1136/amiajnl-2012-001168
https://doi.org/10.1136/amiajnl-2012-001168
https://doi.org/10.1371/journal.pone.0066745
https://doi.org/10.1371/journal.pone.0066745
https://doi.org/10.1093/bioinformatics/btl467
https://doi.org/10.1016/j.febslet.2009.03.001
https://doi.org/10.18632/oncotarget.20537
https://doi.org/10.18632/oncotarget.20537
https://doi.org/10.1109/tcss.2017.2749282
https://doi.org/10.1016/s1672-0229(08)60022-4
https://doi.org/10.1016/j.neucom.2006.02.006
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/genetics
www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles

	Locally Adjust Networks Based on Connectivity and Semantic Similarities for Disease Module Detection
	1 Introduction
	2 Related Work
	3 The IDMCSS Method
	3.1 Framework of IDMCSS
	3.2 Network Adjustment Strategy
	3.3 The Similarity Between a Protein and Disease Proteins
	3.4 Complexity Analysis

	4 Experimental Results
	4.1 Datasets
	4.2 Identification of Disease Modules
	4.3 Asthma-Related Pathways and Genes in the Disease Module
	4.4 Robustness of IDMCSS
	4.5 Performance Comparison

	5 Conclusion and Future Work
	Data Availability Statement
	Author Contributions
	Funding
	Supplementary Material
	References


